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The phenomena of liquid bridge formation due to an applied electric field is investigated. A new
solution for the charged catenary is presented which allows to determine the static and dynamical
stability conditions where charged liquid bridges are possible. The creeping height, the bridge
radius and length as well as the shape of the bridge is calculated showing an asymmetric profile in
agreement with observations. The flow profile is calculated from the Navier Stokes equation leading
to a mean velocity which combines charge transport with neutral mass flow and which describes
recent experiments on water bridges.
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I. INTRODUCTION

The formation of a water bridge between two beakers
when high electric fields are applied is a phenomenon
known since over 100 years [1]. It has remained attrac-
tive to current experimental activities [2, 3]. On one
side the properties of water are such complex that the
complete microscopic theory of this effect is still lack-
ing. On the other side the formation of water bridges on
nanoscales are of current interest both from fundamental
understanding of electrohydrodynamics and from appli-
cations ranging from atomic force microscopy [4] to elec-
trowetting problems [5]. Microscopically the nanoscale
wetting is of importance to confine chemical reactions
[6] which reveals an interesting interplay between field-
induced polarization, the surface tension, and condensa-
tion [7, 8].

Molecular dynamical simulations have been performed
in order to explore the mechanism of water bridges at
the molecular level leading to the formation of aligned
dipolar filaments that bridges boundaries of nanoscale
confinements [9]. A competition was found of orienta-
tion of molecular dipoles and the electric field leading to
a threshold where the rise of a pillar overcomes the sur-
face tension [8]. In this respect the understanding of the
microscopic structure is essential for such phenomena in
micro-fluidics [10]. The problem is connected with the
dynamics of charged liquids which is important for cap-
illary jets [11], current applications in ink printers and
electrosprays [12, 13]. Consequently the nonlinear dy-
namics of breakup of free surfaces and flows has been
studied intensively [14, 15].

Much physical insight can be gained already on the
macroscopic scale, where the phenomena of liquid bridg-
ing is not restricted to water but can be observed in
other liquids too [16] which shows that it has its origin
in electrohydrodynamics [17] rather then in molecular-
specific structures. The traditional treatment is based
on the Maxwell pressure tensor where the electric field
effects comes from the ponderomotoric forces and due
to boundary conditions of electrodynamics [18]. This

is based exclusively on the fact that bulk-charge states
decay on a time scale of the dielectric constant divided
by the conductivity, ǫǫ0/σ which takes for pure water
0.14ms. This decay-time of bulk charges follows from
the continuity of charge density ρ̇c = −∇ · j combined
with Ohm’s law j = σE = −σ∇φ where the source of the
electric field is given by the potential ∇2φ = −ρc/ǫǫ0.
An overview about the different forces occurring in mi-
croelectrode structures are discussed in [19].

However this simple Ohm picture leads to problems in
charged liquids. It suggests a constant velocity or cur-
rent of charged particles caused by the external field. On
the other hand the total current of the mass motion can-
not be constant but is dependent on the area where it is
forced to flow through for incompressible fluids. Here in
this paper we will present a discussion of this seemingly
contradiction in pictures leading to a dynamical stabil-
ity criterion for the water bridge and a combined flow
expression. This is in line with the idea of [17] where
the bulk charges have been assumed to be realized in a
surface sheet.

In the absence of bulk charges the forces on the water
stream are caused by the pressure due to the polariz-
ability of the water described by the high dielectric sus-
ceptibility ǫ. This pressure leads to the catenary form
of water bridge like a hanging robe [20]. While already
the simplified model of [16] employing a capacitor pic-
ture leads to a critical field strength for the formation of
the water bridge, the catenary model [20] has not been
reported to yield such a critical field. In this paper we
will show that the uncharged catenary provides indeed a
minimal critical field strength for the water bridge for-
mation in dependence on the length of the bridge. This
critical field strength is modified if charges are present
in the bridge which we will present here with the help
of a new charged catenary solution. This allows also to
explain the asymmetry found in the bridge profile [3].

http://arxiv.org/abs/1107.0459v1
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density ρ = 103kg/m3

dielectric susceptibility ǫ = 81
surface tension σs = 7.27×10−2N/m
viscosity η = 1.5×10−3Ns/m2

conductivity of
clean water σ0 = 5×10−6A/Vm
molecular conductivity
of NaCl λ = 12.6×10−3Am2/Vmol
heat capacity cp = 4.187 J/gK

TABLE I: Variables and parameters used within this paper
for water.

II. OVERVIEW ABOUT THE PAPER

In addition to the approaches discussed so far we want
to advocate the following picture. Imaging to make
a snapshot of the charges flowing through the bridge
we could not decide whether the charge is due to bulk
charges or due to the floating motion of charges. This
flow of charges within the liquid bridge we can associate
with a dynamical bulk charge of mass motion which is
not covered by the decay of bulk charges discussed above.
This picture is supported by the experimental observa-
tion of possible copper ion motion [21] and by the obser-
vation that the water bridge is highly sensitive to addi-
tional external electric fields [22] and strong fields even
create small cone jets [2]. This dynamical bulk charge
will lead to the problem of a charged catenary. Though
charged membranes have been discussed in the literature
[23], the analytical solutions of the charged catenary pre-
sented in this paper is unknown to the authors knowl-
edge.

That the simple model of Ohmic resistors and ca-
pacitor as described above is not sufficient one can see
from the observation that adding a small amount of elec-
trolytes to the clean water destroys the water bridge al-
most immediately. In other words well conducting liq-
uids should not perform a water bridge. In the presented
model here we will derive an upper bound for the charges
possibly carried in the water in order to remain in stable
liquid bridges. Though we present all calculations for wa-
ter parameters summarized in table I, the theory applies
as well to any dielectric liquid in electric fields.

The scenario of water or other dielectric bridges hap-
pens as follows. Applying an electric field the water
creeps up the beaker and form a bridge as it is nicely
pictured in [2]. This bridge can be elongated up to a
critical field strength and it forms a catenary which be-
comes asymmetric for higher gravitation to electric field
ratios [3]. The critical value for stability is sensitively
dependent on ion concentrations breaking off at very low
concentrations. The amount of mass flow through the
bridge does not follow simple Ohmic transport as we will
see in this paper.

Therefore, four theoretical questions have to be an-
swered: (i) How is the electric field influencing the height
water can creep up? (ii) What radius has the bridge?

(iii) What form has the water bridge? What are the
static constraints on the bridge. (iv) What dynamical
constraints can be found for possible bridge formation.
We will address all four questions with the help of four

parameters composed of the properties summarized in
table I of water. The first one is the capillary height

a =

√

2σs

ρg
= 3.8mm (1)

the second parameter is the water column height balanc-
ing the dielectric pressure calling creeping height in the
following

b(E) =
ǫ0(ǫ− 1)E2

ρg
= 7.22Ē2 cm (2)

where the electric field is in units of [Ē] = 104V/cm. The
third one is the dimensionless ratio of the force density on
the charges by the field to the gravitational force density

c(ρc, E) =
ρcE

ρg
= 15.97Ēρ̄c (3)

where the charge density is in units of [ρ̄c] = ng/l. For
dynamical consideration the characteristic velocity

u0 =
ρga

32η

2
≈ 3.02m/s (4)

will be useful to introduce.
The outline of the paper is as follows. In the next chap-

ter we repeat shortly the standard treatment of creeping
height and bubble radius calculation of a liquid but add
the pressure by the external electric field on the dielectric
liquid. Then we present the form of the bridge in terms
of a new solution of the catenary equation due to bulk
charges in chapter IV. In chapter V we present the flow
calculation proposing the picture of moving charged par-
ticles due to the field which drag the neutral particles.
This will lead to a dynamical stability criterion. Sum-
mary and conclusion ends up the discussion in chapter
VI.

III. FORMATION OF BRIDGE: CREEPING

HEIGHT, RADIUS

We start to calculate the possible creeping height.
Therefore we use the pressure tensor for dielectric me-
dia [18]

σik = −pδik − σs

(

1

R1
+

1

R2

)

+ ǫǫ0EiEk − 1

2
ǫ̃ǫ0E

2δik(5)

where p is the pressure in the system, R1, R2 the principal
radii of curvature such that the second term on the right
hand side describe the contribution due to surface ten-
sion and the last terms are the parts due to forces in the
dielectric medium. We assume a density-homogeneous
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liquid such that ǫ̃ = ǫ − n(dǫ/dn)T ≈ ǫ. Denoting the
normal vectors by ei, the stability condition between wa-
ter (W) and air (L) is given by

σik
(L)e

k
(L) = −σik

(W )e
k
(W ) = −σik

(L)e
k
(W ). (6)

Since the principal curvature is much larger radially to
the tube than parallel, we have R2 ∼ ∞ and denoting
the coordinate in the direction of the height with z, the
pressure difference between water and air is pW − pL =
ρgz. The balance (6) with (5) reads then

ρgz +
σs

R1
=

1

2
ǫ0(ǫ− 1)(ǫE2

n + E2
t ). (7)

Here we have employed the boundary conditions for the
normal and tangential components of the electric field

En
(L) = ǫEn

(W ) = ǫEn, Et
(L) = Et

(W ) = Et. (8)

We assume the electric field in x-direction such that
Et = −E cosα, En = E sinα where z′(x) = tanα is
the increase of the surface line of the water. Using the
parameters (1) and (2) we obtain from the stability con-
dition (7) the differential equation

2z − a2
z′′

(1 + z′2)3/2
= ǫ0(ǫ− 1)(ǫE2

n + E2
t ) ≈ b (9)

where we used the approximation of small normal electric
fields justified if there are no surface charges. This shows
the modification of the standard treatment of capillary
height by the applied field condensed on the right hand
side. The first integral of (9) is

z2

a2
+

1√
1 + z′2

− bz

a2
= 1 (10)

where we used the condition that for x → ∞ z = z′ = 0.
The explicit solution of the surface curve z(x) is quite
lengthy and not necessary here. Instead we can give di-
rectly the maximally reachable height in dependence on
the electric field. Therefore we use the angle θ = 90−α of
the liquid surface with the wall such that z′(x) = − cot θ
and from (10) we obtain

z =
b

2
+

√

b2

4
+ a2(1 − sin θ) ≤ b

2
+

√

b2

4
+ a2 = zmax(11)

which shows that without electric field the maximal
creeping height is just the capillary length (1) as it is
well known. The other extreme of very high fields leads
to the field-dependent length (2) which justifies the name
creeping height. This answers the first question concern-
ing creep heights.
The second question concerning the radius of the

bridge one finds by equating the pressure of surface ten-
sion with the gravitational force density

σs

R
= ρgz ≈ ρg2R (12)

such that the radius of the water bridge is at the beaker

R ≈ a/2. (13)

Without using the approximation we could express the
curvature again by differential expressions in z(x) defin-
ing a radial profile, as it can be found in text books [18].

IV. LIQUID BRIDGE: BRIDGE SHAPE

A. Charged catenary

Now we turn to the question which form the water
bridge will take. Therefore we consider the center of
mass line of the bridge being described by z = f(x)
with the ends at f(0) = f(L) = 0. The force densi-
ties are multiplied with the area and the length element

ds =
√

1 + f ′2dx to form the free energy. We have the
gravitational force densityρgf and the volume tension
ρgb as well as the force density by dynamical charges
ρcEx which contributes. The surface tension is negligi-
ble here. The form of the bridge will be then determined
by the extreme value of the free energy

L
∫

0

F(x)dx = ρg

L
∫

0

(f(x) + b− cx)
√

1 + f ′2dx → extr.

(14)

where c is given by (3) and b defined in (2). Introducing
t(x) = f(x)+b−cx, the corresponding Lagrange equation
possesses a first integral

t′(x)
∂F

∂t′(x)
−F = −ξ

√

1 + c2. (15)

The resulting differential equation is solved in an implicit
way

t(x) = ξ cosh
1

ξ
(x(1 + c2) + ct(x) − c1) (16)

with the integration constants ξ, c1 to be determined by
the boundary conditions f(0) = f(L) = 0. Renaming
variables the solution can be represented parametrically
as

f(t) =
1

1+c2

{

c t+ξ

[

cosh

(

t

ξ
−Ld

2ξ

)

−cosh

(

Ld

2ξ

)]}

x(t) = t− cf(t), t ∈ (0, L). (17)

The boundary conditions lead to

d = 2
ξ

L
arcosh

b

ξ
(18)

and ξ to be the solution of the complementary equation

c = cm(ξ, b)

cm(ξ, b) = −2ξ

L
sinh

L

2ξ

(

b

ξ
sinh

L

2ξ
−

√

b2

ξ2
− 1 cosh

L

2ξ

)

.

(19)
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FIG. 1: The upper critical bound for the parameter c accord-
ing to (19). The inset shows the maximum in dependence on
the creeping parameter b.

The solution (17) has not been reported in literature so
far and is the main result of this paper.

B. Static stability criteria

Without dynamical bulk charges, c = 0, d = 1, the
solution (17) is just the well known catenary [20]. The
boundary condition (19) reads then

2b

L
=

2ξ

L
cosh

L

2ξ
≥ ξc = 1.5088... (20)

which means that without bulk charges the condition for
a stable bridge is

b >
1

2
Lξc. (21)

Together with (2) this condition provides a lower bound
for the electric field in order to enable a bridge of length
L and has been not discussed so far.
The field-dependent lower bound condition (19) is plot-

ted in figure 1. One see that in order to complete (19)
the bulk charge parameter c has to be lower then the
maximal value of cm which reads

c ≤ cm(ξ0, b) (22)

and which is plotted in the inset in figure 1. Remember-
ing the definition of the bulk charge parameter (3) we
see that (22) sets an upper bound on the bulk charge in
dependence on the electric field. The lower bound (21) of
the electric field for the case of no bulk charges is obeyed
as well since the curve in the inset of figure 1 starts at
b > Lξc/2.
This completes the third question concerning static

stability of the bridge. We have found a new catenary
solution even for bulk charges in the bridge.

V. DYNAMICAL CONSIDERATION

A. Mass flow of the bridge

We consider now the actual motion of the liquid in
the bridge. Here we want to propose the picture that
possible charges in the water will move according to the
applied electric field and will drag water particles such
that a mean mass motion starts. Due to the relatively
low Reynolds numbers (40-100) for water we can consider
the motion as laminar and we can neglect the convection
term u∇u in the Navier Stokes equation [24] which reads
then for the stationary case

η∇2u− ρ∇p+ ρcE = 0. (23)

The gradient of the electric pressure (7) can be given in
the direction of the bridge by

−∇p =
ǫ0(ǫ− 1)E2

2L
=

b

L
ρg. (24)

Assuming that the flow in the bridge has only a trans-
verse component which is radial dependent, we can solve
the Navier Stokes equation like a Poiseullie flow with a
resulting velocity profile in the direction of the bridge

u(r) = 2u0

(

b

L
+ c

)(

1− r2

R2

)

(25)

where R is the radius of the bridge and we have intro-
duced the characteristic velocity (4) using the radius of
the water bridge at the beaker (13). The mean current
is easily calculated from (25)

I = 2πρ

R
∫

0

drru(r) ≡ ρvπR2 (26)

providing the mean velocity of the bridge as

v = u0

(

b

L
+ c

)

. (27)

One sees that the ratio of the field-dependent creeping
height (2) to the bridge length determines the mean ve-
locity together with possible dynamical bulk charges de-
scribed by (3). Please note that the bulk charge trans-
port described by (3) leads to Ohmic behavior and the
neutral particle transport due to dielectric pressure leads
to a quadratic field dependence condensed in (2). The
formula (27) combines the effect of charge transport and
neutral particle mass transport. It answers the problem
raised in the introduction how the picture of incompress-
ible fluids where the velocity is dependent on the area and
Ohmic transport where the velocity is only dependent on
the electric field can be thought together.
The resulting total mass current is given in figure 2.

The current increases basically with the square of the
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FIG. 2: The mean mass current through the bridge in depen-
dence on the electric field and for two different bulk charge
densities. The thick lines are for a bridge length of 1cm and
the thin lines for the corresponding length of 2cm. The min-
imal field strength for stability (21) are indicated by corre-
sponding vertical lines.

applied field scaled by the bridge length. For additional
bulk densities the mass flow is higher.
To convince the reader about the validity of the veloc-

ity formula (27) we compare now with the mass flow and
the charge flow measurements. The experimental values
of Figure 4 in [2] are reported to be 40mg/s for a bridge
of 1cm length, a diameter of 2.5mm for the stationary
regime. For this situation we compare in figure 3 the
results obtained from (27) with a pure Ohmic transport
using the lowest-order conductivity expression

σ = λ
ρc

eNA
+ σ0 (28)

where for clean water the conductivity is σ0, λ is the
molecular conductivity of the solved charge (electrolyte),
and NA the Avogadro constant. We see that our for-
mula (27) leads to a realistic necessary voltage - which
was 12.5kV in the experiment - even if no bulk charge is
presented. In contrast, for the Ohmic transport one has
to assume 13 orders of magnitude higher bulk charges to
come into the same range. This illustrates the advantage
of the here presented model.
Considering the charge transport we do not expect

such big differences of our model to the pure Ohmic pic-
ture since the charged particles matters. To this end we
compare the applied voltage versus bridge length with a
constant charge current as done in figure 6 of [2]. In figure
4 we compare the result from (27) with the pure Ohmic
transport. We use a bulk charge of 2.3ng/l. In order
to obtain a comparable Ohmic result we had to multiply
the bulk charge with a factor of 3× 103 which illustrates
the difference between our model and the Ohmic trans-
port. While the difference in charge transport is not very
significant provided the fact that the conductivity of wa-
ter varies in the order of 3 magnitudes, the mass flow of
figure 3 has shown that our result here with (27) is su-

0 50 100 150 200 250 300
Ρc @ng�lD

9

10

11

12

13

14
U@kVD

I=40ml�s
HOhmic 1013

Ρc L

FIG. 3: The necessary applied voltage versus bulk charge
densities in order to maintain a mass current of 40ml/s. Fol-
lowing [2] the length of the bridge was L = 1cm and the
diameter 2.5mm. The result using the flow expression (27) of
the present paper (solid line) is compared to an Ohmic trans-
port (broken line). For the latter one the bulk charge has
been multiplied with 13 orders of magnitude.

4 6 8 10 12 14 16
L@mmD

12

14

16

18

20
U@kVD

I=0.5 mA

FIG. 4: The necessary applied voltage versus bridge length
in order to maintain a charge current of 0.5mA. The data are
from figure 6 of [2]. The result using the flow expression (27)
and a bulk charge of 2.3ng/l (solid line) is compared to a an
Ohmic transport (broken line). For the Ohmic transport the
bulk charge has been multiplied with a factor of 3× 103. The
same offset of U0 = 8kV is used as in the experiments.

perior since it considers the drag of neutral particles due
to dielectric pressure together with the charge transport.
Having the current at hand one estimates the Joule

heating easily as

∆T

∆t
=

jE

ρcp
. (29)

Comparing with the figure 5 of [2] one sees that an in-
crease of 10K in 30min is reported would translate into
field strengths of 0.7kV/cm in our calculation. This is
much lower than our result. We would obtain here 2-3 or-
ders of magnitude higher heating rates. Please note that
the cooling mechanisms like evaporating and cooling due
to water flow is beyond the present consideration. Since
this is a major cooling effect in experiments [25] we can-
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not compare seriously the theoretical heating rate with
the experimentally observed ones.

B. Profile of bridge

One can even calculate the profile of the bridge along
the length. We consider to this end the total mass flow
of the bridge and neglect the viscous term compared to
the kinetic energy (which includes part of the convection
term), u∇u = 1

2∇u2 + curlu × u ≈ 1
2∇u2. Then one

arrives at the Bernoulli equation

ρ
v(x)2

2
+ρgf(x)+σs(

1

R(x)
)−ρcEx = ρ

v2

2
+σs

1

R
. (30)

Here we have neglected the curvature of the bridge com-
pared to the curvature due to the radius and have com-
pared the position-dependent radius R(x) and velocity
v(x) in the bridge with the situation at the beaker at
x = 0. The Bernoulli equation (30) can be rewritten in
terms of the capillary height (1) and the velocity (27) as

f(x)− cx =
v2 − v2(x)

2g
+ a− a2

2R(x)
(31)

which determines the radius R(x) from the profile of the
bridge (17) and the velocity v(x) if we observe the current
conservation through an area

R(x)2v(x) = R2v. (32)

The results are presented figure 5. We plot the shape of
the bridge, the radius and the velocity together with a 3D
plot once for the case of no bulk charges which leads to
the standard catenary and once for extreme bulk charges
almost at the stability edge (22). We see the deformation
of the catenary due to the applied field. This deformation
is observed, e.g. if an additional field is brought near
the bridge [2, 22]. One sees that the radius is becoming
smaller in the middle of the bridge accompanied with
higher velocities as it is known from falling water pipes
[26]. The bulk charge leads to deformations of this profile
which are exaggerated in the plot due to the choice of
unequal scales.
Interestingly such asymmetry is experimentally ob-

served [2], where after 3 min of operation the asymmetry
for the bridge of 0.9cm length ranges from a diameter of
2.1mm to 2.6mm. This is in agreement with the profile
calculated in figure 6. Also the measured asymmetry in
the left and right catenary angle [3] in glycerine can be
explained with the present model.

C. Dynamical stability

We turn to the question of dynamical stability of the
flow and consider the motion of water together with the
motion of charged particles characterized by the mass mi

-0,08

-0,06

-0,04

-0,02

0

f [
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-0,08
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-0,04
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]
0 0,2 0,4 0,6 0,8 1

x[L]

4

4,5
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5,5

6

6,5

7

v 
[m

/s
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FIG. 5: The center of mass coordinate (above), the radius
(middle) and the velocity (bottom) together with the 3D plot
of water bridge (in cm) for no bulk charges c = 0. The pa-
rameter are b = 1.5cm and according to table I. Please note
the different length scales in x and y, z direction.

and charge ei. This charge current is given by Ohm’s law
σE and the corresponding mass current can be written

ji =
mi

ei
j = xi

ρ

ρc
σE (33)
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FIG. 6: The center of mass coordinate (above), the radius
(middle) and the velocity (bottom) together with the 3D plot
of water bridge (in cm) with bulk charges c = 1. The param-
eter are b = 1cm and according to table I.

where we introduced the mass ratio of the number of
charged particles (e.g. NaCl) to the water particles

xi =
#imNaCl

#wmH20
=

ρcmi

ρei
. (34)

The mass current of the neutral (water) particles are

jn = ρnvn = (ρ− mi

ei
ρc)vn = (1− xi)ρvn (35)

such that the total mass current reads

ρv = ji + jn = xi
ρ

ρc
σE + (1− xi)ρvn. (36)

The total current (left side) should be larger than the
current only from the charged particle (last term right
side). However the velocity of charged particles, σE/ρc
should be larger than the velocity of the dragged water
molecules vn and therefore larger than the mean veloc-
ity v of the mass motion. Together with (27) this is
expressed by the inequality

σE

ρc
> u0

(

b

L
+ c

)

> xi
σE

ρc
(37)

which gives an upper and lower bound on the possible
mass motion created by the drag of particles due to the
force on charged particles.
If we now take into account the dependence of the con-

ductivity on the density of the solved ions in water we
can find a condition on possible bulk charges in water to
maintain a stable bridge. To this aim we consider very
small charge densities solved in water which allows to
consider the lowest order dependence of the conductivity
on the bulk charge concentration (28).
Noting the charge-density dependencies of xi, b and c

via (34), (2) and (3) one obtains from (37) the dynamical
restriction on possible bulk charges

ρc ∈ ρ1 − ρ2 ±
√

(ρ1 − ρ2)2 + ρ23

ρc(1− 2ρ2/ρi) > ρ23/ρi − 2ρ1 (38)

with the auxiliary densities

ρ1 = ǫ0(ǫ − 1)
E

2L
, ρ2 =

16ηλ

eNAa2

ρ23 =
32ησ0

a2
, ρi =

eiρ

mi
. (39)

The results for NaCl in water (table I) are plotted in
figures 7-8. The static stability condition (21) gives the
upper and charge-density-independent limit in figure 8.
The static condition (22) with bulk charges leads to the
border of maximal densities on the right side which agrees
with (21) at zero densities, of course. The lower minimal
length of the bridge at a given field strength and bulk
charge is provided by the dynamical condition (38). For
no bulk charge the possible range of lengths of the bridge
starts at zero and is limited by the upper length (21).
If there are charges present, there is a minimal length
required to have a stable bridge.
From the 3D plot in figure 8 one can see that for finite

charges and fixed bridge length there is a lower and an
upper critical field where bridges can be stable. From the
experiments [2] it is seen that the bridge forms jets for
fields higher than 15kV/cm.
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FIG. 7: The range of possible water bridges for an electric
field of E = 0.64kVcm. Upper limit due to static stability
condition (22) and lower cut due to dynamical condition (38).
The bulk charge free condition is the upper straight line.

FIG. 8: The range of possible water bridges in dependence on
bridge length, electric field and electrolyte bulk charges.

VI. SUMMARY

The formation of water bridges between two vessels
when an electric field is applied has been investigated
macroscopically. Electrohydrodynamics is sufficient to
describe the phenomena in agreement with the experi-
mental data. The four necessary parameters which are
build up from microscopic properties of the charged liq-
uid are the capillary height (1), the creeping height (2),
the dimensionless ratio between field and gravitational
force density (3), and the characteristic velocity (4).

As new contribution to the discussion, an exact solu-
tion has been found of the charged catenary which was
not reported so far. This leads to a static stability crite-
rion for possible charges in the liquid dependent on the
applied field strengths and length of the bridge. With
no bulk charge present the maximal bridge length is de-
termined and no minimal length occurs. This changes
if bulk charges are present. Then also a minimal length
is required. However, only very small concentrations of
bulk charges are possible and the bridge is easily de-
stroyed when bulk charges in the order of 50 ng/l are
present. As a further result it is obtained an asymmet-
ric profile in the diameter along the bridge which was
observed by asymmetric heating.

For the dynamical consideration a picture is proposed
of dragged liquid particles due to the motion of the
charged ones besides the ponderomotoric forces due to
the dielectric character of the liquid. The resulting dy-
namical stability consideration restricts the possible pa-
rameter range of bridge formation. The resulting mass
flow combines the charge transport and the neutral mass
flow dragged by dielectric pressure and is in agreement
with the experimental data.

The presented simple classical theory applies for
charged liquids as long as the Reynolds number is such
low that laminar flow can be assumed.
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