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ABSENCE OF RESONANCES NEAR CRITICAL LINE FOR CC MANIFOLDS

LEONARDO MARAZZI

Abstract. We find a resonance free region polynomially close to the critical line on Conformally com-

pact manifolds with polyhomogeneous metric.

1. Introduction

In this note we prove that there is a resonance free region polynomially close to the critical line for

Conformally compact (CC) manifolds with polyhomogeneous metric near the boundary.

CC manifolds appear in both physical and mathematical settings. From the physical perspective CC

Einstein manifolds, which have a polyhomogeneous metric when their dimension is odd, are related to

string theory via the AdS/CFT correspondence. In most of the cases in the literature the sectional

curvatures of a CC manifold are constant, at least at the boundary of the manifold, this is seen in the

generic examples: Asymptotically hyperbolic (AH), Schwarzchild, de Sitter-Schwarzchild, etc. In gen-

eral the sectional curvatures of a CC manifold are not constant neither near the boundary nor at the

boundary. From a mathematical perspective this new parameter that appears, related to the curvature

at the boundary, changes the geometry of the CC manifolds at the boundary. The question is how

much it affects the resolvent? In this note we show that the resonances free regions close to the criti-

cal line still appear. It is still an open question whether there is a resonance free strip near the critical line.

Scattering theory on AH manifolds has been studied by many authors originating with the paper of

Mazzeo-Melrose [MaMe]. One of the main philosophies of scattering theory is to study the distribution

of resonances (poles of the resolvent). In AH manifolds (c.f. [Guil1]) there is a region free of resonances

close to the critical line (c.f. [Burq]). Guillarmou (c.f. [Guil1]) proved there is a resonance free region

exponentially close to the critical line on AH manifolds and for AH manifolds with constant curvature

near infinity he proves that there is a strip free of resonances close to the critical line.

Other important questions on scattering theory refer to upper and lower bounds on the number of

resonances on balls (c.f. [GuZw1, GuZw2]). As far as the author knows resonances have not been studied

on CC manifolds. Questions regarding upper and lower bounds on the number of resonances on balls are

unknown for a general AH manifold let alone CC manifolds.

The method we use is more or less standard, the main point is to carry out the parametrix taking

into account the parameter α(y) that appears in the Laplace-Beltrami operator and which corresponds

to the sectional curvatures at the boundary. The parametrix consists of an approximation near and away

from the boundary. Near the boundary we use a CC metric with polyhomogeneus metric together with

the uniform estimates on the resolvent up to the critical line ℜξ = n/2 given in Proposition 2.1, and

then take a suitable polyhomogeneous metric. Away from the boundary we use the hyperbolic model,

for which we prove the necessary energy estimates in Proposition 1.1.

Partially supported by CNPq-Brasil.
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Scattering theory on CC manifolds was first studied in this generality by Borthwick [Borth]. In [Mar09]

the author proves inverse theorems on CC manifolds. In this setting we have from [Mar11] combined

with Theorem 1.1 of [Borth] the following

Theorem 1.1. The essential spectrum of ∆g is [α2
0
n2

4 ,∞) and there are no embedded eigenvalues except

possibly at α2
0
n2

4 .

We can meromorphically extend the resolvent R(ξ) := (∆g−α2
0ξ(n−ξ))−1 to the whole complex plane

without some intervals (c.f. [Borth]). A vertical interval near ξ = n/2, and some horizontal intervals to

the left of ℜξ = n/2. (See Figure 1)

Re ξ =n/2

Figure 1. Bold lines are not covered by the meromorphic extention

Let X be a compact C∞ manifold with boundary ∂X which is equipped with a Riemannian metric g

such that for any defining function ”x” of ∂X x2g is a C∞ non-degenerate Riemannian metric up to ∂X.

It can be shown (c.f. [Grah1, Mar09]) that there exists a diffeomorphism Ψ : V −→ [0, ǫ)×Rn such than

g satisfies

Ψ∗g =
dx2

α2(y)x2
+
h(x, y, dy)

x2
,(1.1)

for V a collar neighborhood of the boundary ∂X. Here h(x), x ∈ [0, ǫ), is a family of metrics on ∂X, and

α ∈ C∞(∂X). To simplify notation we drop the pull-back coordinate function Ψ and call the compact

manifold (X, g) with boundary ∂X and metric g a CC manifold. We let α0 = min∂X α and α1 = max∂X α.

Without loss of generality we could assume that α0 = 1, however we keep α0 for clarity purposes. We

assume that h(x), x ∈ [0, ǫ), is a family of metrics on ∂X which has a polyhomogeneous expansion near

the boundary ∂X of the form

h(x, y, dy) ∼ h0(y, dy) +
∑

0<i∈N

xi
∑

0≤j≤Ui

(lnx)jhij(y, dy),(1.2)

where Ui ∈ N0 and hij are symmetric 2-tensors at ∂X.

We say that the metric g is non-trapping if every geodesic approaches the boundary ∂X. Under this

assumption using Propositions 1.1 and 2.1 we prove in Section 4 our main theorem

Theorem 1.2. Let (X, g) be a CC manifold with metric g as in (1.1), and x a boundary defining

function. If g is non-trapping, there exists C1, C2 > 0 such that the weighted resolvent x1/2R(ξ)x1/2

extends analytically across {ξ ∈ C : |ℑξ| > C2,ℜξ > n
2 } to

{ξ ∈ C : |ℑξ| > C2,ℜξ >
n

2
− C1

ℑξ },

as a bounded operator in L2(X).
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Figure 2. Region with no resonances

Let (M,H0) be a compact Riemannian manifold, for the parametrix near ∂X we use (X0, g0) the

manifold

(1.3) X0 := (0,∞)x ×M, g0 :=
dx2 +H0

x2

and them take H0 = α2h0.We are interested in the behavior of the resolvent near x = 0, thus we consider

functions supported in (0, 1)x ×M that could be written in local coordinates as

∑

i+|β|≤k

ai,k(x, y)(x∂x)
ix|β|(∂y)

β ,

with ai,k(x, y) polyhomogneous in x.

Modulo the inclusions necessary to be in the right manifold, we construct a parametrix which satisfies

∆g − α2∆g0ψ3 = xDR + (x2∆h − α2x2∆H0),

∆g − α2ψ3∆g0 = xDL + (x2∆h − α2x2∆H0),

and by taking H0 = α2h0 we obtain

∆g − α2∆g0ψ3 = xDR,

∆g − α2ψ3∆g0 = xDL.
(1.4)

After obtaining such a parametrix the method of [Guil1] is applied using the stronger estimates of the

following proposition we prove in section 3:

Proposition 1.1. Let (X0, g0) be as before, and x a boundary defining function. Then there exists C > 0

such that the weighted resolvent x1/2R0(ξ)x
1/2 = x1/2(∆g0 −α2

0ξ(n−ξ))−1x1/2 extends continuously from

{ℜξ > n/2, |ℑξ| ≥ 1} to {ℜξ > n/2 − 1/4, |ℑξ| ≥ 1}, as a map in L(L2(X0, g0)), H
p(X0, g0)) and the

extension satisfies

(1.5) ||∂qξx1/2R(ξ)x1/2||L(L2,Hp) ≤ C|ξ − n

2
|−2+p,

for p = 0, 1, 2, q = 0, 1, and ξ 6= n/2.

Throughout this note C is an arbitrary constant that can change every time it is written.
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In the final section we include an application to the wave equation. To state the corollary let f1, f2 ∈
C∞

0 (
◦

X), and u(t, z) ∈ C∞(R+×
◦

X) satisfy:

�u =
(

D2
t −∆g

)

u(t, z) = 0, on R+×
◦

X,

u(0, z) = f1(z), Dtu(0, z) = f2(z).
(1.6)

Here Dt = −α0
∂t

i . Our result will only hold for high energies so we need to take v = χ(t)u and 0 < ǫ << 1

so that χ(t) is a smooth function so that

χ(t) =

{

0, t < ǫ,

1, t > 1.

We prove the following corollary

Corollary 1.1. Let u be a solution to (1.6) and let v be as above. Then

||v|| ≤ CN t
−N , ∀N.

Acknowledgements The author acknowledges support from CNPq and thank F. Cardoso for en-

couragement while writing this note. The author also thanks A. Sá Barreto for suggesting the problem

and P. Hislop for many helpful discussions.

2. Uniform estimates up to the critical line

In [CardVod] Cardoso-Vodev obtained uniform estimates for the resolvent of the Lapacian for a metric

of the form

(2.1) gr = dr2 + σ(r),

where σ(r) is a one-parameter family of Riemannian metrics. The transformation x = e−r puts the AH

metric (1.1) into the form of the metric studied in [CardVod] with σ(r) = e2rh(e−r). In that same spirit

we consider the metric

(2.2) gr = (α(y))−2dr2 + σ(r),

where the metric σ no longer has a polyhomogeneous expansion, it is actually in the class studied in

[CardVod]. Combining [Mar09] and [Mar11] we can prove that the resolventR(ξ) is analytic for ℜξ > n/2.

We denote by |σ| the determinant of σ. The corresponding Laplace-Beltrami operator is

(2.3) ∆g = −α2(y)∂2r − α2(y)∂r(|σ|1/2)
|σ|1/2 ∂r −∆σ +

∂yi
α(y)

α(y)
σij∂yj

.

We follow the notation of [CardVod] and denote |σ|1/2 by p, we also write α instead of α(y) keeping in

mind that α is a function on the boundary. If we conjugate ∆g by p1/2, we obtain

(2.4) p1/2∆gp
−1/2 = −α2(y)∂2r + Λ+ q,

with Λ = −∂yi
σij∂yj

, and

(2.5) q = − (∂rpσ)
2

4p2σ
− ∂yi

pσ∂yj
pσ

4p2σ
σij +

pσ∆gp
−1
σ

2
− ∂yi

pσ
4

σij∂yj
α− (∂yi

α)σij ∂yi
p

2pσ
+
∂yi

α

α
σij∂yj

.

The method of [CardVod] under the following assumptions

(2.6) |q| ≤ C, ∂rq ≤ Cr−1−δ

and

(2.7) − ∂r(σ
−1)(r, y, ξ) ≥ C

r
σ−1(r, y, ξ) ∀(y, ξ) ∈ T ∗Sr.

gives the following:
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Proposition 2.1. Let (X,g) be a conformally compact manifold with metric g as in (1.1), and x a

boundary defining function. Then there exists c > 0 such that the weighted resolvent x1/2R(ξ)x1/2 =

x1/2(∆g − α2
0ξ(n − ξ))−1x1/2 extends continuously from {ℜξ > n/2, |ℑξ| ≥ 1} to {ℜξ ≥ n/2, |ℑξ| ≥ 1}

on L2(X) and the extension satisfies

(2.8) ||x1/2R(ξ)x1/2||L(L2,Hp) ≤ CeC|ξ|, C > 0,

for p = 0, 1, |ℑξ| ≥ 1, and 0 ≤ ℜξ − n/2 ≤ 1; where the Sobolev norm is with respect to the metric g.

Moreover if g is non-trapping we have

(2.9) ||x1/2R(ξ)x1/2||L(L2,Hp) ≤ C|ℑξ|−1+p, C > 0.

for p = 0, 1, |ℑξ| ≥ 1, and 0 ≤ ℜξ − n/2 ≤ 1.

Proof. The technique is essentially found in [CardVod] however our case is a bit simpler in the sense

that we are only concerned with what happens near the boundary ∂X of the CC manifold X which

corresponds to the elliptic ends of the manifolds considered in [CardVod], the manifolds they considered

include also manifolds with cusp ends. Away from the boundary the operator ∆g is elliptic and the result

follows from the existing results for asymptotically hyperbolic manifolds (e.g. [CardVod, Guil1]).

We prove the theorem using the coordinates (r, y) with corresponding Laplace-Beltrami operator

(2.10) ∆g = −α2(y)∂2r − α2(y)∂r(|σ|1/2)
|σ|1/2 ∂r −∆σ +

∂yi
α(y)

α(y)
σij∂yj

.

We denote by

(2.11)

P = p1/2((α0λ)
−2∆g − 1 + i(α0λ)

−2ǫ)p−1/2 = −α2(y)(α0λ)
−2∂2r + (α0λ)

−2Λ + (α0λ)
−2q + i(α0λ)

−2ǫ,

with Λ and q as before. We rename Lr = (α0λ)
−2Λ, V = (α0λ)

−2q and Dr = (iα0λ)
−1α∂r to simplify

notation.

The theorem follows from the following

Proposition 2.2. Let u ∈ H2(X, g) be such that rsPu ∈ L2(X, g) for 1/2 < s ≤ 1/2+ δ0. Then for all γ

such that 0 < γ << 1 there exist constants C1, C2, λ0 > 0 independent of λ and ǫ, such that for λ ≥ λ0
we have

(2.12) ||r−su||2H1(V,g) ≤ C1λ
2||rsPu||2L2(V,g) − C2λ

−1ℑ〈α−2
0 α∂ru, u〉L2(∂X,g).

Proof. Integration by part gives

〈r−2s(Lr−1+V )u, u〉L2(V,g)+||r−sαDru||2L2(V,g) = ℜ〈r−2sPu, u〉L2(V,g)+2s(α0λ)
−2ℜ〈r−2s−1α2u′, u〉L2(V,g).

Thus by Cauchy-Schwarz we have

(2.13) |〈r−2s(Lr − 1 + V )u, u〉L2(V,g) + ||r−sαDru||2L2(V,g)|

≤ O(λ)||r−sPu||2L2(V,g) +O(λ−1)
(

||r−sαDru||2L2(V,g) + ||r−su||2L2(V,g)

)

.

Since ℑ〈γ−1λPu, γλ−1u〉L2(V,g) = ℑ〈Pu, u〉L2(V,g) = (λ)−2ℑ〈α−2
0 α∂ru, u〉L2(∂V ) + ǫ||u||L2(V,g), we have

that

(2.14) ǫ||u||L2(V,g) ≤ γ−1λ||rsPu||2L2(V,g) + γλ−1||r−su||2L2(V,g) − (λ)−2ℑ〈α−2
0 α∂ru, u〉L2(∂V )

for all positive γ. Again taking imaginary parts since ǫ is small and α bounded we have

(2.15) ||Dru||2L2(V,g) ≤ C||u||2L2(V,g) + ||Pu||2L2(V,g).
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The previous two equations give

(2.16)

ǫλ
(

||u||2L2(V,g) + ||Dru||2L2(V,g)

)

≤ O(λ2)||rsPu||2L2(V,g) + γ||r−su||2H1(V,g) − Cλ−1ℑ〈α−2
0 α∂ru, u〉L2(∂V ).

for all γ > 0. Let

E(r) = −〈(Lr − 1 + V )u(r, ·), u(r, ·)〉+ ||Dru(r, ·)||2,
where ||u(r, ·)|| means the L2 norm in the rest of the variables that do not include r. Taking the derivative

with respect to r we have

(2.17) E′(r) = −〈[∂r, Lr]u(r, ·), u(r, ·)〉 − 〈V ′u(r, ·), u(r, ·)〉

− 2ǫℑ〈u(r, ·), u′(r, ·)〉 − 2λα0ℑ〈Pu(r, ·),
1

α(·)Dru(r, ·)〉.

Writing 〈Pu(r, ·), 1
α(·)Dru(r, ·)〉 = 〈r−2sλPu(r, ·), 1

α(·)λr
2sDru(r, ·)〉, and using our assumptions (2.6),

(2.7) and Cauchy-Schwarz we have

(2.18) E′(r) ≥ C

r
〈Lru(r, ·), u(r, ·)〉 − ǫλ(||u(r, ·)||2 + || α0

α(·)Dr(r, ·)||2)

− r−2s(||u(r, ·)||2 + ||Dr(r, ·)||2)− λ2r2s||Pu(r, ·)||2.

Integrating and using that Lr ≥ 0 we get

(2.19) E(r) = −
∫ ∞

r

E′(t)dt ≤
∫ ∞

r

[

ǫλ(||u(t, ·)||2 + || α0

α(·)Dt(t, ·)||2)
]

dt+ ||r−su(r, ·)||2H1(V,g)

+ λ2||rsPu(r, ·)||2L2(V,g),

and using (2.16) we obtain

(2.20) E(r) ≤ γ||r−su(r, ·)||2H1(V,g) + Cλ2||rsPu(r, ·)||2L2(V,g) − Cλ−1ℑ〈α−2
0 α∂ru, u〉L2(∂V ).

On the other hand

(2.21) r1−2sE′(r) ≥ Cr−2s〈Lru(r, ·), u(r, ·)〉 − r1−2sǫλ(||u(r, ·)||2 + || α0

α(·)Dr(r, ·)||2)

− r1−4s(||u(r, ·)||2 + ||Dr(r, ·)||2)− r1−2sλ2r2s||Pu(r, ·)||2

,

and
∫∞

a
r1−2sE′(r)dr = (2s− 1)

∫∞

a
r−2sE(r)dr, thus integrating (2.21) from a to ∞ we get

(2.22) C||r−s(Lr)
1/2||2L2(V,g) − ǫλ(||r1−2su(r, ·)||2L2(V,g) + ||r1−2s α0

α(·)Dr(r, ·)||2L2(V,g))

− (||r1−4su(r, ·)||2L2(V,g) + ||r1−4sDr(r, ·)||2L2(V,g))− λ2||rPu(r, ·)||2L2(V,g)

≤ γ||r−su(r, ·)||2H1(V,g) + Cλ2||rsPu(r, ·)||2L2(V,g) − Cλ−1ℑ〈α−2
0 α∂ru, u〉L2(∂V ).

Since 1/2 < s ≤ 1/2 + δ0 and α0 ≤ α ≤ α1 the terms with negative sign in left hand side of the previous

equation can be absorbed by the terms in the right hand side to get

(2.23)

||r−s(Lr)
1/2||2L2(V,g) ≤ γ||r−su(r, ·)||2H1(V,g) + Cλ2||rsPu(r, ·)||2L2(V,g) − Cλ−1ℑ〈α−2

0 α∂ru, u〉L2(∂V ).

The proposition now follows from the previous inequality, (2.20) and (2.13).

�
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The theorem follows from the previous proposition by noticing that

(2.24) −ℑ〈α−2
0 α∂ru, u〉L2(∂V ) = −ℑ〈α−2

0 (∆g − α2
0λ

2 − iǫ)u, u〉L2(V,g) − ǫ||α−2
0 u||2L2(V,g)

≤ C||(∆g − α2
0λ

2 − iǫ)u||2L2(V,g) + Cǫ||u||2L2(V,g),

this inequality into (2.12) gives

(2.25) ||r−su||2H1(V,g) ≤ C1λ
2||rsPu||2L2(V,g) + C||(∆g − α2

0λ
2 − iǫ)u||2L2(V,g) + Cǫ||u||2L2(V,g),

letting ǫ→ 0 since |λ| > K we obtain

(2.26) ||r−su||2H1(V,g) ≤ C2λ||rsPu||L2(V,g).

The theorem, with r
1+δ
2 = (ln x)

1+δ
2 instead of x, follows from the last inequality by factoring out λ−2

from P. Lastly, noticing that x1/2 < | lnx| 1+δ
2 for x > 0 sufficiently small we obtain the theorem. �

3. Model

Writing the Laplace-Beltrami operator ∆g in local coordinates z = (x, y), logaritmic terms appear. It

is a differential operator of order two in (x∂x, x∂y) with polyhomogeneous coefficients. Hence we denote

by polDiffk
0(X̄) the space of polyhomogeneous differential operators of order k that could be written in

local coordinates as
∑

i+|β|≤k

ai,k(x, y)(x∂x)
ix|β|(∂y)

β ,

with ai,k(x, y) polyhomogneous in x.

The variable sectional curvature gives a resolvent which lives on spaces of polyhomogeneous operators

A(X), however the definition of such spaces is well known and we do not discuss these spaces in more

detail here since we are just going to look at the resolvent as a linear map. We refer the interested reader

to [Borth, Mar09, Mar11].

The argument of [FrHis] can be extended to show polDiffk
0(X̄) ⊂ L(Hs(X), Hs−k(X)), where as usual

Hk(X) := Dom(1 + ∆g)
k/2. Also x−βDkxβ ∈ polDiffk

0(X) for Dk ∈ polDiffk
0(X).

The part of the parametrix near the boundary will be given by (X0, g0) we define next: let (M,H0)

be a compact Riemannian manifold then (X0, g0) is the manifold

(3.1) X0 := (0,∞)x ×M, g0 :=
dx2 +H0

x2
.

Note that

(3.2) X̄0 := [0,∞)×M.

The elements of polDiffk
0(X̄0) with support in [0, 1]×M could be written in local coordinates as

∑

i+|β|≤k

ai,k(x, y)(x∂x)
ix|β|(∂y)

β ,

with ai,k(x, y) polyhomogneous in x. Via the change of variables r = lnx, ∆g0 is unitarily equivalent to

P0 = −∂2r + e2r∆H0 +
n2

4
.

We now prove Proposition 1.1
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Proof. We prove the proposition for p = 0, the other cases follow from polDiffk
0(X̄0) being contained in

L(Hs(X0), H
s−k(X0)) ([FrHis]). By the spectral theorem we can decompose

P0 =
⊕

j

P
(j)
0 , P

(j)
0 = −∂2r + e2rµ2

j +
n2

4
.

with {µj}j∈N0 the eigenvalues of ∆H0 associated to an orthonormal basis {ψj}j∈N0 of L2(M) eigenvectors

and counted with multiplicities.

We have the decomposition

ρ(P0 − ξ(n− ξ))−1ρf =
∑

j∈N0

ρ(P
(j)
0 − ξ(n− ξ))−1 < f, ψj > ψjρ.

We let UJ : L2(R, dr) −→ L2(R, dr) be the isometric translation

UJ = f(·) 7→ f(ln(µj) + ·),

for µj 6= 0, we have UjP
(j)
0 Uj = Q, with Q = −∂2r + e2r + n2

4 . We set k = ξ − n/2 to simplify notation.

It is well known that we can decompose the Green kernel

RQ(ξ; r, t) = (Q− ξ(n− ξ))−1(r, t) = K−k(e
r)Ik(e

t)H(r − t)− Ik(e
r)K−k(e

t)H(t− r),

where H is the Heaviside function, and K−k, Ik are given by

(3.3) Ik(z) =
1

π

∫ π

0

ez cos(u) cos(ku)du− sin(kπ)

π

∫ ∞

0

e−z cosh(u)−kudu,

(3.4) K−k(z) =

∫ ∞

0

cosh(ku)e−z cosh(u)du.

If |ℜ(k)| ≤ 1/4 and |ℑ(k)| ≥ 1, we have, for t > 0, that

(3.5) |Ik(et)| =
∣

∣

∣

∣

1

π

∫ π

0

ee
t cos(u) cos(ku)du− sin(kπ)

π

∫ ∞

0

e−et cosh(u)−kudu

∣

∣

∣

∣

≤

C

∣

∣

∣

∣

∫ π

0

ee
te|k|u

e|k|udu

∣

∣

∣

∣

+ Ce−et
∣

∣

∣

∣

∫ ∞

0

e−kudu

∣

∣

∣

∣

≤ C
ee

t

et
|k|−1,

(3.6)
∣

∣K−k(e
t)
∣

∣ =

∣

∣

∣

∣

∫ ∞

0

cosh(ku)e−et cosh(u)du

∣

∣

∣

∣

≤ C

∣

∣

∣

∣

∫ ∞

0

sinh(ku)e−et cosh(ku)du

∣

∣

∣

∣

≤ C
e−et

et
|k|−1

the proof of the first inequality of (3.6) is included in the appendix. For t ≤ 0 we have

(3.7) |Ik(et)| =
∣

∣

∣

∣

1

π

∫ π

0

ee
t cos(u) cos(ku)du− sin(kπ)

π

∫ ∞

0

e−et cosh(u)−kudu

∣

∣

∣

∣

≤

C

∣

∣

∣

∣

∫ π

0

cos(ku)du

∣

∣

∣

∣

+ C

∣

∣

∣

∣

∫ ∞

0

e−kudu

∣

∣

∣

∣

≤ C|k|−1

and

(3.8)
∣

∣K−k(e
t)
∣

∣ =

∣

∣

∣

∣

∫ ∞

0

cosh(ku)e−et cosh(u)du

∣

∣

∣

∣

≤ C|k|−1.

We suppose, without loss of generality, that ρ(er) = er/2χ(r) with χ a smooth function so that χ(r) = 1

for r ≤ −1 and χ(r) = 0 for r ≥ 1. Thus the last inequalities give

(3.9) |K−k(e
r)ρ(er−lnµj )| ≤

{

C|k|−1e−er r > 0

C|k|−1er/2 r ≤ 0
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(3.10) |Ik(et)ρ(et−lnµj )| ≤
{

C|k|−1ee
t

t > 0

C|k|−1et/2 t ≤ 0

Thus we obtain

|Ik(et)ρ(et−lnµj )|
∫ ∞

r

|K−k(e
r)ρ(er−lnµj )| ≤ C

|k|2

|K−k(e
r)ρ(er−lnµj )|

∫ r

−∞

|Ik(et)ρ(et−lnµj )| ≤ C

|k|2
(3.11)

When µj = 0, for ξ /∈ C\0, the euclidean resolvent

R
(j)
0 (ξ; r, t) = |2k|−1e−k|r−t|.

Thus for ℜξ > n
2 − 1

4 , |ℑξ| ≥ 1, and p = 0 :

(3.12) ||∂prρ(e·)R
(j)
0 (ξ)ρ(e·)||L{L2(R)} ≤ |k|−2+p.

For (p, q) = (0, 0) the Lemma follows from (3.11) and (3.12), and the cases (p, q) = (1, 0) and (p, q) = (2, 0)

follow from polDiffk
0(X0) ⊂ L(Hs(X0), H

s−k(X0)). The case q = 1 follows from the Cauchy formula. �

4. Absence of resonances near critical line

In this section we prove Theorem 1.2.

Proof. We define the resolvent R0(ξ) := (P0 − α2
0ξ(n − ξ))−1 and let R(ξ) be the resolvent as defined

before, which extends to the physical sheet {ℜ(ξ) > n/2}. We work in V be a collar neigborhood of ∂X

in the conformally compact manifold (X, g) isometric to U := (0, δ)x × ∂X equipped with the metric

(αx)−2dx2 + x−2h(x), via the isometry i : V → U. We assume δ = 1 without loss of generality.

Let IU : L2(X0, dvolg0) → L2(U, dvolg) and RU : L2(U, dvolg) → L2(X0, dvolg0) be the bounded

operators given by

RU : f 7→ f(ιU (·)),
IU : f 7→ 1Uf ;

where ιU is the inclusion U →֒ X0, and 1U is the characteristic function of U. Since the function α = α(y)

satisfies 0 < α0 < α < α1, i
∗g0 and g are quasi-isometric. The pullback and push-forward of i map

i∗ : L2(U, dvolg0) → L2(V, dvolg) and i∗ : L2(V, dvolg) → L2(U, dvolg0) respectively as bounded operators.

We also have I∗ := IV i∗RU , and I∗ := IU i∗RV as linear operator from L2(X0, dvolg0) to L2(X, dvolg)

and from L2(X, dvolg) to L
2(X0, dvolg0) respectively.We let for j = 1, ..., 4; ψj(x) be defined by

ψj(x) :=

{

1, x ∈ [0, j/5]

0, x ∈ [(j + 1)/5,∞)
.

We have I∗I
∗ψj = ψj and I∗I

∗i∗ψj = i∗ψj .

For the first step of the parametrix we note the there exist operators DR and DL in polDiff2
0(X) such

that

∆g − α2I∗∆g0ψ3I∗ = xDR + (x2∆h − α2x2∆H0),

∆g − α2I∗ψ3∆g0I∗ = xDL + (x2∆h − α2x2∆H0),

since

∆g = α2[−(x∂x)
2 + nx∂x − x2(∂x ln

√
h)∂x] + x2∆h − x2(∂yi

lnα)hij∂yj
.
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Notice that

(4.1) x2∆h = x2
1

|h|1/2
∑

∂ih
ij |h|1/2∂j = x2

∑

hij∂i∂j + xD1,

with D1 in polDiff1
0(X). We assume we can write

h(x, y, dy) ∼ h0(y, dy) +
∑

i∈N0

xi
∑

0≤j≤Ui

(ln x)jhij(y, dy).(4.2)

thus

(4.3) x2∆h = x2
∑

hij0 ∂i∂j + xD2,

with D2 in polDiff2
0(X). Thus taking H0 = α2h0 we get that α2x2∆H0 − x2∆h = xD3, with D3 in

polDiff2
0(X). Thus we obtain

∆g − α2I∗∆g0ψ3I∗ = xDR,

∆g − α2I∗ψ3∆g0I∗ = xDL.
(4.4)

where DR and DL are not necessarily the same as before.

By (4.4) we can now apply the same parametrix as the one used in [Guil1] to prove the absence of

resonances exponentially close to the critical line. For ℜ(ξ) > n/2 we have

(∆g0ψ3 − ξ(n− ξ))ψ2R0(ξ)ψ1 = ψ1 + [∆g0 , ψ2]R0(ξ)ψ1.

We let χ1 := 1 − i∗ψ1, and χ0 a smooth function with compact support on X which is equal to 1 on

the support of χ1. We denote by Dp (resp. Dp
0 ) all differential operator in Diffp(X) with support in

Supp(i∗ψ3 ) (resp. Diffp
0(X̄0) with support in Supp(ψ3 )). We have Dpx = xDp, Dp

0I∗ = I∗D
p, and

DpI∗ = I∗Dp
0 .

Let Ξ := ξ(n− ξ), and Ξ0 := α2
0ξ0(n− ξ0), for ξ0 fixed such that ℜ(ξ0) > n/2, we have

(4.5) (∆g − Ξ)ER(ξ) = 1 + LR(ξ),

with

ER(ξ) = R0R(ξ) + χ0R(ξ0)χ1, R0R(ξ) := I∗ψ2R0(ξ)
ψ1

α2
I∗,

and

(4.6) LR(ξ) = [∆g, χ0]R(ξ0)χ1 + (Ξ− Ξ0)χ0R(ξ0)χ1 + I∗α2[∆g0 , ψ2]R0(ξ)
ψ1

α2
I∗ + xDRR0R(ξ).

Thus we obtain

(4.7) x−1/2LR = (D1 + (Ξ− Ξ0)x
−1χ0)R(ξ0)χ1 + x1/2I∗α2D2

0R(ξ)
ψ1

α2
I∗.

On the other hand

(4.8) EL(ξ)(∆g − Ξ) = 1 + LL(ξ),

with

(4.9) EL(ξ) = R0L(ξ) + χ0R(ξ0)χ1, R0R(ξ) := I∗
ψ1

α2
R0(ξ)ψ2I∗,

and

(4.10) LL(ξ) = χ1R(ξ0)[∆g, χ0] + (Ξ− Ξ0)χ1R(ξ0)χ0 + I∗
ψ1

α2
R0(ξ)α

2[∆g0 , ψ2]I∗ +R0L(ξ)xDR.
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From equations (4.5) and (4.8) we get

R(ξ) = ER(ξ)−R(ξ)LR(ξ), R(z) = EL(z)− LL(z)R(z).(4.11)

Substituting the first equation in (4.11) into the resolvent identity R(ξ) − R(z) = (Ξ − Z)R(ξ)R(z), we

get x1/2R(ξ)x1/2(1 +K(ξ, z)) = K1(ξ, z), where

K(ξ, z) = (Ξ− Z)x−1/2LR(ξ)R(z)x
1/2 and K1(ξ, z) = x1/2R(z)x1/2 + (Ξ− Z)x1/2ER(ξ)R(z)x

1/2.

From (4.9) and (4.10) we have

(4.12) R(z)x1/2 = EL(z)x
1/2 − LL(z)R(z)x

1/2 = I∗
ψ1

α2
R0(z)(ψ2I

∗x1/2 + I∗α2x1/2D2x1/2R(z)x1/2)

+ χ1R(ξ0)x
1/2[χ0 +D1x1/2R(z)x1/2 + (Ξ0 − Z)x−1/2χ0R(z)x

1/2].

Putting the last equation together with x−1/2LR(ξ) into

K(ξ, z)

Ξ− Z
= x−1/2LR(ξ)R(z)x

1/2

we get

(4.13)
K(ξ, z)

Ξ− Z
= (D1 + (Ξ0 − Ξ)x−1χ0)x

1/2R(ξ0)χ1R(z)x
1/2

+ x1/2I∗α2D2
0ψ4R0(ξ)

ψ1

α2
I∗x

1/2x−1/2χ1R(ξ0)x
1/2
(

χ0 +D1x1/2R(z)x1/2 + (Ξ0 − Z)x−1/2χ0R(z)x
1/2
)

+ x1/2I∗α2D2
0ψ4R0(ξ)

ψ2
1

α4
R0(z)I∗x

1/2(α2x1/2D2x1/2R(z)x1/2 + ψ̃2).

The first line in (4.13) extends to {ℜ(ξ) > n/2− 1/4}∩ {|ℑ(ξ)| ≥ 1} and {ℜ(z) ≥ n/2}∩ {|ℑ(z)| ≥ 1}
as an operator with L2 norm bounded by

C

( |ξ|2
|z| + 1

)

≤ C
|ξ|2
|z| .

The second line can be extended to {ℜ(ξ) > n/2− 1/4} ∩ {|ℑ(ξ)| ≥ 1} and {ℜ(z) ≥ n/2} ∩ {|ℑ(z)| ≥ 1}
as an operator with L2 norm bounded by

C(|z|+ C1 + 1/|z|) ≤ C|z|
Finally we analyze the third line, by Proposition 2.1 D2x1/2R(z)x1/2 can be extended to {ℜ(z) ≥ n/2}∩
{|ℑ(z)| ≥ 1} as an operator with L2 norm bounded by C|z|. Using the trick of [Guil1] i.e. writing

(4.14) x1/2I∗D2
0ψ4R0(ξ)

ψ2
1

α4
R0(z)ψ4I∗x

1/2 =

(
ψ1

α2
− i∗(x

1/2)ψ4[
ψ1

α2
,∆g0 ]x

−1/2)
i∗x

1/2ψ4R0(ξ)i∗x
1/2ψ4 − i∗(x

1/2ψ4)R0(z)i∗x
1/2ψ4

Ξ− Z
×

× (
ψ1

α2
− x−1/2[

ψ1

α2
,∆g0 ]i∗x

1/2ψ4),

and using Proposition 1.1 for q = 1 we see that we can extend (4.14) to {ℜ(ξ) > n/2−1/4}∩{|ℑ(ξ)| ≥ 1}
and {ℜ(z) ≥ n/2} ∩ {|ℑ(z)| ≥ 1} as an operator with L2 norm bounded by C 1

|ξ|2 . Combining the last

two estimates we get that the third line of (4.13) can be extended to {ℜ(ξ) > n/2− 1/4} ∩ {|ℑ(ξ)| ≥ 1}
and {ℜ(z) ≥ n/2} ∩ {|ℑ(z)| ≥ 1} as an operator with L2 norm bounded by C |z|

|ξ|2 .

These three bounds together give that

(4.15) ‖K(ξ, z)||L(L2) ≤ C|ξ − z|
( |z|
|ξ|2 +

|ξ|2
|z| + |z|)

)

.
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Fixing z = n/2 + is, with |s| >> 0 and ℑ(ξ) = s, ℜ(ξ) > n/2− 1/4, the last inequality becomes

(4.16) ‖K(ξ, z)‖L(L2) ≤ C|ℜ(ξ) − n

2
|
(

√

n2/4 + s2

(ℜξ)2 + s2
+

(ℜξ)2 + s2
√

n2/4 + s2
+
√

n2/4 + s2

)

≤ C|ℜ(ξ) − n

2
|(
√

n2/4 + s2 +
(ℜξ)2 + s2
√

n2/4 + s2
).

Thus taking

(4.17) |ℜ(ξ)− n

2
| < C(ℑ(ξ))−1

K(ξ, z) is holomorphic in ξ for {ℜ(ξ) > n/2− C(ℑ(ξ))−1} ∩ {|ℑ(ξ)| ≥ 1} and we can invert 1 +K(ξ, z)

holomorphically. The term K1(ξ, z) can be handled using the estimates above. �

5. Asymptotics of the wave equation

In this section we give a second application of the resolvent estimate given in Theorem (2.1) to the

wave equation on a CC manifold. We prove Corollary 1.1.

Let (X, g) be a CC manifold and f1, f2 ∈ C∞
0 (

◦

X), and u(t, z) ∈ C∞(R+×
◦

X) satisfy:

�u =
(

D2
t −∆g

)

u(t, z) = 0, on R+×
◦

X,

u(0, z) = f1(z), Dtu(0, z) = f2(z).
(5.1)

Here Dt = −α0
∂t

i . Our result will only hold for high energies so we need to take v = χ(t)u and 0 < ǫ << 1

so that χ(t) is a smooth function so that

χ(t) =

{

0, t < ǫ,

1, t > 1.

Then we have that v satisfies

�u =
(

D2
t −∆g

)

v(t, z) = F := [�, χ]u, on R+×
◦

X,

v(0, z) = 0, Dtv(0, z) = 0.
(5.2)

Thus taking the Fourier transform in t we get that Fv satisfies

(

α0λ
2 −∆g

)

(Fv)(λ, z) = FF.(5.3)

Now we can use Theorem (2.1), since (Fv)(λ, z) = R(λ)(FF )(λ, z). Thus taking the inverse Fourier

transform we have

v(t, z) =

∫

eitλR(λ, z, z′)F̂ (λ, z′)dz′dλ.

The corollary now follows since we obtained polynomial bounds on the resolvent R(λ) and F is Schwartz.

Appendix: Proof of inequality in (3.6)

We prove that if |ℜ(k)| ≤ 1/4 and |ℑ(k)| ≥ 1,

(.4)

∣

∣

∣

∣

∫ ∞

0

cosh(ku)e−et cosh(u)du

∣

∣

∣

∣

≤ C

∣

∣

∣

∣

∫ ∞

0

sinh(ku)e−et cosh(ku)du

∣

∣

∣

∣

.
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The left hand side of (.4) is

(.5)

∣

∣

∣

∣

∫ ∞

0

cosh(ku)e−et cosh(u)du

∣

∣

∣

∣

2

=

∣

∣

∣

∣

∫ ∞

0

cos((ℑk)u)e
(ℜk)u + e−(ℜk)u

2
e−et cosh(u)du

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∫ ∞

0

sin((ℑk)u)e
(ℜk)u − e−(ℜk)u

2
e−et cosh(u)du

∣

∣

∣

∣

2

.

The right hand side of (.4) is

(.6)

∣

∣

∣

∣

∫ ∞

0

sinh(ku)e−et cosh(ku)du

∣

∣

∣

∣

2

=

∣

∣

∣

∣

∫ ∞

0

(

cos((ℑk)u)e
(ℜk)u − e−(ℜk)u

2
+ i sin((ℑk)u)e

(ℜk)u + e−(ℜk)u

2

)

e−et cos((ℑk)u) e(ℜk)u+e−(ℜk)u

2 ×
[

cos[et sin((ℑk)u)e
(ℜk)u − e−(ℜk)u

2
]− i sin[et sin((ℑk)u)e

(ℜk)u − e−(ℜk)u

2
]

]

du

∣

∣

∣

∣

2

=

∣

∣

∣

∣

∫ ∞

0

du
e(ℜk)u − e−(ℜk)u

2
(e−et cos((ℑk)u) e(ℜk)u+e−(ℜk)u

2 ) cos((ℑk)u) cos[et sin((ℑk)u)e
(ℜk)u − e−(ℜk)u

2
]

+

∫ ∞

0

du
e(ℜk)u + e−(ℜk)u

2
(e−et cos((ℑk)u) e(ℜk)u+e−(ℜk)u

2 ) sin((ℑk)u) sin[et sin((ℑk)u)e
(ℜk)u − e−(ℜk)u

2
]

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∫ ∞

0

du
e(ℜk)u + e−(ℜk)u

2
(e−et cos((ℑk)u) e(ℜk)u+e−(ℜk)u

2 ) sin((ℑk)u) cos[et sin((ℑk)u)e
(ℜk)u − e−(ℜk)u

2
]

−
∫ ∞

0

du
e(ℜk)u − e−(ℜk)u

2
(e−et cos((ℑk)u) e(ℜk)u+e−(ℜk)u

2 ) cos((ℑk)u) sin[et sin((ℑk)u)e
(ℜk)u − e−(ℜk)u

2
]

∣

∣

∣

∣

2

=
[
∫ ∞

0

du
e(ℜk)u − e−(ℜk)u

2
(e−et cos((ℑk)u) e(ℜk)u+e−(ℜk)u

2 ) cos((ℑk)u) cos[et sin((ℑk)u)e
(ℜk)u − e−(ℜk)u

2
]

]2

+

[
∫ ∞

0

du
e(ℜk)u + e−(ℜk)u

2
(e−et cos((ℑk)u) e(ℜk)u+e−(ℜk)u

2 ) sin((ℑk)u) sin[et sin((ℑk)u)e
(ℜk)u − e−(ℜk)u

2
]

]2

+

[
∫ ∞

0

du
e(ℜk)u + e−(ℜk)u

2
(e−et cos((ℑk)u) e(ℜk)u+e−(ℜk)u

2 ) cos((ℑk)u) sin[et sin((ℑk)u)e
(ℜk)u − e−(ℜk)u

2
]

]2

+

[
∫ ∞

0

du
e(ℜk)u − e−(ℜk)u

2
(e−et cos((ℑk)u) e(ℜk)u+e−(ℜk)u

2 ) sin((ℑk)u) cos[et sin((ℑk)u)e
(ℜk)u − e−(ℜk)u

2
]

]2

+ 2

∫ ∞

0

du
e(ℜk)u − e−(ℜk)u

2
(e−et cos((ℑk)u) e(ℜk)u+e−(ℜk)u

2 ) cos((ℑk)u) cos[et sin((ℑk)u)e
(ℜk)u − e−(ℜk)u

2
]×

∫ ∞

0

du
e(ℜk)u + e−(ℜk)u

2
(e−et cos((ℑk)u) e(ℜk)u+e−(ℜk)u

2 ) sin((ℑk)u) sin[et sin((ℑk)u)e
(ℜk)u − e−(ℜk)u

2
]

− 2

∫ ∞

0

du
e(ℜk)u − e−(ℜk)u

2
(e−et cos((ℑk)u) e(ℜk)u+e−(ℜk)u

2 ) cos((ℑk)u) sin[et sin((ℑk)u)e
(ℜk)u − e−(ℜk)u

2
]×

∫ ∞

0

du
e(ℜk)u + e−(ℜk)u

2
(e−et cos((ℑk)u) e(ℜk)u+e−(ℜk)u

2 ) sin((ℑk)u) cos[et sin((ℑk)u)e
(ℜk)u − e−(ℜk)u

2
].
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The inequality follows by noticing that the difference of the last two terms is bounded by the sum of the

first four and that

(.7)

∣

∣

∣

∣

∫ ∞

0

cos((ℑk)u)e
(ℜk)u + e−(ℜk)u

2
e−et cosh(u)du

∣

∣

∣

∣

2

≤

C

[

[
∫ ∞

0

du
e(ℜk)u − e−(ℜk)u

2
(e−et cos((ℑk)u) e(ℜk)u+e−(ℜk)u

2 ) cos((ℑk)u) cos[et sin((ℑk)u)e
(ℜk)u − e−(ℜk)u

2
]

]2

+

[
∫ ∞

0

du
e(ℜk)u + e−(ℜk)u

2
(e−et cos((ℑk)u) e(ℜk)u+e−(ℜk)u

2 ) cos((ℑk)u) sin[et sin((ℑk)u)e
(ℜk)u − e−(ℜk)u

2
]

]2
]

and that
∣

∣

∣

∣

∫ ∞

0

sin((ℑk)u)e
(ℜk)u − e−(ℜk)u

2
e−et cosh(u)du

∣

∣

∣

∣

2

≤

C

[

[
∫ ∞

0

du
e(ℜk)u + e−(ℜk)u

2
(e−et cos((ℑk)u) e(ℜk)u+e−(ℜk)u

2 ) sin((ℑk)u) sin[et sin((ℑk)u)e
(ℜk)u − e−(ℜk)u

2
]

]2

+

[
∫ ∞

0

du
e(ℜk)u − e−(ℜk)u

2
(e−et cos((ℑk)u) e(ℜk)u+e−(ℜk)u

2 ) sin((ℑk)u) cos[et sin((ℑk)u)e
(ℜk)u − e−(ℜk)u

2
]

]2
]

.
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