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CALABI-YAU PROBLEM FOR LEGENDRIAN CURVES IN C3

AND APPLICATIONS

FRANCISCO MARTÍN, MASAAKI UMEHARA, AND KOTARO YAMADA

Abstract. We construct a complete, bounded Legendrian immersion in C3.
As direct applications of it, we show the first examples of a weakly complete
bounded flat front in hyperbolic 3-space, a weakly complete bounded flat front
in de Sitter 3-space, and a weakly complete bounded improper affine front in
R3.

1. Introduction

In a series of previous papers, the authors have constructed the first examples
of complete bounded null holomorphic immersion

ν : D1 −→ C
3

of the unit disc D1 ⊂ C, where null means that νz · νz vanishes identically, here
νz := dν/dz is the derivative of ν with respect to the complex coordinate z of D1

and the dot denotes the canonical complex bilinear form. The existence of such an
immersion has important consequences. Actually, as a short and direct application
of the main result in [14], by using different kinds of transformations, the following
objects were constructed:

(1) complete bounded minimal surfaces in the Euclidean 3-space R3 ([14, The-
orem A]),

(2) complete bounded holomorphic curves in C2 ([14, Corollary B]).
(3) weakly complete bounded maximal surfaces in the Lorentz-Minkowski 3-

space R3
1 ([14, Corollary D]),

(4) complete bounded constant mean curvature one surfaces in the hyperbolic
3-space H3 ([14, Theorem C]).

Moreover, we constructed higher genus examples of the first three objects in [15].
Recently, Alarcón and López [1] have constructed a complete bounded null proper
holomorphic immersion of a given Riemann surface of an arbitrary topology into a
convex domain in C3 (see also [2]). Their method is different from ours.

It is known that null curves in C3 are closely related to Legendrian curves in
C

3 (cf. Bryant [4] and also Ejiri-Takahashi [5] for the corresponding SL(2,C)-case).
In this paper, we use the techniques develop by the authors in [14] to produce a
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complete bounded Legendrian holomorphic immersion

F : D1 −→ C
3.

Recall that F is called Legendrian if the pull-back of the canonical contact form

(1.1) ΩC := dx3 + x2dx1

by F vanishes, where (x1, x2, x3) is the canonical complex coordinate system of
C3. The existence of such an F is non-trivial, since the correspondences between
null curves and Legendrian curves given in [4] and [5] seem not to preserve neither
boundedness nor completeness. Also, the authors do not know whether the method
in [1] can be applied for Legendrian holomorphic immersions by using a suitable
modification or not.

As applications, we are able to construct the following new examples:

(1) a weakly complete bounded flat front in H3 (Theorem 4.1),
(2) a weakly complete bounded flat front in the de Sitter 3-space S3

1 (Theo-
rem 4.2),

(3) a weakly complete bounded improper affine front in R3 (Theorem 4.3).

It should be remarked that there are no compact flat fronts in H3 and S3
1 (resp.

improper affine fronts in R3). See Remark 4.4. A holomorphic map E : D1 →
SL(2,C) is called Legendrian if the pull-back E∗ΩSL vanishes on D1, where ΩSL is
the complex contact form on SL(2,C) defined as

(1.2) ΩSL := x11dx22 − x12dx21.
Here, elements in SL(2,C) are represented by matrices (xij)i,j=1,2. A holomorphic
immersion E : D1 → SL(2,C) is said to be complete if the pull-back metric E∗gSL
of the canonical Hermitian metric gSL on SL(2,C) is complete, see (2.2).

To construct the bounded holomorphic immersion F : D1 → C3, we show the
following

Main Theorem. There exists a complete holomorphic Legendrian immersion of

the unit disk D1 ⊂ C into SL(2,C) such that its image is contained an arbitrary

bounded domain in SL(2,C).

By Darboux’s theorem, the contact structure of SL(2,C) is locally Legendrian
equivalent to that of C3. Moreover, the following explicit transformation

F : C3 ∋ (x, y, z) 7−→
(
e−z xe−z

yez ez(1 + xy)

)
∈ SL(2,C)

maps holomorphic contact curves in C3 to those in SL(2,C). Then if one take a
complete Legendrian immersion of D1 into SL(2,C) with sufficiently small image in
SL(2,C), a Legendrian immersion into C3 is obtained. Completeness follows from
the same argument as [14, Lemma 3.1]. In fact, since the image is bounded, the
metrics induced from SL(2,C) and C3 are equivalent.

The paper is organized as follows: In Section 2, we establish our formulations
and state the key-lemma to prove the main theorem, which is proved in Section
3. In Section 4, we give the applications as above. In the appendix, we prepare a
Runge-type theorem for Legendrian curves in SL(2,C) which is needed in Section 3.

Finally, we mention the corresponding real problem, that is, the existence of
complete bounded Legendrian submanifolds immersed in R2n+1. When n = 1,
there exists a closed Legendrian curve immersed in an arbitrarily given open subset
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in R3: In fact, in [9, Section 2], it is shown the existence of a Legendrian curve
contained in an arbitrary given open ball of P 3 = T1S

2 (i.e. the unit cotangent
bundle of 2-sphere) as a lift of an eye-figure curve. Since any contact structure is
locally rigid, it gives an existence of a closed Legendrian curve immersed in any
ball of R3. Also, as an application of our construction, we can construct a complete
bounded Legendrian immersion L : D1 → B(⊂ R5): There exists a canonical
projection (cf. [11, Page 159])

π : SL(2,C) −→ T ∗
1H

3,

where T ∗
1H

3 is a unit cotangent bundle of the hyperbolic 3-space H3. Then the
projection of our complete bounded holomorphic Legendrian curve gives a complete
bounded Legendrian submanifold immersed in an arbitrarily given open subset of
T ∗
1H

3. By Darboux’s rigidity theorem, this implies the existence of a complete
Legendrian immersion L : D1 → B, where B is an arbitrary ball in R5.

2. The Main Lemma

In this section, we state the main lemma, which is an analogue of [14, Main
Lemma in page 121]. The main theorem in the introduction can be obtained as a
direct conclusion of the main lemma in the same way as in [14].

2.1. Preliminaries. We denote i =
√
−1 and

Dr := {z ∈ C ; |z| < r}, Dr := Dr := {z ∈ C ; |z| ≤ r}

for a positive number r. Throughout this paper, the prime ′ means the derivative
with respect to the complex coordinate z on C.

Proposition 2.1. A holomorphic immersion X : D1 → SL(2,C) is Legendrian if

and only if X−1X ′ is anti-diagonal;

(2.1) ψX dz := X−1dX =

(
0 θ
ω 0

)
=

1√
2

(
0 ϕ1 + iϕ2

ϕ1 − iϕ2 0

)
dz,

where ϕ1 and ϕ2 are holomorphic functions on D1. The metric induced by X from

the canonical Hermitian metric gSL of SL(2,C) is represented as

(2.2) ds2X := |ω|2 + |θ|2 =
(
|ϕ1|2 + |ϕ2|2

)
|dz|2.

In particular, ϕ1 and ϕ2 have no common zeros on Dr.

The holomorphic 1-forms ω and θ in (2.1) are called the canonical one forms for
the flat front corresponding to X , see [12].

Definition 2.2. A pair of holomorphic functions ϕ = (ϕ1, ϕ2) on D1 is called non-

degenerate if ϕ1 and ϕ2 have no common zeroes. The pair (ϕ1, ϕ2) given by (2.1)
is called the holomorphic data of X . The matrix valued function

(2.3) Mϕ :=
1√
2

(
0 ϕ1 + iϕ2

ϕ1 − iϕ2 0

)

is called the matrix form of the pair ϕ.
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2.2. The Main Lemma. To state the lemma, we define the matrix norm |A| of a
2× 2-matrix A as

(2.4) |A| :=
√
trace(AA∗) =

√ ∑

i,j=1,2

|Aij |2
(
A = (Aij)i,j=1,2

)
.

Note that if A ∈ SL(2,C), then |A| ≥
√
2 holds. The equality holds if and only if

A is the identity matrix.
For a vector v = (v1, v2) ∈ C2, we set |v| =

√
|v1|2 + |v2|2.

Main Lemma. Let X : D1 → SL(2,C) be a holomorphic Legendrian immersion

X : D1 → SL(2,C) satisfies the following properties:

(1) X(0) = id, where id is the identity matrix.

(2) D1 contains the geodesic disc of radius ρ centered at the origin with respect

to the induced metric ds2X .

(3) There exists a number τ >
√
2 such that |X | ≤ τ holds on D1.

Then, for any positive numbers ε and s, there exists a holomorphic Legendrian

immersion Y : D1 → SL(2,C) such that

(i) Y (0) = id,
(ii) D1 contains the geodesic disc of radius ρ + s centered at the origin with

respect to the induced metric ds2Y ,

(iii) |Y | ≤ τ
√
1 + 32s2 + ε in D1,

(iv) |Y −X | < ε and |ϕY − ϕX | < ε in D1−ε, where ϕX and ϕY denote holo-

morphic data of X and Y , respectively.

The main theorem in the introduction is obtained by the same argument as [14,
Section 3.4]).

2.3. Key Lemma. Now we state the key lemma, as an analogue of [14, Key Lemma
in page 129]. The main lemma in the previous subsection can be obtained directly
form the key lemma.

We work on the Nadirashvili’s labyrinth [17]. Let us give a brief description of this
labyrinth: Let N be a (sufficiently large) positive number. For k = 0, 1, 2, . . . , 2N2,
we set

(2.5) rk = 1− k

N3

(
r0 = 1, r1 = 1− 1

N3
, . . . , r2N2 = 1− 2

N

)
,

and let

(2.6) Drk = {z ∈ C ; |z| < rk} and Srk = ∂Drk = {z ∈ C ; |z| = rk}.
We define an annular domain A as

(2.7) A := D1 \ Dr2N2 = D1 \ D1− 2
N
,

and

A :=

N2
−1⋃

k=0

Dr2k \ Dr2k+1
, Ã :=

N2
−1⋃

k=0

Dr2k+1
\ Dr2k+2

,

L =
N−1⋃

k=0

l 2kπ
N
, L̃ =

N−1⋃

k=0

l (2k+1)π
N

,
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where lθ is the ray lθ = {reiθ ; r ≥ 0}. Let Σ be a compact set defined as

Σ := L ∪ L̃ ∪ S, S =

2N2⋃

j=0

∂Drj =

2N2⋃

j=0

Srj ,

and define a compact set Ω by

Ω = A \ U1/(4N3)(Σ),

where Uε(Σ) denotes the ε-neighborhood (of the Euclidean plane R
2 = C) of

Σ. Each connected component of Ω has width 1/(2N3). For each number j =
1, . . . , 2N , we set

ωj :=
(
l jπ

N
∩ A

)
∪
(
connected components of Ω which intersect with l jπ

N

)
,

̟j := U1/(4N3)(ωj).

Then ωj ’s are compact sets.

Key Lemma. Assume that a holomorphic Legendrian immersion L = L0 : D1 →
SL(2,C) satisfies:

(A-1) L(0) = id,
(A-2) D1 contains the geodesic disc of radius ρ centered at the origin with respect

to the metric ds2
L
.

Then for any positive number ε and positive number s ∈ (0, 1/3), there exists a

sufficiently large integer N and a sequence of holomorphic Legendrian immersions

L0 = L, L1, . . . , L2N of D1 such that

(C-1) Lj(0) = id (j = 0, . . . , 2N),
(C-2) for each j = 1, . . . , 2N , |ϕj − ϕj−1| < ε/(2N2) holds on D1 \̟j, where ϕj

is the non-degenerate holomorphic data of Lj ,
(C-3) for each j = 1, . . . , 2N ,

|ϕj | ≥
{
cN3.5 on ωj

cN−0.5 on ̟j

holds, where c is a positive constant depending only on L = L0,
(C-4) D1 contains the geodesic disc of radius ρ + s centered at the origin with

respect to the metric ds2
L2N

,

(C-5) on Dg as in (C-4), it holds that

|L2N | ≤
(
max
D1

|L0|
)√

1 + 32s2 + (b/
√
N),

where b is a positive constant depending only on L = L0.
The proof is given in Section 3.

3. Proof of the Key Lemma

3.1. Flat fronts in hyperbolic 3-space. We denote by H3 the hyperbolic 3-
space, that is, the connected and simply connected 3-dimensional space form of
constant sectional curvature −1, which is represented as

H3 = SL(2,C)/ SU(2) = {aa∗ ; a ∈ SL(2,C)}(3.1)

= {X ∈ Herm(2) ; detX = 1, traceX > 0}, (a∗ = tā).
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where Herm(2) is the set of 2 × 2 Hermitian matrices. Identifying Herm(2) with
the Lorentz-Minkowski 4-space R4

1 as

(3.2) Herm(2) ∋
(
x0 + x3 x1 + ix2
x1 − ix2 x0 − x3

)
←→ (x0, x1, x2, x3) ∈ R

4
1,

the hyperbolic space H3 can be considered as the connected component of the
two-sheeted hyperboloid

{(x0, x1, x2, x3) ∈ R
4
1 ; −(x0)2 + (x1)

2 + (x2)
2 + (x3)

2, x0 > 0}.
A Legendrian immersion L : D1 → SL(2,C) induces a flat front

l = LL∗ : D1 −→ H3.

Here flat fronts in H3 are flat surfaces with certain kind of singularities, see Sec-
tion 4.1. The pull-back of the metric of H3 by l is computed as

(3.3) ds2l := |ω|2 + |θ|2 + ωθ + ω̄θ̄ = |ω + θ̄|2
(
L−1dL =

(
0 θ
ω 0

))
,

which is positive semi-definite and may degenerate. On the other hand, let ds2
L
be

the pull-back of the canonical Hermitian metric of SL(2,C) by L. Then by (2.2),
we have

ds2L −
1

2
ds2l =

1

2

(
|ω|2 + |θ|2 − ωθ − ω̄θ̄

)
=

1

2
|ω − θ̄|2 ≥ 0,

and hence

(3.4) ds2l ≤ 2ds2L

holds. For any path γ in D1 joining x and y ∈ D1, it holds that

(3.5) Lengthds2
l
γ :=

∫

γ

dsl ≥ distH3

(
l(x), l(y)

)
,

where distH3 denotes the distance in the hyperbolic 3-space. On the other hand,

(3.6) 2 coshdistH3

(
o, l(x)

)
= |L(x)|2

holds (see [14, Lemma A.2]), where we set

o := id =

(
1 0
0 1

)
,

namely o is the point on H3 which corresponds to the origin of the Poincaré ball
model.

3.2. Inductive construction of Lj’s. In this section, we describe the recipe to
construct a sequence L0, L1, . . . , L2N in Key Lemma. Assume L0, . . . , Lj−1 are
already obtained, and we shall now construct Lj as follows: Let

(3.7) ζj :=

(
1− 2

N
− 4

N3

)
eiπj/N

be the base point of the compact set ωj given in [14, Fig. 1]. We set

E0(z) := Lj−1(ζj)
−1 Lj−1(z), f0(z) := E0(z)E

∗
0 (z).

That is, E0 is the Legendrian immersion with the same holomorphic data as Lj−1

such that E0(ζj) = id, and f0 the corresponding flat front. Here, if we write

(3.8) f0(0) =

(
ξ0 + ξ3 ξ1 + iξ2
ξ1 − iξ2 ξ0 − ξ3

)
∈ H3,
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then there exist real numbers t and ξ̂1 such that

(3.9) af0(0)a
∗ =

(
ξ0 + ξ3 ξ̂1
ξ̂1 ξ0 − ξ3

)
∈ H3

(
a =

(
eit 0
0 e−it

)
∈ SL(2,C)

)
.

We now set

(3.10) E := aE0a
∗, ψ := E−1E′.

Then it holds that

ψ = a∗ψj−1a (ψj−1 := L−1
j−1L′j−1).

Let ϕ = (ϕ1, ϕ2) be the holomorphic data induced from E such that ψ = Mϕ (see
(2.3)). Applying Lemma A.1 in the appendix to this ϕ, we get a new holomorphic

data ϕ̃. Take Ẽ such that

(3.11) Ẽ−1Ẽ′ = ψ̃, Ẽ(ζj) = id (ψ̃ =Mϕ̃).

Finally, we set

(3.12) Lj := a∗{Ẽ(0)}−1Ẽa,

which gives the desired Legendrian immersion.

3.3. Estimation of interior distance. Applying the inductive constriction, we
get a sequence of Legendrian immersion L1, · · · ,L2N . Then one can prove (C-1),
(C-2), (C-3) and (C-4) by the exactly same argument as in [14, Page 129]. In fact,
although the data ϕ (a pair of holomorphic functions) is different from that in [14]
(a triple of holomorphic functions), the proof of the key lemma (as in [14, Page
129]) only needs the norm |ϕ| of the data ϕ. In [14], we were working on the metric
ds2

Bj
= |ψj |2 dz dz̄. In this paper, we now use the metric ds2

Lj
= |ψj |2 dz dz̄, where

ψj is given in (3.10). If one replaces |ψj | in [14] by this new |ψj | as above, then the
completely same argument as [14] works in our case.

3.4. Extrinsic distance. Thus, the only remaining assertion we should prove is
(C-5) of Key Lemma. We shall now prove it: By (C-4), (D1, ds

2
L2N

) contains a

geodesic disc Dg centered at origin with radius ρ+ s. By the maximum principle,
it is sufficient to show that for each p ∈ ∂Dg, it holds that

(3.13) |L2N (p)| ≤
(
max
D1

|L0|
)√

1 + 32s2 + (b/
√
N) (p ∈ ∂Dg),

where b is a positive constant depending only on the initial immersion L0.
If p ∈ ∂Dg is not in ̟1 ∪ · · · ∪ ̟2N , the same argument as [14, Page 129]

implies the conclusion. So, it is sufficient to consider the case that there exists
j ∈ {1, ..., 2N} such that

(3.14) p ∈ ∂Dg ∩̟j .

We fix such a p. From now on, the symbols ck (k = 1, 2, . . . ) denote suitable positive

constants, which depend only on the initial data L = L0.
Like as in the proof of the inequality [14, (4.8)], we can apply [14, Corollary A.6]

for X := Lj and Y := Lj−1. Then we have

(3.15) distH3

(
lj(z), lj−1(z)

)
≤ c1ε

2N2
(on D1 \̟j),
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where lj := LjL∗j and lj−1 := Lj−1L∗j−1. Taking (3.15) into account, inequality

(3.13) reduces to the following inequality

(3.16) |Lj(p)| ≤
(
max
D1

|L0|
)√

1 + 32s2 + (c2/
√
N) (p ∈ ∂Dg ∩̟j).

Take the ds2
L2N

-geodesic γ0 joining p and the origin 0 ∈ D1 and denote by p̂ the
first point on γ0 which meets ∂̟j . Then we have

(3.17) distds2
L2N

(p̂, p) ≤ s+ c3√
N
.

In fact, let γ1 (resp. γ2) be the subarc of γ0 which joins 0 and p̂ (resp. p̂ and p).
Since γ0 is the geodesic and Dg is the disc with radius ρ+ s, (C-2) and (C-3) yields
that

ρ+ s =

∫

γ0

dsL2N =

∫

γ0

|ϕ2N | |dz| ≥
c4√
N
Lγ0 ,

where Lγ0 is the length of γ0 with respect to the Euclidean metric of C. Thus, we

have Lγ0 ≤ c6
√
N(ρ + s). On the other hand, let σ be the shortest line segment

on C joining p̂ and ∂D1. Then the Euclidean length Lσ of σ satisfies Lσ ≤ c7/N .
Thus, by (A-2), we have

ρ+ s =

∫

γ0

|ϕ2N | |dz| ≥
∫

γ1

|ϕ0| |dz| −
∫

γ1

|ϕ2N − ϕ0| |dz|+
∫

γ2

|ϕ2N | |dz|

≥
∫

γ1∪σ

|ϕ0| |dz| −
∫

σ

|ϕ0| |dz| − Lγ0

ε

N
+ distds2L2N

(p̂, p)

≥ ρ− c3√
N

+ distds2L2N
(p̂, p)

which implies (3.17).
Moreover, since ζj and p̂ can be joined by a path γ on D1 \ (̟1 ∪ · · · ∪ ̟2N )

whose Euclidean length is not greater than c8/N (see [14, Fig. 1]), we have

(3.18) distds2
L2N

(ζj , p) ≤ s+
c9√
N

(see [14, (4.9)]).

Lemma 3.1. In the above setting, the following inequalities hold:

|Lj−1(ζj)|2 ≤
(
max
z∈D1

|L0(z)|2
)(

1 +
c10
N

)
,(3.19)

distH3

(
lj−1(ζj), lj(ζj)

)
≤ c11
N2

.(3.20)

Proof. The first inequality holds because

|Lj−1(ζj)|2 = 2 cosh
(
distH3 (o, lj−1(ζj)

)
≤ 2 cosh

(
distH3

(
o, l0(ζj)

)
+
c12
N

)
,

see (3.6). The second inequality directly follows from (3.15). �

Now, recall the procedure constructing Lj from Lj−1: Two Legendrian immer-

sions E, Ẽ in (3.10) and (3.11) are congruent to Lj−1, Lj , respectively, and satisfy

E(ζj) = Ẽ(ζj) = id. Take flat fronts f := EE∗ and f̃ = ẼẼ∗ associated to E and
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Ẽ, respectively. By a choice of the matrix a in (3.9), the points f(ζj) = o(= id)
and f(0) lie on the “x1x3-plane” Π, i.e.

Π :=

{(
x0 + x3 x1
x1 x0 − x3

)
∈ H3 ; x0, x1, x3 ∈ R

}
.

Let Λ be the geodesic of H3 passing through the origin o (= id) and perpendicular

to Π (i.e., the x2-axis), and let q be the foot of the perpendicular from f̃(p) to the
line Λ.

Lemma 3.2. In the above circumstances, one has:

distH3

(
o, q

)
≤ 2s+

c13√
N
.

Proof. The triangle △oqf̃(p) is a right triangle such that the angle q is the right
angle. Then by (3.20), (3.18) and (3.4), we have

distH3

(
o, q

)
≤ distH3

(
o, f̃(p)

)
= distH3

(
lj−1(ζj), lj(p)

)

≤ distH3

(
lj−1(ζj), lj(ζj)

)
+ distH3

(
lj(ζj), lj(p)

)
≤ c11

N
+ distds2

lj

(ζj , p)

≤ c11
N

+ 2distds2
Lj

(ζj , p) ≤
c14
N

+ 2distds2
L2N

(ζj , p)

≤ c15
N

+ 2

(
s+

c8√
N

)
≤ 2s+

c13√
N
.

Thus we have the conclusion. �

Lemma 3.3. Under the hypotheses above, one has:

distH3

(
q, f̃(p)

)
≤ 14s2 +

c10√
N
.

Proof. Let ϕ = (ϕ1, ϕ2) and ϕ̃ = (ϕ̃1, ϕ̃2) be the holomorphic data of the Legen-

drian immersions E and Ẽ, respectively, that is,

ψ := E−1E′ =
1√
2

(
0 ϕ1 + iϕ2

ϕ1 − iϕ2 0

)
=Mϕ,

ψ̃ := Ẽ−1Ẽ =
1√
2

(
0 ϕ̃1 + iϕ̃2

ϕ̃1 − iϕ̃2 0

)
=Mϕ̃

hold. Set

F (z) :=

∫ z

ζj

ψ(z) dz, and F̃ (z) :=

∫ z

ζj

ψ̃(z) dz.

We define two values ∆ and ∆̃ by

E(p) = id+F (p) + ∆, Ẽ(p) = id+F̃ (p) + ∆̃.

Since E(ζj) = Ẽ(ζj) = id, [14, Appendix A.4] yields that

|∆| ≤
[(
max
γ
|E|

) ∫

γ

|ψ| |dz|
]2
, |∆̃| ≤

[(
max
γ
|Ẽ|

) ∫

γ

|ψ̃| |dz|
]2
.

Here γ is a path joining ζj and p as in [14, Fig. 1]. This argument is completely
parallel to that in [14, Page 132]. Since the Euclidean length of γ in D1 is bounded
by c17/N , we have

|F (p)| ≤
∫

γ

|ψ| |dz| ≤ c18
N
.
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On the other hand, let γ̃ be the ds2
Lj
-geodesic joining ζj and p. Then noticing that

ds2
Lj

= ds2
Ẽ
, (3.18) implies that

|F̃ (p)| ≤
∫

γ

|ψ̃| |dz| =
∫

γ

dsF̃ ≤ s+
c19√
N
.

On the other hand, since

max
γ
|E|2 = max

γ

{
2 coshdistH3

(
o, f(z)

)}

= max
γ

{
2 coshdistH3

(
lj−1(ζj), lj−1(z)

)}
≤ 2 cosh

c20
N
≤ 2

(
1 +

c21
N

)
,

max
γ
|Ẽ|2 ≤ 2 coshdistH3

(
o, f̃(p)

)
= 2 coshdistH3

(
lj−1(ζj), lj(p)

)

≤ 2 cosh{distH3

(
lj−1(ζj), lj(ζj)

)
+ distH3

(
lj−1(ζj), lj(p)

)
}

≤ 2 cosh

(
2s+

c22√
N

)
≤ 2

(
1 + 4s2 +

c23√
N

)
,

we have

|∆| ≤ c24
N
, |∆̃| ≤ 4s2 +

c25√
N
,

whenever s < 1/3. Now, we set
(
x0 + x3 x1 + ix2
x1 − ix2 x0 − x3

)
: = f̃(p) = (id+F̃ + ∆̃)(id+F̃ ∗ + ∆̃∗)

= id+F̃ + F̃ ∗ − F − F ∗ + δ.

Then, reasoning as in [14, Page 133], we have

|δ| = |F + F ∗ + F̃ F̃ ∗ +∆+ ∆̃ + ∆̃F̃ ∗ + F̃ ∆̃∗ + ∆̃∆̃∗| < 14s2 +
c26√
N
.

Moreover, if we define

h(z) := F (z) + F ∗(z) =
√
2

∫ z

ζj

(
0 Reϕ1 + iReϕ2

Reϕ1 − i Reϕ2 0

)
,

h̃(z) := F̃ (z) + F̃ ∗(z) =
√
2

∫ z

ζj

(
0 Re ϕ̃1 + iRe ϕ̃2

Re ϕ̃1 − i Re ϕ̃2 0

)
,

the x3-component of h̃− h vanishes, and the x1-component is

√
2

∫
Re(ϕ̃1 − ϕ1) = |h̃(z)− h(z)|

u2
u1
≤

(
s+

c27√
N

)
u2
u1
≤ c28

N
,

because of the property of u in Lemma A.1. Thus, we have

|x1| ≤ 14s2 +
c29√
N
, |x3| ≤ 14s2 +

c30√
N
.

Since distH3

(
f̃(p), q

)
is the distance between f̃(p) and x2-axis, we have

distH3

(
f̃(p), q

)
= sinh−1

√
x21 + x23 ≤ 14s2 +

c16√
N
,

which proves the conclusion. �
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3.5. Proof of Key Lemma. Note that for any positive numbers x and y, it holds
that

(3.21) cosh(x+ y) = coshx cosh y + sinhx sinh y

≤ coshx(cosh y + sinh y) = ey coshx.

By (3.15), we have

(3.22) distH3

(
o, lj−1(ζj)

)
≤ distH3

(
o, l0(ζj)

)
+
c31
N2

.

Under the situation here, f(ζj) and o(= id) lie on the x1x3-plane, and q is on
the x2-axis, the geodesic triangle △f(ζj)oq in H3 is a right triangle. Then by the
hyperbolic Pythagorean theorem, we have

coshdistH3

(
f(0), q

)
= coshdistH3

(
f(0), o

)
coshdistH3

(
o, q

)

= coshdistH3

(
f(0), f(ζj)

)
coshdistH3

(
o, q

)

= coshdistH3

(
lj−1(0), lj−1(ζj)

)
coshdistH3

(
o, q

)

= coshdistH3

(
o, lj−1(ζj)

)
coshdistH3

(
o, q

)

= cosh
(
distH3

(
o, l0(ζj)

)
+
c31
N2

)
coshdistH3

(
o, q

)

≤ exp
( c31
N2

)
coshdistH3

(
o, l0(ζj)

)
coshdistH3

(
o, q

)

=
1

2
|L0(ζj)|2 exp

( c31
N2

)
coshdistH3

(
o, q

)

≤
(
1

2
max
D1

|L0|2
)
cosh

(
2s+

c13√
N

)(
1 +

c32
N2

)

≤
(
1

2
max
D1

|L0|2
)(

1 +
c32
N2

)(
1 + 4s2 +

c33√
N

)

≤
(
1

2
max
D1

|L0|2
)(

1 + 4s2 +
c34√
N

)
.

Thus, by using Lemmas 3.1, 3.2, and 3.3, we have

1

2
|Lj(p)|2 = coshdistH3

(
o, lj(p)

)
= coshdistH3

(
f̃(0), f̃(p)

)

≤ cosh
(
distH3

(
f̃(0), f(0)

)
+ distH3

(
f(0), q

)
+ distH3

(
q, f̃(p)

))

≤ cosh
(
distH3

(
lj(ζj), lj−1(ζj)

)
+ distH3

(
f(0), q

)
+ distH3

(
q, f̃(p)

))

≤ cosh
( c11
N2

+ distH3

(
f(0), q

)
+ distH3

(
q, f̃(p)

))

≤ exp
( c11
N2

)
cosh

(
distH3

(
f(0), q

)
+ distH3

(
q, f̃(p)

))

≤
(
1 +

c35
N2

)
cosh

(
distH3

(
f(0), q

)
+ distH3

(
q, f̃(p)

))

≤
(
1 +

c35
N2

)
exp

(
distH3

(
q, f̃(p)

))
coshdistH3

(
f(0), q

)

≤
(
1 +

c35
N2

)
exp

(
14s2 +

c16√
N

)
coshdistH3

(
f(0), q

)

≤
(
1 +

c35
N2

)(
1 + 2

(
14s2 +

c16√
N

))(
1

2
max
D1

|L0|2
)(

1 + 4s2 +
c36√
N

)
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≤
(
1

2
max
D1

|L0|2
)(

1 + 32s2 +
c2√
N

)

which proves the conclusion.

4. Applications

This section is devoted to prove some applications of the main theorem as we
stated in the introduction.

A smooth map f : D1 →M3 into a 3-manifoldM3 is called a (wave) front if there
exists a Legendrian immersion Lf : D1 → P (T ∗M3) with respect to the canonical
contact structure of the projective cotangent bundle π : P (T ∗M3)→M3 such that
π ◦ Lf = f .

4.1. Flat fronts in hyperbolic 3-space. Recall that

H3 := SL(2,C)/ SU(2) = {aa∗ ; a ∈ SL(2,C)} (a∗ = tā).

For a Legendrian immersion L : D1 → SL(2,C), the projection

(4.1) f := LL∗ : D1 −→ H3

gives a flat front in H3 (see [11, 12] for the definition of flat fronts). We call L
in (4.1) the holomorphic lift of f . A flat front f is called weakly complete if its
holomorphic lift is complete with respect to the induced metric ds2

L
[13, 19].

Let f : D1 → H3 be a flat front and L its holomorphic lift. Take ω and θ as in
(3.3) and set

(4.2) ρ :=
θ

ω
: D1 −→ C ∪ {∞}.

Then a point z ∈ D1 is a singular point if and only if |ρ(z)| = 1. We denote by Σf

the singular set of f ;

Σf := {z ∈ D1 ; |ρ(z)| = 1}.
We have the following

Theorem 4.1. There exists a weakly complete flat front f : D1 → H3 whose image

is bounded in H3 such that D1 \ Σf is open dense in D1.

Proof. Let L : D1 → SL(2,C) be a Legendrian immersion as in the main theorem,
and set f := LL∗ : D1 → H3, which gives a flat front. The boundedness of f follows
from that of L, and the weak completeness of f follows from the completeness of
L.

Finally, we shall prove that D1 \ Σf is open dense: If Σf has an interior point,
then ρ in (4.2) satisfies |ρ| = 1 identically because of the analyticity of ρ. However,
if we take a initial immersion so that |ρ| is not constant, then the resulting bounded
weakly complete flat front has the same property, since our iteration can be taken
to be small enough near the origin of D1. �

4.2. Flat fronts in de Sitter 3-space. The de Sitter 3-space S3
1 is the connected

and simply connected Lorentzian space form of constant curvature 1, which is
represented as

S3
1 = SL(2,C)/ SU(1, 1) = {ae3a∗ ; a ∈ SL(2,C)}

(
e3 :=

(
1 0
0 −1

))
.
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Let L : D1 → SL(2,C) be a Legendrian immersion. Then the projection

f : Le3L∗ : D1 −→ S3
1

gives a flat front. We remark that f is not an immersion at z if and only if |ρ(z)| = 1,
where ρ = θ/ω as in (4.2). The singular set Σf of f is characterized by |ρ(z)| = 1.
Similar to the case of flat fronts in H3, f is said to be weakly complete if the metric
induced from the canonical Hermitian metric of SL(2,C) by L is complete. Then
we have

Theorem 4.2. There exists a weakly complete flat front f : D1 → H3 whose image

is bounded in S3
1 such that D1 \ Σf is open dense in D1, where Σf is the set of

singular points of f .

Proof. Let L : D1 → SL(2,C) be a Legendrian immersion as in the main theorem,
and set f := Le3L∗. Then f is a weakly complete flat front in S3

1 . Moreover, one
can see that D1 \ Σf is open dense by the same argument as in Theorem 4.1. �

See [7], [10] and [3] for the relationships between flat surfaces and linear Wein-
garten surfaces in H3 or S3

1 .

4.3. Improper Affine front in affine 3-space. A notion of IA-maps in the affine
3-space has been introduced by A. Mart́ınez in [16]. IA-maps are improper affine
spheres with a certain kind of singularities. Since all of IA-maps are wave fronts
(see [18, 19]), we call them improper affine fronts (The terminology ‘improper affine
fronts’ has been already used in Kawakami-Nakajo [8]). The precise definition of
improper affine fronts is given in [19, Remark 4.3]. The set of singular points Σf of
an improper affine front f : D1 → R3 is represented as Σf = {z ∈ D1 | |ρ(z)| = 1},
where ρ(z) := dG/dF . In [19], weak completeness of improper affine fronts is
introduced. Then we have

Theorem 4.3. There exists a weakly complete improper affine front f : D1 → R3

whose image is bounded such that D1 \Σf is open dense in D1, where Σf is the set

of the singular points of f .

Proof. Let L = (F,G,H) be a complete bounded Legendrian immersion into C3.
Since L is Legendrian, (1.1) yields that dH = −F dG. Here, by completeness of L,
the induced metric

ds2L = |dF |2 + |dG|2 + |dH |2 = |dF |2 + |dG|2 + |FdG|2 = |dF |2 + (|F |2 + 1)|dG|2

is complete. Moreover, since the image of L is bounded, we have

ds2L ≤ C(|dF |2 + |dG|2) (C > 0 is a constant).

Thus, the metric

(4.3) dτ2 := |dF |2 + |dG|2

is complete. Hence, we have an improper affine front f using Martinez’ represen-
tation formula [16] with respect to (F,G);

f =

(
G+ F ,

1

2
(|G|2 − |F |2) + Re

(
GF − 2

∫
F dG

))
(4.4)

=

(
G+ F ,

1

2
(|G|2 − |F |2) + Re (GF + 2H)

)
: D1 → R

3.
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Since dτ2 in (4.3) is complete, f is weakly complete, by definition of weak com-
pleteness given in [19]. Boundedness of f follows from that of L.

We next prove that D1 \ Σf is open dense: If we take a initial immersion so
that |dG/dF | is not constant, then the resulting bounded weakly complete im-
proper affine front has the same property, since the singular set is characterized by
|dG/dF | = 1. �

Remark 4.4. As mentioned in the introduction, there exist no compact flat fronts
in H3 (resp. S3

1). In fact, [11, Proposition 3.6] implies non-existence of compact flat
front in H3. On the other hand, suppose that there exists a flat front f : Σ2 → S3

1

where Σ2 is a compact 2-manifold. Then the unit normal vector ν of f induces a
flat front ν : Σ2 → H3, which makes a contradiction.

Next, we shall show the non-existence of compact improper affine fronts as men-
tioned in the introduction. An improper affine front f : Σ2 → R3 defined on a
Riemann surface Σ2 is represented as in (4.4), where F and G are holomorphic
functions on Σ2. If Σ2 is compact, G+F is equal to a constant c ∈ C because it is
harmonic. Then we have that G = −F + c, where the left-hand side is holomorphic
whereas the right-hand side is anti-holomorphic. Hence we can conclude that F and
G are both constants. Hence dτ2 as in (4.3) vanishes identically, which contradicts
to the definition of improper affine fronts.

Appendix A. An application of Runge’s Theorem

To prove the Key Lemma, we prepare the following assertion, which is an ana-
logue of [14, Lemma 4.1].

Lemma A.1. Let ϕ = (ϕ1, ϕ2) be a non-degenerate pair of holomorphic functions

on D1 (see Definition 2.2), and let ε > 0 and N be a positive number and a suffi-

ciently large integer N , respectively. Then for each j (j = 1, . . . , 2N), there exists a

non-degenerate pair ϕ̃ = (ϕ̃1, ϕ̃2) of holomorphic functions satisfying the following

three conditions:

(a) |ϕ̃− ϕ| < ε
2N2 on D1 \̟j.

(b) |ϕ̃| ≥
{
C N3.5 (on ωj),

C N−0.5 (on ̟j),

where C is a constant depending only on ϕ.
(c) There exists a unit vector u = (u1, u2) ∈ R2 (|u| = 1) such that

u · (ϕ− ϕ̃) = 0, |u1| > 1− 2

N
,

where we set v ·w = v1w1 + v2w2 for v = (v1, v2) and w = (w1, w2).

As pointed out in Remark A.2 below, we can prove the lemma as a modification
of [14, Lemma 4.1] for null holomorphic curves in C3. However, we believe that the
theory of Legendrian curves should be established independently from the theory
of null curves. So we give here a self-contained proof of the lemma, which might
be convenient for the readers. In fact, our proof is easier than that of [14, Lemma
4.1].

Proof. In the proof, the symbols ck (k = 1, 2, . . . ) denote suitable positive constants,
which depend only on the initial data ϕ. Since ϕ has no zeroes, we can take ν and



CALABI-YAU PROBLEM FOR LEGENDRIAN CURVES 15

m such that

(A.1) 0 < ν ≤ |ϕ| ≤ m (on D1).

Set

ϕ̂ = (ϕ̂1, ϕ̂2) =
(
(cos t)ϕ1 + (sin t)ϕ2,−(sin t)ϕ1 + (cos t)ϕ2

)

for t ∈ R. To prove the lemma, we need to prove that one can choose t ∈ [0, π2 )
such that

(A.2) sin t ≤
√

2

N
|ϕ̂k| ≥

ν

2
√
N

(on ̟j , k = 1, 2).

In fact, if |ϕk| ≥ ν/(2
√
N) (k = 1, 2) holds on ̟j, (A.2) holds obviously for t = 0.

By exchanging the roles of ϕ1 and ϕ2, we may assume that there exists x ∈ ̟j

such that |ϕ1(x)| < ν/(2
√
N) without loss of generality. Here, notice that the

diameter (as a subset of C = R2) of ̟j satisfies diamR2(̟j) ≤ c1/N , where c1 is

a positive constant. Since the derivative of ϕ : D1 → C2 is bounded, it holds that,
diamC2(ϕ(̟j)) ≤ c2/N for c2 > 0. Then it holds that

|ϕ1(y)| ≤ |ϕ1(x)| + |ϕ(y)− ϕ(x)| <
ν

2
√
N

+
c2
N

for any y ∈ ̟j. Here, noticing |ϕ|2 ≥ ν2, we have

|ϕ2(y)| ≥
√
ν2 − |ϕ1(y)|2 ≥

√

ν2 −
(

ν

2
√
N

+
c2
N

)2

≥ ν
(
1− 1

4N

)

since N is sufficiently large. We choose t as sin t =
√

2
N . Then noticing

1− 2

N
≤ cos t ≤ 1− 1

N
,

we have

|ϕ̂1(y)| = |(cos t)ϕ1(y) + (sin t)ϕ2(y)| ≥ (sin t)|ϕ2(y)| − (cos t)|ϕ1(y)|(A.3)

≥
√
2ν√
N

(
1− 1

4N

)
−
(
1− 1

N

)(
ν

2
√
N

+
c2
N

)
≥ ν

2
√
N
,

|ϕ̂2(y)| ≥ (cos t)|ϕ2(y)| − (sin t)|ϕ1(y)|

≥
(
1− 2

N

)(
1− 1

4N

)
ν −

√
2

N

(
ν

2
√
N

+
c2
N

)
≥ ν

2
√
N
.

Hence we have (A.2).
We now fix a real number t in (A.2) and will prove (a), (b) and (c): Since ωj

and D1 \ ̟j are compact set such that C \
(
ωj ∪ (D1 \ ̟j)

)
is connect, Runge’s

theorem implies that there exists a holomorphic function h (cf. [17, (4)]) such that
h 6= 0 on D1 and

(A.4)





|h− 2N4| < 1

2N2
(on ωj)

|h− 1| < ε

2N2m
(on D1 \̟j),

where m is as in (A.1). We set

ϕ̌ = (ϕ̌1, ϕ̌2) := (ϕ̂1, hϕ̂2).
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Then
ϕ̃ :=

(
(cos t)ϕ̌1 − (sin t)ϕ̌2, (sin t)ϕ̌1 + (cos t)ϕ̌2

)

satisfies the desired properties: In fact,

|ϕ̃− ϕ| = |ϕ̌− ϕ̂| = |h− 1| |ϕ̂2| <
ε

2N2m
|ϕ| ≤ ε

2N2

which implies (a). On the other hand, by (A.3),

|ϕ̃| = |ϕ̌| ≥ |ϕ̌1| = |ϕ̂1| ≥
ν

2
√
N

holds on ̟j , which proves the first inequality of (b).
It holds on ωj that

|ϕ̃| = |ϕ̌| ≥ |h| |ϕ̂2| ≥
∣∣2N4 − |h− 2N4|

∣∣ |ϕ̂2| ≥
(
2N4 − 1

2N2

)
ν

2
√
N
≥ ν

2
N3.5.

Hence we have the second inequality of (b). Finally, we set u = (cos t, sin t). Then
(c) holds. �

Remark A.2. Lemma A.1 can be proved directly from the corresponding assertion
for null curves in C3 given in [14, Lemma 4.1] as follows: Let ϕ = (ϕ1, ϕ2) be as
in Lemma A.1. Since ϕ1, ϕ2 have no common zeros, there exists a holomorphic
function ϕ3 defined on D1 such that (ϕ1)

2 + (ϕ2)
2 + (ϕ3)

2 = 0. We apply [14,

Lemma 4.1] for Φ := (ϕ1, ϕ2, ϕ3) and get a new Weierstrass data Φ̃ = (ϕ̃1, ϕ̃2, ϕ̃3).
Then ϕ̃ := (ϕ̃1, ϕ̃2) satisfies (a) which follows immediately from (a) of [14, Lemma
4.1]. Next, by the proof of [14, Corollary B] it holds that

4(|ϕ̃1|2 + |ϕ̃2|2) ≥ |ϕ̃1|2 + |ϕ̃2|2 + |ϕ̃3|2,
which implies that (b) of our lemma follows from (b) of [14, Lemma 4.1]. (c) of
our lemma does not follows from (c) of [14, Lemma 4.1] directly. However, we can
choose u = (u1, u2, u3) in the proof of [14, Lemma 4.1] in such a way that u ∈ R3

and u3 = 0 without loss of generality. So this gives a alternative proof of the lemma.
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