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ACYCLIC EMBEDDINGS OF OPEN RIEMANN SURFACES INTO

NEW EXAMPLES OF ELLIPTIC MANIFOLDS

TYSON RITTER

Abstract. The geometric notion of ellipticity for complex manifolds was introduced by

Gromov in his seminal 1989 paper on the Oka principle, and is a sufficient condition for a

manifold to be Oka. In the current paper we present contributions to three open questions

involving elliptic and Oka manifolds. We show that quotients of Cn by discrete groups

of affine transformations are elliptic. Combined with an example of Margulis, this yields

new examples of elliptic manifolds with free fundamental groups and vanishing higher

homotopy. Finally we show that every open Riemann surface embeds acyclically into an

elliptic manifold, giving a partial answer to a question of Lárusson.

1. Introduction

The field of Oka theory within complex geometry is a relatively new area of research
that has undergone rapid development in recent years. With roots in the work of Oka in
1939 [14] and later extensions by Grauert [5], Gromov’s seminal paper in 1989 [7] set the
stage for modern developments by Forstnerič, Prezelj, Lárusson and others. For a detailed
survey of the current state of Oka theory we refer the reader to the recent article [3] by
Forstnerič and Lárusson.

A complex manifold is said to be Oka if it satisfies any of a number of equivalent
conditions, all of which state in some way that the manifold has many holomorphic maps
into it, from affine space Cn. In this sense, Oka manifolds can be thought of as being dual to
Stein manifolds, which possess many maps from them into Cn. The simplest Oka condition
is the convex approximation property, which states thatM is Oka if every holomorphic map
K → M , where K is a compact convex subset of Cn, can be approximated uniformly on
K by holomorphic maps Cn → M . In [7], Gromov introduced a useful sufficient geometric
condition for a manifold to be Oka that can often be verified in practice, called ellipticity.
A complex manifold M is said to be elliptic if there exists a holomorphic vector bundle
E → M together with a holomorphic map s : E → M called a dominating spray, such
that s(0x) = x and s|Ex

: Ex →M is a submersion at 0x, for all x ∈M .

Many questions exist relating to Oka and elliptic manifolds, and in this paper we make
contributions to three open problems, which we now describe.

As mentioned above, Gromov showed that ellipticity is a sufficient condition for a
manifold M to be Oka, and if M is Stein then it is also necessary [7, 3.2.A] (see also [10,
Thm. 2]). The question of whether all Oka manifolds are elliptic remains open. In Section
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2 we give a sufficient condition for a quotient manifold of Cn to be elliptic and show that
quotients of Cn by discrete groups of affine transformations satisfy this condition. Since
quotients of Cn are Oka, we give in this special case a positive answer to the question of
whether Oka manifolds are elliptic. Note that it is not clear whether such quotients are
Stein.

Despite the importance of elliptic manifolds, the list of known examples is relatively
short [3, Sec. 5]. In particular, it is of interest to know what possible homotopy types
elliptic manifolds may have. In Section 3 we apply the results of Section 2 to an example
of Margulis to give new examples of elliptic manifolds as affine quotients of C3. We then
show that elliptic manifolds may have any free group of countable rank as fundamental
group, with all higher homotopy groups vanishing. Applying a result of Baumslag and
Roseblade on subgroups of the direct product of free groups, we conclude that there are
continuum-many elliptic manifolds of distinct homotopy type.

In the holomorphic homotopy theory of Lárusson [8, 9, 10], the question naturally arises
whether every Stein manifold can be acyclically properly holomorphically embedded into
an elliptic Stein manifold. We call a map between manifolds acyclic if it is a homotopy
equivalence. This question was answered affirmatively in [15] for open Riemann surfaces
with abelian fundamental group. In Section 4 we use the new examples of elliptic manifolds
from Section 3 to give a partial answer to this question for one-dimensional Stein manifolds
by showing that every open Riemann surface has an acyclic proper holomorphic embedding
into an elliptic manifold.

I thank Finnur Lárusson for helpful discussions during the preparation of this paper.

2. Elliptic quotients of C
n

As discussed in Section 1, while it is known that elliptic manifolds are Oka, and that Stein
Oka manifolds are elliptic, it remains an open question whether Oka manifolds are elliptic
in general. This appears to be a difficult problem as there is no known way to construct
a holomorphic vector bundle with dominating spray over an arbitrary Oka manifold.

In this section we restrict ourselves to considering quotient manifolds M = Cn/Γ of
Euclidean space Cn, where Γ ⊂ Aut(Cn) is a discrete group of holomorphic automorphisms
of Cn acting freely and properly discontinuously on Cn. The property of being Oka passes
down from Cn through the covering map [3, Cor. 3.7], makingM an Oka manifold. On the
other hand, even though Cn is elliptic, no general method is known for pushing ellipticity
down to M via the covering map. However, in the special case when Γ is a group of affine
automorphisms of Cn we can show that M is elliptic.

Theorem 1. Let Γ ⊂ Aut(Cn) be a discrete group of affine automorphisms of Cn acting

freely and properly discontinuously on Cn. Then the quotient manifold M = Cn/Γ is

elliptic.

As it is not clear in general whether the quotient M in Theorem 1 is Stein, we give a
direct proof of ellipticity. In the interest of obtaining a more general result which may be of
future relevance we first develop a sufficient condition for an arbitrary quotient manifold
of the form Cn/Γ to be elliptic. To this end, let Γ ⊂ Aut(Cn) be any discrete group
of automorphisms of Cn acting freely and properly discontinuously on Cn. The quotient
M = Cn/Γ is then a complex n-manifold with holomorphic covering map π : Cn →M . We
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wish to construct a holomorphic vector bundle of rank n overM as a quotient (Cn×Cn)/Γ
of the trivial vector bundle Cn ×Cn over the universal cover Cn. To do so we will extend
the action of Γ to Cn ×Cn by identifying copies of the vector bundle fibre Cn over points
in the same fibre of π in such a way that we can produce from π a well-defined dominating
spray (Cn × Cn)/Γ → M .

Suppose we are given a holomorphic map σ : Cn × C
n → C

n with the property that
for each z ∈ Cn the map σz = σ(z, ·) : Cn → Cn is an automorphism of Cn satisfying
σz(0) = z. Then for each z ∈ Cn the composition π◦σz : C

n →M satisfies π◦σz(0) = π(z)
and is a submersion at 0 ∈ Cn. We wish to construct an appropriate vector bundle E →M
as a quotient of the trivial bundle Cn ×Cn on which π ◦ σ is well-defined and then gives a
dominating spray onto M . To achieve this, suppose z, z′ ∈ Cn are such that π(z) = π(z′),
so that z′ = γ(z) for some γ ∈ Γ. The fibres over z and z′ must then be identified so that
the following diagram commutes:

{z} × Cn

π◦σz

!!
CC

CC
CC

CC
CC

C

λγ
// {z′} × Cn

π◦σ
z′

}}zz
zz

zz
zz

zz
zz

M

where λ : Γ → GL(n,C) is a homomorphism. For this diagram to commute we require
π ◦ σz = π ◦ σz′ ◦ λγ, which is equivalent to

σz′ ◦ λγ ◦ σ
−1
z ∈ Γ .

However, the composition σz′ ◦ λγ ◦ σ
−1
z maps z to z′, so by the freeness of the action of Γ

we must have

σz′ ◦ λγ ◦ σ
−1
z = γ .

From this discussion we see that, given σ : Cn × Cn → Cn and λ : Γ → GL(n,C) as
above, we may extend the action of Γ to Cn × Cn by the formula

γ · (z, w) = (γ(z), λγw) ,

where γ ∈ Γ and (z, w) ∈ Cn ×Cn. The quotient E = (Cn ×Cn)/Γ is then a holomorphic
vector bundle over M . Note that E is flat because λ depends only on γ ∈ Γ, so that the
transition functions for E are locally constant. By construction, the map π◦σ descends to
the quotient E and gives a dominating spray E → M . Thus M is elliptic. We summarise
this discussion by the following result.

Proposition 1. Let Γ ⊂ Aut(Cn) be a discrete group of automorphisms acting freely and

properly discontinuously on Cn. Suppose σ : Cn × Cn → Cn is a holomorphic map such

that for each z ∈ Cn we have σz = σ(z, ·) ∈ Aut(Cn) and σz(0) = z, and λ : Γ → GL(n,C)
is a homomorphism. If for all z ∈ C

n and all γ ∈ Γ we have σγ(z) ◦ λγ ◦ σ
−1
z = γ, then

C
n/Γ is an elliptic manifold.

We may now prove Theorem 1.

Proof of Theorem 1. Let Γ ⊂ Aff(Cn) be a discrete group of affine automorphisms of Cn.
For γ ∈ Γ we define λγ = A, where γ(z) = Az + b, A ∈ GL(n,C) and b ∈ Cn. Let
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σz(w) = z + w. We see that λ and σ satisfy the conditions of Proposition 1 by the
following elementary calculation

σγ(z) ◦ λγ ◦ σ
−1
z (w) = σγ(z) ◦ λγ(−z + w) = σγ(z)(−Az + Aw)

= −Az + Aw + Az + b = γ(w) .

Therefore M = Cn/Γ is elliptic. �

Note that in the proof of Theorem 1, the homomorphism λ : Γ → GL(n,C) is actually
the derivative of the affine coordinate change maps for M , showing that E is isomorphic
to TM , the holomorphic tangent bundle of M .

3. New examples of elliptic manifolds

In this section we apply the results of Section 2 in conjunction with an example of Margulis
to construct a new example of an elliptic manifold M with π1(M) ∼= F2, the free group of
rank two, with all higher homotopy groups trivial. By taking products and intermediate
covering spaces we obtain a range of other elliptic manifolds with various fundamental
groups and vanishing higher homotopy. In particular, given any k ∈ N∪ {ℵ0} there exists
an elliptic manifold that is an Eilenberg-MacLane space of type K(Fk, 1).

In [11, 12] Margulis gave an example of a group Γ ∼= F2 acting freely and properly
discontinuously on R3 by affine transformations, providing a counterexample to the con-
jecture of Milnor that the fundamental group of a complete flat affine manifold is virtually
polycyclic [13]. In the example the group Γ consists of affine maps each of whose linear part
is a hyperbolic element of the group SO0(2, 1), the connected component of the identity in
SO(2, 1). As a result, the quotient manifold L = R3/Γ is a complete flat affine Lorentzian
manifold with π1(L) ∼= F2 and πn(L) = 0 for n > 1. By the Auslander conjecture in three
dimensions [4], L is non-compact.

We now consider the same group Γ of affine transformations as automorphisms of C3

in the obvious way, namely

γ(z) = Az + b , z ∈ C
3 ,

where the action of γ ∈ Γ on R
3 is given by γ(x) = Ax + b for x ∈ R

3, A ∈ SO0(2, 1)
and b ∈ R

3. It is easy to check that the action of Γ on C
3 remains free and properly

discontinuous. We thus obtain a non-compact complex quotient manifoldM = C3/Γ with
π1(M) ∼= F2 and πn(M) = 0 for n > 1. By Theorem 1, M is elliptic.

We mention that given a smooth affine manifold Y , there is a natural way to define a
complex structure on the tangent bundle TY so that Y , embedded as the zero-section, is
a maximal totally real submanifold of TY [16]. In this situation TY is commonly called a
complexification of Y . Applying the construction in [16] to L gives a complex manifold TL
that is naturally biholomorphic toM , and the biholomorphism restricts to the identity on
L under the natural inclusions of L into TL and M respectively. By a result of Grauert
[6] there exists a neighbourhood of L within M that is a Stein manifold, but it is not clear
to me whether in fact M itself is Stein, or if there is some other factor which limits the
size of Stein neighbourhoods of L within M .

By applying some basic properties of ellipticity we obtain a variety of new elliptic
manifolds.
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Theorem 2. For all k ∈ N ∪ {ℵ0} there exists a 3-dimensional elliptic manifold S with

π1(S) ∼= Fk and πn(S) = 0 for all n > 1.

Proof. Given k as above, let Γ′ ⊂ Γ ∼= F2 be a subgroup isomorphic to Fk. Let S = C3/Γ′,
then S is a covering space ofM . Using the fact that ellipticity passes up through covering
maps [3, Sec. 5] immediately yields the theorem. �

If we also use the fact that products of elliptic manifolds are elliptic, we obtain a larger
collection of new elliptic manifolds as follows. Let C be the smallest collection of groups
that contains F2 and that is closed under the operations of taking subgroups and finite
direct products of its members. Then for every G ∈ C there exists an elliptic manifold
S with π1(S) ∼= G and vanishing higher homotopy groups. A result of Baumslag and
Roseblade [1] on subgroups of F2 × F2 then gives the following result.

Corollary 1. There exist continuum-many 6-dimensional elliptic manifolds of distinct

homotopy type, in fact with mutually non-isomorphic fundamental groups and vanishing

higher homotopy.

We mention however, the result in the same paper that any finitely presented subgroup
of the direct product of two free groups is a finite extension of a direct product of two free
groups of finite rank.

We note that if it can be shown that M is Stein then it would follow that all of the
other elliptic manifolds discussed in this section are also Stein, since products of Stein
manifolds are Stein and the property of being Stein passes up via covering maps.

4. Acyclic embeddings of open Riemann surfaces

In this section we address a question which arises naturally in the holomorphic homotopy
theory of Lárusson [8, 9, 10], namely whether every Stein manifold can be acyclically
embedded into an elliptic Stein manifold. We will take all embeddings to be both proper
and holomorphic. This question appears very difficult to answer in general, so we restrict
ourselves to considering acyclic embeddings of 1-dimensional Stein manifolds, namely open
Riemann surfaces.

In [15] it was shown that all open Riemann surfaces with abelian fundamental group
acyclically embed into a 2-dimensional elliptic Stein manifold (either C2 or C×C∗ depend-
ing on the homotopy type of the Riemann surface). In this section we extend this result
to show that every open Riemann surface embeds acyclically into an elliptic manifold.
Unfortunately we have not been able to determine so far whether the elliptic targets are
Stein. We begin with the following lemma.

Lemma 1. Let f : X → S × Z be a continuous map where X is a Stein manifold, S
is an elliptic manifold and Z is a contractible complex manifold. If X has an embedding

φ : X → Z then f is homotopic to an embedding f̃ : X → S × Z.

Proof. Let πS : S × Z → S and πZ : S × Z → Z be projections onto the first and second
components of S × Z respectively. By Gromov’s Oka principle [7], the continuous map
πS ◦f : X → S is homotopic to a holomorphic map ψ : X → S. Since Z is contractible, the
maps πZ ◦ f : X → Z and φ : X → Z are homotopic. Consequently, f = (πS ◦ f, πZ ◦ f)
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is homotopic to the map f̃ = (ψ, φ), which is an embedding since φ : X → Z is an
embedding. �

Using this lemma and the elliptic manifolds from Theorem 2 we may prove our main
result.

Theorem 3. Let X be an open Riemann surface. Then X can be acyclically embedded

into an elliptic manifold.

Proof. It is well known that the fundamental group of an open Riemann surface X is
isomorphic to a free group of rank k for some k ∈ N ∪ {ℵ0}. Using Theorem 2 we let S
be an elliptic manifold with π1(S) ∼= Fk, and vanishing higher homotopy groups. Since X
and S are both Eilenberg-MacLane spaces of type K(Fk, 1), there exists a continuous map
g : X → S which induces the identity homomorphism between the fundamental groups of
the two spaces and is thus acyclic [2, Thm. 7.26].

As X is a 1-dimensional Stein manifold there exists an embedding X → C3. By Lemma
1, the map f = (g, 0) : X → S × C3 is then homotopic to an embedding f̃ : X → S × C3.

Since g is acyclic, so too is f̃ and the theorem is proved. �

In the above proof, if it could be shown that S is Stein then we would have the stronger
result that every 1-dimensional Stein manifold can be acyclically embedded into an elliptic
Stein manifold. As mentioned earlier, this was proved in [15] for Riemann surfaces with
abelian fundamental group. However, in that paper the target space was 2-dimensional,
while in the current paper our targets have dimension 6. It is interesting to ask whether the
dimension of our target could be reduced, but it is not clear how this might be achieved.
In the current situation we could at best hope to reduce the target dimension to 3, if it
were possible to acyclically embed directly into the elliptic manifold S.
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