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Abstract We show that modeling monetary circulation and cyclical activity offers
insights about monetary policy that cannot be had in representative-agent models. Two
fundamental ideas emerge: (i) the reflux of money back to the hands of those making
current expenditures can be inefficient, and (ii) expansionary policy may accommodate
more trade during high-demand seasons, at the expense of less trade in low-demand
seasons and a less valuable currency. The paper provides a foundation for the opti-
mality of a cyclical monetary policy.
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1 Introduction

Should monetary policy be cyclical? Although this is an old question in monetary eco-
nomics, there does not exist a consensus answer. One possible reason for this state of
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affairs is that in ongoing research in the pure theory of money—models where money
arises endogenously as a solution to a trading problem—policy can only speak to
affecting the rate of return of money. In this paper, we consider an environment where
policy can affect the circulation of money over a trade cycle. We find that seasonal
movements in real activity has implications for the speed of circulation—or reflux—of
money and that a cyclical monetary policy can improve matters.

There are two fundamental ideas in this paper. First, when the distribution of money
holdings is determined by the exchange process, trade cycles may impair the flow of
liquidity to the point where the future reflux of money back to the hands of those
making current expenditures is compromised.1 The second fundamental idea is that
an expansionary policy, timed correctly, may accommodate more trade during high-
demand seasons, at the expense of less trade in low-demand seasons and a less valuable
currency.2 We formalize these ideas in a relatively simple random-matching model in
the spirit of Kiyotaki and Wright (1989). Individuals alternate between being consum-
ers and producers. At any date, half are consumers, half are producers. The trade cycle
or seasons are generated by consumer preference shocks and alternating seasons of
high and low demand affect the distributions of money. An inefficient distribution of
money will be generated in the low demand season after trade concludes. In particular,
since trade—and hence circulation of money—is low is the low demand season, a lot
of money is kept in the hands of would-be producers, and not would-be consumers,
precisely at the start of a season in which the desire to consume is high. Because of
this, lump-sum transfer policies can redistribute purchasing power to the hands of
consumers in seasons when demand is high.

On the one hand, the merits of cyclical and counter-cyclical monetary policy have
been analyzed from myriad angles. But in most of these discussions, money’s role
as a medium of exchange is ignored. On the other hand, in discussions where this
role is explicit, the issue of cyclical policy does not arise. This paper is an attempt to
fill this void. Lucas (1972) was the first to present a pure theory of money with the
short-run effects of monetary policy. However, an important ingredient in his analysis
is an exogenous and random supply of money. Sargent and Wallace (1982) study allo-
cations with alternating cycles in the demand for loans that are Pareto optimal and,
therefore, there is no role for interventions in the money supply.3

Aggregate models, which are silent on the reflux of money, offer predictions about
welfare losses associated with not following the optimal contractionary policy, the

1 The law of reflux is a classical term related to the circulation of banknotes. Another body of work focuses
on holdings of multiple assets by broad sectors in the economy using flow-of-funds data. A critical review
of this literature is beyond the scope of this paper.
2 The two fundamental ideas are obviously entwined to the extent that the existence of a role for interven-
tions is itself a demonstration that a given distribution of money is inefficient. This inefficiency is, however,
different from what has been identified in the literature to be discussed.
3 They also notice that central banking policies might be desired if a subset of savers is prevented from hav-
ing access to borrowing because such policies equate the marginal rates of substitution between the various
classes of consumers. In our model, by contrast, the main policy concern is not associated with improving
the return of money but with its reflux, which incidentally has no meaning in the overlapping-generations
models of Lucas (1972) and Sargent and Wallace (1982).
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so-called Friedman (1969) rule.4 In the context of Bewley-type models, Sheinkman
and Weiss (1986) and Levine (1991)5 argue that a monetary intervention that produces
inflation provides insurance to individuals; inflation redistributes purchasing power to
those who run out of money due to frequent consumption opportunities. Finally, the
implications for circulation or reflux of money have been studied from the perspectives
of banking stability (Cavalcanti et al. 1999), efficient allocation of capital (Cavalcanti
2004), and banknote float (Wallace and Zhu 2007). But these papers are also silent on
trade cycles and, therefore, cyclical interventions.

In order to provide a tractable mechanism-design analysis, our environment must
be necessarily stylized: money is the only asset and cycles are deterministic. In addi-
tion, we restrict money holdings to be just 0 or 1. One novelty of our contribution is to
provide analytical results on welfare improvements when it is known that lump-sum
policies do not improve welfare in the “standard” 0–1 model without trade cycles. Let
us elaborate on this point.

When money holdings are unbounded, lump-sum transfers produce a larger percent
change in the holdings of the “poor” relative to the “rich” and, thus, there is a redistri-
bution in purchasing power. One way to capture this effect in the standard model is to
assume that an individual’s money disappears with some probability and that people
without money receive one unit according to another probability. But, in order to pro-
duce a stationary allocation, these probabilities must be chosen so that the quantity of
money remains constant. As a result, “expansionary” policies in the standard model
cause a reallocation of holdings that keeps constant the measure of people without
money. This necessarily implies that such a policy is undesirable. In our model, how-
ever, we are able to promote a redistribution across consumer-producer status by using
taxation in one season and transfers in the other. In both our model and the standard
one, monetary policy reduces the return on money. Since the distribution of money
holdings is unaffected by monetary policy in the standard model, policy is necessarily
welfare reducing; this need not be the case in our model since monetary policy also
alters the (consumer-producer) distribution of money.6

The rest of the paper is as follows: In Sect. 2, we describe the environment for-
mally. In Sect. 3, we define symmetric and stationary allocations as well as the welfare
criteria that guides the discussion of optimal monetary policies. In Sect. 4, we define
an implementable allocation. Section 5 analyzes extensive margin effects—the effect

4 Cash-in-advance models fall into this catogory. It is interesting to note that some applications of the Kiyo-
taki–Wright exchange environment bend over backwards to construct a representative-agent model in which
the Friedman rule becomes the relevant benchmark. For example, Shi (1997) appeals to a large-househould
construct and, more recently, Lagos and Wright (2005) appeal to quasilinearity and market trade.
5 See also Molico (2006), and Deviatov and Wallace (2001).
6 The precise reason of why lump-sum transfers can work with 0–1 holdings depend on details of our sim-
plifying assumptions, and future research may have to choose between replicating our results numerically
with unbounded holdings, or making small changes to our model. One could ask, for instance, whether
details of the matching function are important in the 0–1 case. For simplicity we use that in Cavalcanti
(2004), having half the population consuming in one period and producing in the other. Adding periodicity
to the standard random-matching function (where a fraction 1

N of people are consumers, N > 2) should
shift the parameter region for which interventions are desired but, we conjecture, not the essence of our
results.
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on the total number of trades—associated with a cycle monetary policy, and Sect. 6
analyzes intensive margin effects—the amount produced in each trade meeting. Sec-
tion 7 characterizes the optimal monetary policy. Section 8 concludes with a discussion
of three issues: first, can our ideas be used to justify the creation of the Federal Reserve
System in 1913? second, are there any implications for modern policy? and finally,
can private banking substitute for policy interventions?

2 The environment

Time is discrete and the horizon is infinite. There are two types of people, each defined
on a [0, 1] continuum. Each type is specialized in consumption and production: a type
e person consumes even-date goods and produces odd-date goods, whereas a type d
person consumes odd-date goods and produces even-date goods. We find it conve-
nient to refer to a type e individual in an even (odd) date, or a type d individual in an
odd (even) date, as a consumer (producer). Each type maximizes expected discounted
utility, with a common discount factor β ∈ (0, 1) . Let s ∈ {e, d} indicate the season
and/or the type of person and δ ≡ β2.

The utility function for a consumer in season s ∈ {e, d} is εsus(ys), where εs is the
idiosyncratic shock affecting the consumer and ys ∈ R+ is the amount consumed. The
shock εs ∈ {0, 1} and the probability that εs = 1, denoted πs ∈ (0, 1), is indexed by
the season s. A producer in season s can produce any choice of ys ≥ 0 at a utility cost
normalized to be ys itself. Utility in a period is thus εsus(ys) when consuming and −ys

when producing. The function us is assumed to be increasing, twice differentiable,
and satisfies us(0) = 0, u′′

s < 0, u′
s(0) = ∞ and u′

s(∞) < 1. We assume that πe ≥ πd

and u′
e ≥ u′

d , so that even dates feature a higher desire for consumption—at both the
individual and aggregate levels—than odd dates. It should be emphasized that a strict
inequality for either of these gives rise to a cyclical demand for liquidity.

In every period, a type e person is matched randomly with a type d person. During
meetings, the realization of preference shocks occurs and production may take place.
All individuals are anonymous in the sense that they all have private histories. We
also assume that people cannot commit to future actions, so that those who produce
must get a tangible (future) reward for doing so. In this article, the reward takes the
form of fiat money. To keep the model simple, we assume that each person can carry
from one meeting to the next either 0 or 1 units of fiat money; this assumption makes
the economy-wide distribution of money holdings tractable. Consequently, trade will
take place in a match only when the consumer realizes εs = 1 and has money, and the
producer has no money.

Monetary policy takes the simple form of a choice of the pair (σ, τ ), where σ is
the probability that a person without money gets one unit of money before meetings,
and τ is the probability that a person with money loses the money before meetings.
Let Me denote the measure of individuals holding money in even periods and Md the
measure of individuals holding money in odd ones. We restrict attention to cases in
which either τ = σ = 0 in all dates, or σ > 0 in even dates and τ > 0 in odd dates.
This simple formulation is designed to limit our analysis to the specific question of
whether periods of high desire for consumption should have an increase in the supply
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Cyclical monetary policy 199

of money, which is offset by a reduction of economy-wide money balances in the
subsequent period.

3 Stationarity and welfare criteria

Let the measure of consumers with money during meetings in season s be denoted by
qs and consumers without money denoted by 1 −qs ; and let the measure of producers
without money during meetings in season s be denoted by ps and producers with
money denoted by 1 − ps . In order to save on notation, let y ≡ (ye, yd) denote the
list of output levels, x ≡ (pe, qe, pd , qd) denote an arbitrary distribution of money
holdings, and use the superscript +, as in x+ ≡ (p+

e , q+
e , p+

d , q+
d ), when the qualifi-

cation that σ > 0 for that distribution becomes essential. A distribution x ∈ [0, 1]4 is
considered invariant if and only if there exists (σ, τ ) ∈ [0, 1]2 such that

pe = (1 − σ)(1 − qd + πd pdqd), (1)

pd = (1 − τ)(1 − qe + πe peqe) + τ, (2)

qe = (1 − σ)(1 − pd + πd pdqd) + σ, (3)

and

qd = (1 − τ)(1 − pe + πe peqe), (4)

where the distribution x is described after money is created or destroyed.
The stationarity requirement (1) can be explained as follows: during odd-date meet-

ings, trade takes place after money is destroyed. The measure of consumers with money
is qd , and the measure of producers without money is pd . Consumers without money,
whose number is 1 − qd , cannot buy goods; each of them faces a probability σ of
finding money at the beginning of the next date. Hence, 1 − σ times 1 − qd is the
total flow of consumers who become producers without money in the next (even) date.
Similarly, the measure of consumers with money in the odd date is qd . Only a fraction
πd of these consumers will want to consume in the odd date, and only a fraction pd of
them will meet a producer without money. Therefore, πd pdqd represents the measure
of consumers with money that will trade in date d, and (1 − σ)πd pdqd represents the
number of these consumers that become producers without money in the next (even)
period, after money creation takes place.

Likewise, regarding requirement (2), we first notice that a measure 1−qe +πe peqe

producers arrive at the beginning of date d without money. Adding to that the mass of
money destroyed from date e consumers with money who did not trade, τqe(1−πe pe),
yields the right-hand side of (2). The same principle explains requirement (3). The mea-
sure of consumers with money at date e consists of the measure of producers who leave
date d with money, 1 − pd + πd pdqd , plus the measure of producers who leave date
d without money but obtain some when additional money is created at the beginning
of date e, σ pd(1 −πdqd). Finally, requirement (4) follows from imposing stationarity
on the measure of consumers with money arriving at date d, 1 − pe + πe peqe, after
the destruction of money takes place with probability τ .
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Our notion of stationarity amounts to restricting that output, ys , as well as the mea-
sures ps and qs , to be constant functions of the season, s, only. These functions are
used symmetrically in a measure of welfare as follows: We adopt an ex ante welfare
criterion, with an expected discounted utility computed according to an invariant dis-
tribution and output function. Whenever trade takes place in a season, it is because
money is changing hands from a fraction ps of the mass of consumers πsqs , i.e., those
consumers in position to trade with a producer. Since there is a producer for each
consumer, the flow of total utility in season s is πs psqs[us(ys) − ys]. We call the
term πs psqs the extensive margin at s, and us(ys) − ys the intensive margin at s.
The extensive margin is a property of the distribution x , and the intensive margin is a
property of outputs y. An allocation is a pair (x, y), where x and y are invariant and
y has non-negative coordinates. The welfare U attained by an allocation is defined as
the present discounted value7

U (x, y) =
∑

s

πs psqs[us(ys) − ys].

The intensive margin at s is maximized at y∗
s , where u′

s(y∗
s ) = 1, which is uniquely

defined by assumption. We refer to y∗ = (y∗
e , y∗

d ) as the first-best output list.

4 Implementable allocations

The definition of the values of y consistent with incentive compatibility follows the
notion of sequential individual rationality employed by Cavalcanti and Wallace (1999)
and Cavalcanti (2004). Underlying their definitions of participation constraints is the
idea that a social planner proposes an allocation but anonymous individuals may defect
from that proposal by not trading in a given meeting. If individual(s) defect, then they
do not lose any money holdings that were brought into the meeting. We adopt the same
concept here, with the exception of the taxation of money holdings, which we assume
cannot be avoided by individuals with money. The participation constraints are then
defined by a set of allocations, according to the expected discounted utilities implied
by the allocations. To be able to represent these constraints, we first need to describe
the Bellman equations of the economy.

The value functions will be computed before the realization of the effects of creation
and destruction of money for each individual in a given date. (Recall that money is
created at the beginning of even dates and is destroyed at the beginning of odd dates.)
The value function for consumers with money at s is denoted by vs , and that for pro-
ducers without money is denoted by ws . Let v̄s be the value function for consumers
without money at s and w̄s be that for producers with money. The Bellman equations,

7 The welfare measure U assumes that the initial date can be even or odd with equal probability. That is,
assume with probability 0.5 the first date is even and with complementary probability the first date is odd.
The expected total utility—our measure of social welfare—is, therefore, proportional to U .
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(v,w) = (ve, vd , we, wd), are defined by

ve = πe pe(ue + βwd) + (1 − πe pe)βw̄d

we = σβvd + (1 − σ)[πeqe(−ye + βvd) + (1 − πeqe)βv̄d ] (5)

vd = τβwe + (1 − τ)[πd pd(ud + βwe) + (1 − πd pd)βw̄e]
wd = πdqd(−yd + βve) + (1 − πdqd)βv̄e,

where ue and ud , by an abuse of notation, stand for ue(ye) and ud(yd), respectively.
The definition is completed by substituting for the values of (v̄, w̄) given by

v̄e = σve + (1 − σ)βwd

w̄e = βvd (6)

v̄d = βwe

w̄d = τwd + (1 − τ)βve

into the previous system.
The participation constraint for producers at even dates is simply

− ye + βvd ≥ βv̄d = δwe, (7)

since an even-date producer is bringing no money into a meeting and only has the
option of leaving the meeting and becoming a producer two periods later. Producers
at odd dates must take into account that if they disagree with producing the planned
output yd and walk away from a trade, then they have a chance of receiving money in
the next period from the money-creation policy. Thus, the participation constraint for
producers at odd dates can be stated as

− yd + βve ≥ βv̄e = βσve + δ(1 − σ)wd . (8)

For completeness, we state the participation constraint for consumers, which can
be shown to be implied by the participation constraints of producers. They are

ue + βwd ≥ βw̄d (9)

and

ud + βwe ≥ βw̄e. (10)

An allocation (x, y) is said to be implementable if x ≡ (pe, qe, pd , qd) is invari-
ant for some policy (σ, τ ) such that there exist (v,w) and (v̄, w̄), for which (5)–(10)
hold. An allocation is said to be optimal if it maximizes U (x, y) among the set of
implementable allocations.
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5 Extensive-margin effects

Monetary policy can be viewed as a choice of an invariant distribution x . Changes in
x resulting from changes in (σ, τ ) have direct effects on extensive margins, πs psqs ,
and indirect effects on intensive margins, us(ys) − ys , through the participation con-
straints; i.e., y depends on x . Note that the intensive margin effects can be “ignored”
if, for both s = e and s = d, the maximizer of us(ys) − ys , y∗

s , satisfies participa-
tion constraints. In this section, we ignore the intensive margin effects and investigate
whether the maximizer of the sum

∑
s πs psqs—i.e., the maximizer of the extensive

margin effect—among all invariant distributions of money holdings, x , is a cyclical
policy x+. A cyclical policy is one where σ, τ > 0. We shall see that a cyclical mon-
etary policy tends to increase the extensive margin in season e and to decrease that
in season d. Since u′

e ≥ u′
d , it will follow that if y∗ satisfies participation constraints

and the maximizer of the sum
∑

s πs psqs is cyclical, then the optimal allocation is
indeed characterized by a cyclical monetary policy. (If, however, y∗ does not satisfy
participation constraints, then the optimal allocation need not be a cyclical monetary
policy.)

Acyclical distributions We start by pointing out an important property of the invari-
ant distributions when the money supply is constant, i.e., when σ = τ = 0. If x is
invariant when σ = τ = 0, we will say that x is acyclical, a label motivated by the
following lemma:

Lemma 1 Assume that x is acyclical. Then the extensive margin, πs psqs , is constant
in s.

Proof Set σ = τ = 0 in Eqs. (1) and (4). It follows that πe peqe = πd pdqd , i.e., the
total number of trade matches is invariant to the season. ��

Interestingly, the property of constant extensive margins holds regardless of the rel-
ative values of πs . We can offer an intuitive explanation for this property as follows:
Let us consider the inflow and outflow of money for a set of individuals of the same
type, say type e. Then, on one hand, the stationary measure of consumers of this type
spending money is (πe pe)qe, an event taking place at even dates. On the other hand,
the stationary measure of producers of this type acquiring money is (πdqd)pd , an
event taking place at odd dates. Since the quantity of money in the hands of this group
must be stationary, and all seasons have the same frequency, these two margins must
be equalized, as stated in the lemma.

Some useful observations about acyclical distributions can be made with regard to
the relative values of ps and qs .

Lemma 2 Assume that x is acyclical. Then (i) pe − qe = pd − qd , and (ii) pe ≤ pd

if and only if πd ≤ πe.

Proof (i) Set σ = τ = 0 in Eqs. (1) and (2). Since, by Lemma 1, πe peqe = πd pdqd ,
Eqs. (1) and (2) imply that pe −qe = pd −qd . (ii) By Lemma 1, πe peqe = πd pdqd , so
πe ≥ πd if and only if peqe ≤ pdqd . Part (i) of this lemma implies that if peqe ≤ pdqd ,
then pe ≤ pd and qe ≤ pd . ��
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There is an alternative way to think about part (i) of Lemma 1. The measure of
individuals that hold money in period s, Ms , is the sum of consumers with money, qs ,
and producers with money, 1 − ps . When σ = τ = 0, the measures of individuals
that hold money in odd and even periods are the same, i.e., Me = Md , which implies
that 1 − pe + qe = 1 − pd + qd , or that pe − qe = pd − qd .

An application of Lemma 2 allows us to describe in rather simple terms the set of
acyclical distributions when πe = πd .

Lemma 3 Assume πe = πd = π. Then the set of acyclical distributions is fully
described by pe = pd = p, qe = qd = q, and p = 1 − q + πpq for q ∈ [0, 1].
Proof Since πe = πd then, by Lemma 2, pe = pd , and consequently, by Lemma 1,
qe = qd . Equation (1) with σ = 0 thus proves the lemma. ��

The one-dimensional set described by Lemma 3 is the symmetric set of distribu-
tions that appears in Cavalcanti (2004). The equation p = 1 − q + πpq defines a
strictly concave function for q ∈ [0, 1], and the extensive margin πpq is maximized

when p = q = [1 − (1 − π)
1
2 ]/π .

Properties similar to those described by Lemma 3 also obtain when πe > πd ; for
example, every acyclical x can be indexed by a one-dimensional choice of qd .

Lemma 4 When πe > πd there exists, for each qs, a unique acyclical x . Moreover, x
can be solved for analytically. The statement holds for any s in {e, d}.
Proof See Appendix 1. ��

The extensive margin is maximized when the measure of consumers with money
equals the measure of producers without money.

Lemma 5 When πe > πd , the maximizer of πs psqs , among the set of acyclical dis-
tributions, is the unique x such that ps = qs for s ∈ {e, d}, where

pd =
1 +

√
πe
πd

−
√

(1 +
√

πe
πd

)2 − 4πd

2πd
,

and

pe = 1 − pd + πd p2
d .

Proof See Appendix 2. ��
Hence, when the money supply is constant, the distribution that maximizes the

extensive margin is characterized by pd = qd and pe = qe. This result echoes a
standard result in many search models of money, namely, that it is optimal for half of
the population to hold money. Such a distribution of money holdings maximizes the
number of productive matches. To see that our model also has this feature, note that
when σ = τ = 0 and when πs psqs is maximized, i.e., ps = qs for s ∈ {e, d}, then
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the measure of individuals holding money at date s is 1 − ps + qs = 1. Since the total
measure of individuals in the economy is 2, having half the population holding money
maximizes the extensive margin when σ = τ = 0. Note that the value of x is easily
computed when the extensive margin is maximized.

This completes our discussion of acyclical distributions, i.e., a constant money
supply. We can now move on to cyclical money policy and cyclical distributions.

Cyclical distributions We now consider small perturbations in the quantity of money.
We consider cyclical distributions x+ in a neighborhood of a given acyclical x . Our
ultimate goal is to describe and sign the derivative of the sum

∑
s πs psqs with respect

to σ , evaluated at σ = 0 and ps = qs . It follows, by force of Lemma 5, that if this
derivative is positive, then the maximizer of the sum

∑
s πs psqs must be cyclical.

Clearly, the system (1)–(4 ) that defines x+ depends on σ and τ . The existence of x+
follows from a simple fixed-point argument.

Lemma 6 Let (τ, σ ) ∈ (0, 1)2 be fixed. Then there exists an invariant distribution
x+.

Proof The right-hand side of (1)–(4) defines a continuous function of x+, with domain
on the compact and convex set [0, 1]4. The result then follows from Brower’s fixed-
point theorem. ��

If x+ is invariant, then the quantity of money destroyed in season d must equal the
quantity created in e, i.e.,

τ(1 − p+
e + q+

e ) = σ(1 − q+
d + p+

d ). (11)

It can be shown that the equality (11) is implied by the system (1)–(4). The quantity
of money during season e meetings, just before trade, is given by the mass 1 − p+

e of
producers plus the mass q+

e of consumers. Since trade itself does change this quantity
of money, and each money holder at the beginning of next season faces a probability τ

of losing his money, then the total amount of money destroyed is given by the left-hand
side of (11). Likewise, the measure of individuals without money at the end of season
d is 1 − q+

d + p+
d , and since each of those finds money at the beginning of season e

with probability σ , then the quantity of money created is expressed in the right-hand
side of (11).

When σ = τ = 0, there is a unique x (Lemma 4) for each choice of qd satis-
fying stationarity. When σ and τ are strictly positive, there is an inflow of money
that must be matched by an outflow of the same quantity. Our numerical experiments
indicate that only one level of q+

d produces quantities of money equalizing inflows
and outflows for a given pair (σ, τ ). A more practical approach is to restrict attention
to stationary distributions x+ that result from small interventions. We can pin down
the neighborhood in which q+

d lies as follows: Because we want to associate x+ with
a given x, we find it useful to define the constant φ with the property that, for τ = φσ ,
x+ converges to x as σ approaches zero. Since the pair (σ, τ ) must be consistent with
the stationary quantities of money in the economy, expressed above by equation (11),
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the desired ratio of τ to σ , for a given x = (pe, qe, pd , qd), is

φ = 1 − qd + pd

1 − pe + qe
. (12)

By Lemmas 1 and 5, the maximizer of the sum
∑

s πs psqs among the set of acyclical
distributions is the unique x for which φ = 1. We assess the effects of perturbations
by differentiating the system (1)–(4) with respect to σ for φ fixed.

The lemma next can be viewed as generalizing Lemma 2; in other words, the differ-
ence between the measures of consumers with money and producers without money
will be equalized between seasons only if the distribution is acyclical.

Lemma 7 If x is invariant and τ = φσ , then ps − qs = fs(σ ), where fe(σ ) =
φ−φσ−1
1+φ−φσ

and fd(σ ) = φ+φσ−1
1+φ−φσ

.

Proof See Appendix 3. ��
Note that fs does not depend on the fraction of consumers who desire to consume

in season s, πs .
The next proposition, which is the main result of this section, characterizes the sign

of the derivative of the sum
∑

s πs psqs , evaluated at ps = qs , and σ = 0 (the latter
two equalities characterize the optimal constant-money-supply policy).

Proposition 1 The maximizer of the sum
∑

s πs psqs is cyclical if and only if πd ∈
[0,�(πe)], where �(πe) ∈ (0, πe) can be solved for analytically as a function of πe.

Proof See Appendix 4. ��
This proposition effectively says that if the number of consumers who want to con-

sume in the even season, πe, is sufficiently larger those who want to consume in the
odd season, πd , then a cyclical policy maximizes the extensive margin. Obviously,
maximizer is acyclical if πd = πe. The intuition behind which policy—acyclical or
cyclical—maximizes the average extensive margin can be understood by way of a
simple example. First note if τ = σ = 0, then the distribution that maximizes the
average trade across seasons features pe = qe and pd = qd . If, for example, πe = 1
and πd = 1

10 , then qe = pe = 1
4 and qd = pd = 4

5 . Note that in the low-trade season,
d, the distribution of money is relatively good in the sense that most consumers have
money and most producers do not. However, in the high-trade season, e, the distribu-
tion of money is relative bad since most consumers do not have money while most
producers do. Now consider the marginal effect of policy (τ, σ ) 
= (0, 0). If the initial
intervention is to withdraw in an odd season, the measure of producers without money
will change to pd + 1

5τ , while that of consumers with money changes to qd − 4
5τ . Notice

that the effect on producers is weighted by 1
5 , while that on consumers is weighted

by 4
5 , because the population affected by withdrawals—the holders of money—are

distributed unevenly between consumer and producer status. If the initial intervention
is an injection at an even season, the measure of consumers with money changes to
qe + 3

4σ , while that of producers without money changes to pe − 1
4σ . If σ ≈ τ ≈ 0,
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then the initial effect is an increase in peqe—by the amount 1
2σ—and a decrease in

pdqd—by the amount 3
5τ . There is, however, no guarantee that the average amount

of trade, πe peqe + πd pdqd , will increase. The average amount of trade will increase
only if πe is sufficiently greater than πd since the increase in trading opportunities
in the even season, 1

2σ , is less than the decrease in trading opportunities in the odd
season, 3

5τ . But if the amount of trade in the low-trade season is “small” compared
to the high-trade season, i.e., πd is “small” compared to πe, then average trade can
increase since a relatively small weight, πd , is attached to the low-trade season.

Hence, if the fraction of potential consumers in odd seasons is sufficiently smaller
than the fraction of potential consumers in even seasons—or if demand in the “high”
season is sufficiently greater than demand in the “low” season—then a cyclical mon-
etary policy will deliver a higher average extensive margin than the optimal acyclical
policy.

6 Intensive-margin effects

The only participation constraints that are relevant, given our notion of stationarity,
are those of producers, i.e., if the producer participation constraints are satisfied, then
so are those of the consumer. In this section, we derive the producer participation
constraints as functions of preference parameters, policy parameters, and allocations,
without reference to value functions.

Lemma 8 The participation constraints are satisfied if and only if

ud(yd) ≥ ye

β

[
1

(1 − τ)πd pd
− (1 − σ)δ

1 − πd pd

πd pd

]
(13)

and

ue(ye) ≥ yd

β

[
1

(1 − σ)πe pe
− (1 − τ)δ

1 − πe pe

πe pe

]
. (14)

Proof See Appendix 5. ��
Inequalities (13) and (14) indicate that cyclical policies have a potentially negative

effect on intensive margins, since the right-hand side of both inequalities is increasing
in σ and τ . The intuition behind these potential negative effects is straightforward: In
either case—whether money is injected or withdrawn from the economy—the value
of money in a trade will fall compared to the situation where σ = τ = 0. In the
case where the money supply is contracted after production and trade, the value of
currency falls because there is a chance that the producer will be unable to use his
unit of currency in a future trade because it will be taken away; in the case where the
money supply is expanded after production and trade, the fact that a producer may
receive a unit of currency if he does not produce reduces the value of a unit of cur-
rency for a producer who does. A fall in the value of money implies that the amount of
output received per unit of currency is reduced. If, however, β is sufficiently high, then
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inequalities (13) and (14 ) will not bind at y = y∗—the output levels that maximize
the intensive margins—in the neighborhood of σ = τ = 0; hence, the potential effects
on the intensive margins do not materialize for small monetary interventions in this
case.

Suppose that neither participation constraint binds when σ = τ = 0. Then, it
turns out that if β is reduced, the first participation constraint to be violated is the
participation constraint for date-e producers, (13). Hence,

Lemma 9 If the participation constraint for date-e producers is satisfied for x acyc-
lical and y = y∗, then (x, y) is implementable.

Proof Since u′
e ≥ u′

d and ue(0) = ud(0) , then u′
e(y∗

d ) ≥ 1, so that y∗
e ≥ y∗

d and
u∗

e(y∗
e ) ≥ u∗

d(y∗
d ). Now, it has been established in the previous section that, if x is acyc-

lical, then πd ≤ πe implies qd ≤ qe. As a result, since the equality πe peqe = πd pdqd

holds for all acyclical x , πd ≤ πe implies πd pd ≤ πe pe. Since the right-hand side of
(13) or (14) is increasing in πs ps , and since u∗

e(y∗
e )/y∗

d ≥ u∗
d(y∗

d )/y∗
e , then the result

follows. ��
Lemma 9 indicates that it suffices to look at the participation constraint for date-e

producers in order to find a value of β such that small interventions have no nega-
tive effects on intensive margins. The next proposition characterizes the critical β for
the optimal acyclical distribution such that the participation constraint for the date-e
producer “just” binds.

Proposition 2 Let x take the value of the acyclical distribution with ps = qs, and let
β > β̄, where

β̄ =
− ud (y∗

d )

y∗
e

+
√(

ud (y∗
d )

y∗
e

)2 + 4 1−πd pd
(πd pd )2

2 1−πd pd
πd pd

.

Then, if σ is sufficiently small, the cyclical allocation (x+, y∗) for x+, in a neighbor-
hood of x, is implementable.

Proof The cutoff value β̄ is constructed so that (x, y∗) is implementable at β = β̄

when the policy is the optimal acyclical one. The cutoff β̄ is constructed by setting
y = y∗ and σ = τ = 0 in (13) with a strict equality. Since the participation constraint
sets vary continuously with (σ, τ ), the result follows. ��

Looking ahead, Proposition 1 tells us when a cyclical policy maximizes the exten-
sive margin and Proposition 2 gives us a scenario where a cyclical policy does not
have an adverse affect on the intensive margin. These two propositions will be helpful
when thinking about optimal policies.

7 Optimal policies

On one hand, our results regarding extensive-margin effects show that there exists a
cutoff value for πd , called �(πe), such that the maximizer of the average extensive
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margin is cyclical if and only if πd < �(πe). On the other hand, our results on inten-
sive margins show that there exists a cutoff value of β, called β̄, such that for β > β̄,

small interventions around the allocation (x, y∗), where ps = qs , are implement-
able. It follows, therefore, that the optimum is cyclical for a large set of parameters,
including πs and β such that πd < �(πe) and β > β̄.

Proposition 3 If πd < �(πe) and β ≥ β̄, then the optimum monetary policy is
cyclical.

Proof Welfare is proportional to
∑

s Es Is , where Es is the extensive margin at s,
πs psqs , and Is is the intensive margin at s, us(ys) − ys . By Lemma 1, Ee = Ed for
all acyclical policies, so that for fixed (Ie, Id), the acyclical x that maximizes welfare
features ps = qs . Since β ≥ β̄, y∗ satisfies participation constraints evaluated at this
maximizer, so that the allocation that attains the highest welfare among acyclical poli-
cies is (x, y∗). Since a small intervention increases Ee and Ee+Ed when πd < �(πe),
and Ie ≥ Id for y = y∗, and such intervention is implementable according to our last
proposition, then the optimal cannot be acyclical. ��

Proposition 3 provides only sufficient conditions for the optimality of a cyclical
monetary policy. These conditions are not necessary. To see this, note that when
ue = ud , πd = �(πe), and β = β̄, Propositions 1 and 2 implies that

∑

s

πs p+
s q+

s

[
us

(
y+

s

) − y+
s

] =
∑

s

πs psqs
[
us

(
y∗

s

) − y∗
s

]
,

where x+ is a cyclical distribution, x is the (optimal) acyclical distribution and, by
construction, y+

e = y+
d = y∗

d = y∗
e . If, however, u′

e > u′
d , πd = �(πe), and β = β̄,

then

∑

s

πs p+
s q+

s

[
us

(
y+

s

) − y+
s

]
>

∑

s

πs psqs
[
us

(
y∗

s

) − y∗
s

]
, (15)

since ue
(
y+

e

) − y+
e = ue

(
y∗

e

) − y∗
e > ud

(
y+

d

) − y+
d = ud

(
y∗

d

) − y∗
d , πe p+

e q+
e >

πe p∗
e q∗

e , and
∑

s πs p+
s q+

s = ∑
s πs psqs . Therefore, when u′

e > u′
d there exist

(non-unique) numbers β̂ < β̄ and π̂ < �(πe) such that for any β ∈
(
β̂, β̄

)
and

π ∈ (
π̂ ,�(πe)

)
, inequality (15) holds. Therefore, Proposition 3 describes the condi-

tions that are sufficient, but not necessary, for the optimal money policy to be cyclical.
(We have documented these properties with numerical simulations, which are avail-
able upon request.) As a result, cyclical monetary policy may be optimal for some
economies where the conditions of Proposition 3 do not hold.

8 Conclusion

The fundamental idea behind this paper is quite simple. It is not about the rate of
return to money nor about how policy can equate marginal rates of substitution, as in
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Sargent and Wallace (1982). It is about how the reflux of money can be inefficient
and how cyclical policies may accommodate more trade during high-demand seasons
at the expense of less trade in low-demand seasons and a less valuable currency. The
paper provides a foundation for the optimality of a cyclical monetary policy.

We admit that our model environment is extreme. For example, there is an absence
of borrowing and lending and other institutions that resemble modern economies.
These omissions have to be addressed.

The issue of borrowing and lending is important because, potentially, they could
substitute for a cyclical policy. However, very little is known about this issue. In
Walrasian markets credit works well; so well, in fact, that it ends up substituting for
money. The coexistence of money and credit is only meaningful when monitoring is
imperfect and, as result, there is imperfect insurance. Hence, money holdings will be
distributed unevenly due to imperfect insurance. But then, problems associated with
the reflux and circulation of money arise and the need for cyclical policy may be war-
ranted. In fact, we believe that our model provides a justification for the creation of
the Fed.8

The preamble to the Federal Reserve Act states that the reserve banks were estab-
lished to furnish an elastic currency. According to Meltzer (2003), the term elasticity
has two meanings in the context of the Federal Reserve Act. One has to do with the
central bank’s ability to pool reserves and lend them out (in the event of a banking or
financial crisis) and the other—which is the relevant one for this paper—has to do with
the central bank’s ability to expand and contract liquidity over the various seasons of
the year.

At the time of the founding of the Fed, seasonal demand for currency posed a real
problem for the agricultural sector and, given the size of the agricultural sector at that
time, for the economy as a whole. Farmers needed large amounts of cash (or credit
backed by cash) in both the spring and autumn seasons in order to plant and harvest,
respectively, their crops. However, prior to the founding of the Fed, it was not unusual
to have this needed liquidity sitting at major banking centers instead of in the hands
of farmers during these seasons of the year.

It appears that US economy lacked a mechanism that would permit farmers to “get
their hands” on cash when they needed it. One proposed solution to this problem was
the creation of a national wide banking system—the Federal Reserve System—that
had the ability to furnish an elastic currency, where the notion of an elastic currency
has to do with increasing currency in seasons of high economic activity and then
decreasing it in seasons of low economic activity. The Federal Reserve “solution” to
this season problem is close in spirit to our cyclical policy (although our model does
not have banks to implement monetary policy and instead relies on lump-sum taxes
and transfers).

Although our model is useful for understanding central bank policies from a cen-
tury ago, is it relevant for understanding modern policies? The modern counterpart

8 Any other mechanism-design formulation deriving welfare benefits from interventions, like that in Levine
(1991), could motivate the creation of Fed. Because our model does not predict ongoing inflation (or defla-
tion), we think that our motivation is more compelling. Should banking stability, which we ignore, be the
front-runner motivation? We leave this decision for the reader.
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of money holdings in our model is some measure of liquidity, which is composed of
many assets whose returns are affected by Fed-controlled interest rates. To the extent
that changes in Fed policies affect the return of different assets and the distribution
and circulation of “liquidity” across businesses and individuals, the fundamental idea
behind this paper still applies. But there are many issues to be resolved. For example,
although the distribution and circulation of money have precise meaning in our model,
when we move to modern economies, what exactly do we mean by the distribution
and circulation of liquidity? This is a challenge for future research.

1 Appendix

Lemma 4 When πe > πd there exists, for each qs, a unique acyclical x . Moreover, x
can be solved for analytically. The statement holds for any s in {e, d}.

Proof We shall make repeated use of the system (1–4) with σ = τ = 0. According to
Lemma 2, ps = qs +a for some a that does not depend on s. We shall first solve for a
analytically. For this purpose, let A ≡ 1 + πs psqs , which, by force of Lemma 1, does
not depend on s as well. Equation (1) now reads (i) pe = A−qd . Using (ii) pd = qd+a,
we can write (2) as (iii) qe = A−(a+qd). The equality peqe = θpdqd for θ = πd/πe,
can be written, using (i), (ii), and (iii), as (A − qd)2 − a(A − qd) − θqd(a + qd) = 0.
The only relevant solution of this quadratic equation is given by (iv) 2(A − qd) =
a + √

a2 + 4θb, where b = qd(a + qd). Since A = 1 + πdqd pd = 1 + πdb, we can
rewrite (iv) as (v) a2 + 4θb = [2πdb + 2(1 − qd) − a]2. Expanding (v) as a qua-
dratic equation in b, we find that the only relevant solution is given by (vi) 2π2

d b =
θ +aπd −2πd(1−qd)+

√
θ2 − 4πd(1 − qd)θ + π2

d a2 + 2θπda. Substituting in (vi)
the expression b = qd(a +qd), produces a quadratic equation in a as a function of qd .

The only relevant solution of the latter is (vii) a = [−k2−
√

k2
2 − 4k1k3

]
/(2k1), where

k1 = π2
d [(2πdqd −1)2 −1], k2 = 2πd{(2πdqd −1)[2(πdqd)2 +2πd(1−qd)−θ ]−θ},

and k3 = [2(πdqd)2 + 2πd(1 − qd) − θ ]2 − θ2 + 4πd(1 − qd)θ . If qd is fixed, then
pd = qd + a determines pd . Using (1) and pe = qe + a, the values of pe and qe are
also determined. Since the system (1–4 ) is symmetric in e and d, when σ = τ = 0,
similar conclusions follow when qe is given, instead of qd . ��

2 Appendix

Lemma 5 When πe > πd , the maximizer of πs psqs , among the set of acyclical dis-
tributions, is the unique x such that ps = qs for s ∈ {e, d}, where

pd =
1 +

√
πe
πd

−
√(

1 +
√

πe
πd

)2 − 4πd

2πd
,
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and

pe = 1 − pd + πd p2
d .

Proof The set of acyclical distributions is closed, and πs psqs is continuous in x for
each s, so that a maximizer exists. Let us fix x = x1, with p1

s 
= q1
s for some s, and

show that x1 cannot be the maximizer. Note that, by Lemma 2, p1
s 
= q1

s if and only if
p1

s′ 
= q1
s′ . We start by constructing x2, the “mirror image” of x1, with the equalities

p2
s = q1

s and q2
s = p1

s for s ∈ {e, d}. Also, for α ∈ (0, 1), let xα ≡ αx1 + (1 − α)x2.
It is clear that, for all s, αp1

s q1
s + (1 − α)p2

s q2
s < pα

s qa
s . Thus the distribution of xα

attains a higher extensive margin than that of x1, although xα is not invariant if it
does not satisfy (1–4) with equality. However, using now Lemma 1, one can rewrite
each equation in the system (1–4), when σ = τ = 0, as ps + qs′ = 1 + πs psqs or
ps′ + qs = 1 + πs psqs , where s′ 
= s, so that each right-hand side is increasing in the
extensive margin. Since pα

s + qα
s′ < 1 + πs pα

s qα
s and pα

s′ + qα
s < 1 + πs pα

s qα
s , then

there exists an acyclical x̄, with x̄ ≥ xα , that attains a higher extensive margin than
that of x .

Since by Lemma 1, πe peqe = πd pdqd , Eq. (2) with τ = 0 yields pd = 1 − qe +
πe peqe. Because qs = ps , then pe =

√
πd
πe

pd and pd = 1 − pe + πd p2
d . The last two

expressions yield a quadratic equation in pd whose only relevant solution is as stated.
The value for pe can be computed from the last expression once pd is determined.
The proof is now complete. ��

3 Appendix

Lemma 7 If x is invariant and τ = φσ , then ps−qs = fs(σ ), where fe(α) = φ−φα−1
1+φ−φα

and fd(α) = φ+φα−1
1+φ−φα

.

Proof The system (1–4) can be rewritten as

p̂e = 1 − (1 − τ)q̂d + πd pdqd , (16)

p̂d = 1 − (1 − σ)q̂e + πd peqe + τ

1 − τ
, (17)

q̂e = 1 − (1 − τ) p̂d + πd pdqd + σ

1 − σ
, (18)

and

q̂d = 1 − (1 − σ) p̂e + πe peqe, (19)

where p̂e = pe/(1 − σ), p̂d = pd/(1 − τ), q̂e = qe/(1 − σ), and q̂d = qd/(1 − τ).

Eliminating πd pdqd between Eqs. (16) and (18), and πe peqe between (17) and (19),
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yields

p̂e − q̂e = (1 − τ)( p̂d − q̂d) − σ

1 − σ

and

p̂d − q̂d = (1 − σ)( p̂e − q̂e) + τ

1 − τ
,

which can now be solved as

p̂e − q̂e = (1 − σ)τ − σ

(1 − σ)[1 − (1 − τ)(1 − σ)] (20)

and

p̂d − q̂d = τ − (1 − τ)σ

(1 − τ)[1 − (1 − τ)(1 − σ)] . (21)

One can now multiply both sides of (20) by 1 − σ to obtain the expression pe − qe =
fe(σ ), and multiply both sides of (21) by 1 − τ to obtain the expression pd − qd =
fd(σ ). ��

4 Appendix

Before we can provide a proof for Proposition 1, the following two lemmas are needed.
From Lemma 7 we can use the expression qs = ps − fs to reduce (1)–(4) to a system
in (pe, pd), which allows us to write the derivatives of ps with respect to σ as follows.

Lemma 10 If x is invariant and τ = φσ , then the derivatives of ps with respect to σ,

evaluated at σ = 0, satisfy

[
1 1 − πd(2pd − fd)

1 − πe(2pe − fe) 1

] [
p′

e
p′

d

]
=

[
(1 − πd pd) f ′

d − pe

(1 − πe pe) f ′
e − φpd + φ

]
.

Proof Equations (1) and (2) can be written as

p+
e

1 − σ
= 1 − p+

d + fd + Ed (22)

and

p+
d

1 − φσ
− φα

1 − φσ
= 1 − p+

e + fe + Ee, (23)
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where Ed = πd p+
d (p+

d − fd) and Ee = πe p+
e (p+

e − fe). Taking derivatives on both
sides of (22) and (23), with respect to σ , yields, for σ = 0,

pe + p′
e = −p′

d + f ′
d + E ′

d (24)

and

φpd + p′
d − φ = −p′

e + f ′
e + E ′

e, (25)

where E ′
d = πd p′

d(2pd − fd) − πd pd f ′
d and E ′

e = πe p′
e(2pe − fe) − πe pe f ′

e .
Substituting the expressions for E ′

d and E ′
e into Eqs. (24) and (25) yields the result.

��
The total effect of changes in σ on extensive margins can also be expressed in a

compact form.

Lemma 11 If x is invariant and τ = φσ , then the derivative of the sum
∑

s πs psqs ,
with respect to σ , evaluated at σ = 0, is equal to pe +φpd −φ− f ′

e − f ′
d +2(p′

e + p′
d).

Proof Using Eqs. (24) and (25), derived in the proof of the previous lemma, yields
the results because the derivative of the sum

∑
s πs psqs is precisely E ′

d + E ′
e. ��

Using Lemmas 6, 10, and 11, we can characterize the sign of the derivative of the
sum

∑
s πs psqs , for ps = qs , as follows:

Proposition 1 The maximizer of sum
∑

s πs psqs is cyclical if and only if πd ∈
[0,�(πe)], where �(πe) ∈ (0, πe) can be solved for analytically as a function of
πe.

Proof Lemmas 6, 10, and 11 allow the substitution of expressions for p′
e + p′

d and
f ′
e + f ′

d into the expression of the derivative of
∑

s πs psqs , evaluated at σ = 0,
ps = qs , and φ = 1. Substituting also the analytical solution for pe and pd , when
ps = qs and σ = 0 from Lemma 5, yields an expression for the derivative involv-
ing only parameters. After some tedious but straightforward algebra, the condition
according to which this derivative is positive can be written as

2πd ≤ (1 − θ)
√

2 − (1 − √
θ)2,

where θ = πd/πe. The inequality is not satisfied for θ = 1 and πd > 0. Hence, the
cutoff value of πd for which the derivative is positive must be below πe. Imposing
equality in this expression and substituting for the value of θ yields, after solving for
the unique relevant solution of the implied quadratic equation in π2

d ,

�(πe) = 1

4

⎡

⎣2/
√

πe +
√

4/πe − 4(2 + (1 + √
2)/πe)(1 − √

2)

2 + (1 + √
2)/πe

⎤

⎦
2

,

which has the properties stated in the proposition. ��
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5 Appendix

Before providing a proof of Lemma 8, we will first rewrite (v,w) in a convenient form
and will then introduce two lemmas that will be needed in the proof. Substituting the
values of (v̄, w̄) from Eq. (6) into Eq. (5) allows us to work with two independent
systems of Bellman equations in (v,w), represented in matrix format as

[
vs

ws′

]
= 1

det(Mss′)
Mss′

[
µusπs psus

−µys′πs′qs′ ys′

]
, (26)

where s, s′ ∈ {e, d}, s′ 
= s, µue = µyd = 1, µud = 1 − τ , µye = 1 − σ , and

Mss′ =
[

1 − (1 − πs′qs′)δ(1 − σ) τβ + (1 − τ)πs psβ

σβ + (1 − σ)πs′qs′β 1 − (1 − πs ps)δ(1 − τ)

]
.

We start with the following lemma, which allows us to ignore det(Mss′) in the
algebra that follows.

Lemma 12 The determinant of Mss′ is positive.

Proof For ad ≡ 1 − πdqd and ae ≡ 1 − πe pe, the determinant of Med equals

(1 − δad + σδad)(1 − δae + τδae) − δ(πdqd + σad)(πe pe + τae),

which can be written as the sum of two terms, k0 and k1, where k0 contains all the
terms without σ or τ , and k1 contains the other terms. The expression for k0 is

k0 = [1 − δ(1 − πdqd)][1 − δ(1 − πeqe)] − δπdqdπeqe.

After some simple algebra, that expression becomes

k0 = (1 − δ)(1 − δ + δπdqd + δπeqe − δπdqdπeqe),

which is positive if x is invariant. Likewise, since for ad ≡ 1−πdqd and ae ≡ 1−πe pe,

one can write k1 as

τδae(1 − δad − πdqd) + σδad(1 − δae − πe pe) + δσadτae(δ − 1), or

τδae(1 − δ)(1 − πdqd) + σδad(1 − δ)(1 − πe pe) − σδad(1 − δ)τae, or

τδae(1 − δ)(1 − πdqd) + σδad(1 − δ)(1 − πe pe)(1 − τ),

which is nonnegative. A similar argument shows that det(Mde) is also positive. ��
Next, we use the Bellman equation for weto write (7) in an equivalent format that

does not depend on ye explicitly.

Lemma 13 The participation constraint for date-s producers is equivalent to
[1 − (1 − σ)δ]ws ≥ σβvs′ .
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Proof Let s = e. The Bellman equation for we can be written as

[1 − (1 − σ)δ]we − σβvd = (1 − σ)πeqe(−ye + βvd − βv̄d),

then the result follows directly from (7). The argument for s = d follows from the
same steps. ��

We now use the previous two lemmas to write the slack in the producer constraint
in matrix algebra as

[−σβ 1 − (1 − σ)δ
] [

vs

ws′

]
= 1

det(Mss′)

[
mus mys′

] [
µusπs psus

−µys′πs′qs′ ys′

]
(27)

where the scalars mus and mys′ are to be computed so that the sign of the participation
constraint does not depend on the magnitude of det(Mss′). After some straightfor-
ward algebra is used to produce a simple expression for mus and mys′ , the desired
inequalities are derived as follows.

Lemma 8 The participation constraints are satisfied if and only if

ud(yd) ≥ ye

β

[
1

(1 − τ)πd pd
− (1 − σ)δ

1 − πd pd

πd pd

]
(28)

and

ue(ye) ≥ yd

β

[
1

(1 − σ)πe pe
− (1 − τ)δ

1 − πe pe

πe pe

]
. (29)

Proof The steps for deriving inequality (28) are simple; we omit the proof for inequal-
ity (29) because it is identical to the proof of inequality (28). Regarding participation
constraint for date-e producers, we find it useful to set ρ = πd pd and ξ = πeqe, so
that the expression for mud can be written as

−mud = σβ − σβ(1 − σ)(1 − ξ)δ − σβ − (1 − σ)ξβ + σβ(1 − σ)δ

+(1 − σ)ξβ(1 − σ)δ

= −(1 − σ)ξβ + (1 − σ)ξβδ

= −(1 − δ)(1 − σ)ξβ.

The expression for mye is

−mye = σβτβ + σβ(1 − τ)ρβ − 1 + (1 − τ)(1 − ρ)δ + (1 − σ)δ

−(1 − σ)δ(1 − τ)(1 − ρ)δ

= σβτβ + σ(1 − τ)ρδ − 1 + (1 − σ)δ

−(1 − τ)(1 − ρ)δ[(1 − σ)δ − 1]
= −1 + δ − σδ[1 − τ − (1 − τ)ρ] + σδ(1 − τ)(1 − ρ)δ
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+ (1 − δ)(1 − τ)(1 − ρ)δ

= −1 + δ − σδ(1 − τ)(1 − ρ) + σδ(1 − τ)(1 − ρ)δ

+ (1 − δ)(1 − τ)(1 − ρ)δ

= −1 + δ − (1 − δ)σδ(1 − τ)(1 − ρ) + (1 − δ)(1 − τ)(1 − ρ)δ

= −(1 − δ)[1 − (1 − σ)δ(1 − τ)(1 − ρ)].

Thus, the right-hand side of (27) equals

(1 − δ)(1 − σ)πeqe

det(Mde)

[
β 1 − δ(1 − σ)(1 − τ)(1 − πd pd)

] [
(1 − τ)πd pdud

−ye

]
,

so that (28) follows. ��
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