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An observation on Turán-Nazarov inequality

O. Friedland Y. Yomdin

Abstract

The main observation of this note is that the Lebesgue measure
µ in the Turán-Nazarov inequality for exponential polynomials can
be replaced with a certain geometric invariant ω ≥ µ, which can be
effectively estimated in terms of the metric entropy of a set, and may
be nonzero for discrete and even finite sets. While the frequencies (the
imaginary parts of the exponents) do not enter the original Turán-
Nazarov inequality, they necessarily enter the definition of ω.

1 Introduction

The classical Turán inequality bounds the maximum of the absolute value of
an exponential polynomial p(t) on an interval B through the maximum of
its absolute value on any subset Ω of positive measure. Turán [8] assumed Ω
to be a subinterval of B, and Nazarov [4] generalized it to any subset Ω of
positive measure. More precisely, we have:

Theorem 1.1 ([4]). Let p(t) =
∑m

k=0 cke
λkt be an exponential polynomial,

where ck, λk ∈ C. Let B ⊂ R be an interval, and let Ω ⊂ B be a measurable

set. Then

sup
B

|p| ≤ eµ1(B)·max |Reλk| ·
(

cµ1(B)

µ1(Ω)

)m

· sup
Ω

|p|

where c > 0 is an absolute constant.
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In this note, we generalize and strengthen Turán-Nazarov inequality (and
its multi-dimensional analogue stated below) by replacing the Lebesgue mea-
sure of Ω with a simple geometric invariant ωD(Ω), the metric span of Ω ⊂ Rn

with respect to a “diagram” D comprising the degree of p and its maximal
frequency λ. Metric span always bounds the Lebesgue measure from above,
and it is strictly positive for sufficiently dense discrete (in particular, finite)
sets Ω. It can be effectively estimated in terms of the metric entropy of Ω.
See [10] and Section 2.1 below for some basic properties of ωD(Ω).

A somewhat simpler version of the metric span of Ω depending only on
the dimension and the degree, and not on the continuous parameters, was
originally introduced in [10]. It replaces the Lebesgue measure of Ω in the
classical Remez inequality for algebraic polynomials ([6, 2]).

In one-dimensional case for a given exponential polynomial p(t) =
∑m

k=0 cke
λkt

with ck, λk ∈ C, and for a given interval B ⊂ R the diagram D = D(p, B)
comprises the degree m, the length µ1(B) and the maximal frequency λ =
max

k=0,...,m
| Imλk|. Define the constant MD (which we call a “frequency bound”

for p) as MD = ⌊d
2
⌋ + 1, where d = C(m)µ1(B)λ. Here C(m) is defined

as C(m) = n(2n + 1)2n22n
2

, for n = (m+1)(m+2)
2

+ 1. For any bounded sub-
set Ω ⊂ R and for ǫ > 0 let M(ǫ,Ω) be the minimal number of ǫ-intervals
covering Ω. Now the metric span ωD is defined as follows:

Definition 1.1. The metric span ωD(Ω) of Ω ⊂ R is given by

ωD(Ω) = sup
ε>0

ε[M(ε,Ω)−MD]

Now we can state our main result in one-dimensional case:

Theorem 1.2. Let p(t) =
∑m

k=0 cke
λkt be an exponential polynomial, where

ck, λk ∈ C. Let B ⊂ R be an interval, and let Ω ⊂ B be any set. Then

sup
B

|p| ≤ eµ1(B)·max |Reλk| ·
(

cµ1(B)

ωD(Ω)

)m

· sup
Ω

|p|

where c > 0 is an absolute constant.

Clearly, for any measurable Ω we always have ωD(Ω) ≥ µ1(Ω). Indeed,
for any ε > 0 we have M(ε,Ω) ≥ µ1(Ω)/ε. Now substitute into Definition
1.1 and let ǫ tend to zero. Thus, Theorem 1.2 provides a true generalization
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and strengthening of the Turán-Nazarov inequality given in Theorem 1.1.
Moreover, the result of Theorem 1.2 further develops a remarkable feature of
the original Turán-Nazarov inequality: The bound does not depend on the
“frequencies”, i.e. on the imaginary parts of λk in p.

When we allow into consideration discrete (in particular, finite) sets Ω,
this feature cannot be preserved: Already for a trigonometric polynomial
p(t) = sin(λt), the set Ω of its zeroes (on which the Turán-Nazarov inequality
certainly fails) consists of all the points xj =

jπ
λ
, j ∈ N, and the number of

such points in any interval B is of order µ(B)λ
π

.
So when we replace the Lebesgue measure with the metric span, we have

to take into account the imaginary parts of the exponents λk. This is exactly
what is done in Definition 1.1 and in Theorem 1.2 above. Thus, our result
separates the roles of the real and imaginary parts of the exponents: The first
enters the main bound, as in the original Turán-Nazarov inequality, while the
second enters the definition of the span ωD(Ω). As the density of Ω growth,
the influence of the frequencies decreases: See Section 2.1 below.

There is a version of Turán-Nazarov inequality for quasipolynomials in
one or several variables due to A. Brudnyi [1, Theorem 1.7]. While less accu-
rate than the original one (in particular, the role of real and complex parts of
the exponents is not separated) this result gives an important information for
a wider class of quasipolynomials. In Section 3 we provide a strengthening of
Brudnyi’s result in the same lines as above: We replace the Lebesgue mea-
sure with an appropriate “metric span” which always bounds the Lebesgue
measure from above and is strictly positive for sufficiently dense discrete (in
particular, finite) sets.

2 One-dimensional case

In this section we prove Theorem 1.2 and provide some of its consequences.

Let p(t) =
∑m

k=0 cke
λkt be an exponential polynomial, where ck, λk ∈ C.

Let us write ck = γke
iφk , λk = ak + ibk, k = 0, 1, . . . , m.

Lemma 2.1.

|p(t)|2 = 2
∑

0≤k≤l≤m

γkγle
(ak+al)t cos(φk − φl + (bk − bl)t)

3



is an exponential-trigonometric polynomial of degree
(m+1)(m+2)

2
with real co-

efficients.

Proof. We have

p(t) =
m
∑

k=0

γke
iφke(ak+ibk)t =

m
∑

k=0

γke
akt+i(φk+bkt), p̄(t) =

m
∑

k=0

γke
akt−i(φk+bkt)

Therefore

|p(t)|2 = p(t)p̄(t) =
m
∑

k,l=0

γkγle
(ak+al)t+i(φk−φl+(bk−bl)t)

Adding the expressions in this sum for the indices (k, l) and (l, k) we get

|p(t)|2 = 2
∑

k≤l

γkγle
(ak+al)t cos(φk − φl + (bk − bl)t)

This completes the proof.

The following lemma provides us with the bound on the number of real
solutions of the equation |p(t)|2 = η. It is a direct consequence of a more
general result of Khovanskii [3, Section 1.4] (see also Section 3.1 below).

Lemma 2.2. For p(t) as above and for each positive η > 0, the number of

non-degenerate solutions of the equation |p(t)|2 = η in the interval B ⊂ R

does not exceed

d = C(m)µ1(B)λ

where λ = max | Imλk|, and C(m) = n(2n+1)2n22n
2

, for n = (m+1)(m+2)
2

+1.

Let B ⊂ R be an interval. We consider the sublevel set Vρ = {t ∈
B : |p(t)| ≤ ρ} of an exponential polynomial p(t) =

∑m
k=0 cke

λkt, where
ck, λk ∈ C. By Lemma 2.2 the boundary of Vρ given by {|p(t)|2 = ρ2} consists
of at most d = C(m)µ1(B)max | Imλk| points (including the endpoints).
Therefore, the set Vρ consists of at most MD = ⌊d

2
⌋ + 1 subintervals ∆i (i.e.

connected components of Vρ), with MD defined as in Theorem 1.2. Let us
cover each of these subinterval ∆i by the adjacent ε-intervals Qε starting with
the left endpoint. Since all the adjacent ε-intervals, except possibly one, are
inside ∆i, their number doesn’t exceed |∆i|/ε+ 1. Thus, we have

M(ε, Vρ) ≤ (⌊d
2
⌋+ 1) + µ1(Vρ)/ε = MD + µ1(Vρ)/ε
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in notations of Theorem 1.2.

Now let a set Ω ⊂ B be given.

Lemma 2.3. If Ω ⊂ Vρ for a certain ρ ≥ 0 then µ1(Vρ) ≥ ωD(Ω).

Proof. If Ω ⊂ Vρ then for each ε > 0 we have M(ε,Ω) ≤ M(ε, Vρ) ≤
MD + µ1(Vρ)/ε, or µ1(Vρ) ≥ ε(M(ε,Ω) − MD). Taking supremum with
respect to ε > 0 and using Definition 1.1 we conclude that µ1(Vρ) ≥ ωD(Ω).

Let us now put ρ̂ = sup
Ω
|p|. Then by definition we have Ω ⊂ Vρ̂. Applying

Lemma 2.3 we get µ1(Vρ̂) ≥ ωD(Ω). Finally, we apply the original Turán-
Nazarov inequality (Theorem 1.1) to the subset Vρ̂ ⊂ B on which |p| by
definition does not exceed ρ̂. This completes the proof of Theorem 1.2.

Remark 1 We expect that the expression for C(m) in Lemma 2.2 provided
by the general result of Khovanskii can be strongly improved in our specific
case. Let us recall the following result of Nazarov [4, Lemma 4.2], which
gives a much more realistic bound on the local distribution of zeroes of an
exponential polynomial:

Lemma 2.4. Let p(t) =
∑m

k=0 cke
λkt be an exponential polynomial, where

ck, λk ∈ C. Then the number of zeroes of p(z) inside each disk of radius

r > 0 does not exceed 4m+ 7λ̂r, where λ̂ = max |λk|.

The reason we use the Khovanskii bound in Theorem 1.2 is that it involves
only the imaginary parts of the exponents λk. In contrast, the bound of
Lemma 2.4 is in terms of λ̂ = max |λk|. In order to apply Lemma 2.4 we
notice that

|p(t)|2 = p(t)p̄(t) =
m
∑

k,l=0

ckc̄le
(λk+λ̄l)t

is an exponential polynomial of degree at most m2 with the maximal absolute
value of the exponents not exceeding 2λ̂. Adding a constant adds at most one
to the degree. We conclude that the number of real solutions of |p(t)|2 = η
inside the interval B does not exceed d1 = 4m2 + 14λ̂µ1(B). Now we define
ω′
D putting M ′

D = ⌊d1
2
⌋+1 in Definition 1.1. Repeating verbally the proof of

Theorem 1.2 above we obtain:
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Theorem 2.5. For p(t) as above

sup
B

|p| ≤ eµ1(B)·max |Reλk| ·
(

cµ1(B)

ω′
D(Ω)

)m

· sup
Ω

|p|

Remark 2 For the case of a real exponential polynomial p(t) =
∑m

k=0 cke
λkt,

ck, λk ∈ R, we get especially simple and sharp result. Notice that the number
of zeroes of a real exponential polynomial is always bounded by its degree
m (indeed, the “monomials” eλkt form a Chebyshev system on each real
interval). Applying this fact in the same way as above we get

Theorem 2.6. For p(t) a real exponential polynomial of degree m

sup
B

|p| ≤ eµ1(B)·max |Reλk| ·
(

cµ1(B)

ω′′
D(Ω)

)m

· sup
Ω

|p|

where ω′′
D(Ω) = supε>0 ε[M(ε,Ω)−m].

Notice that in this case the metric span ω′′
D(Ω) depends only on the degree

m of p and the result is sharp: For any Ω consisting of at least m+ 1 points
there is an inequality of the required form, while for each m points there
is a real exponential polynomial p(t) of degree m vanishing at exactly these
points.

2.1 Some examples

In this section we give just a couple of examples illustrating the scope and
possible applications of Theorem 1.2.

2.1.1 Subsets Ω dense “in resolution ε”

Here we show that the role of the frequency bound in the results above
decreases as the discrete subset Ω ⊂ B becomes denser. For Ω ⊂ B and for
ε > 0 we define a “measure µ1(ε,Ω) of Ω in resolution ε” as the minimal
possible measure of the coverings of Ω with ε-intervals.

Proposition 2.7. For each diagram D and for any ε > 0 the metric span

ωD(Ω) satisfies

ωD(Ω) ≥ µ1(ε,Ω)

(

1− εMD

µ1(ε,Ω)

)

Proof. By definition ωD(Ω) ≥ ε[M(ε,Ω) − MD]. Clearly, M(ε,Ω) ≥
1
ε
µ1(ε,Ω). Hence ωD(Ω) ≥ µ1(ε,Ω)− εMD.
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So if in a small resolution ε, the set Ω looks like a set of measure µ > 0
then we restore the original Turán-Nazarov inequality for Ω, with a correction
factor 1− εMD

µ
, where MD being the frequency bound.

2.1.2 Combining the discrete and positive measure cases

Let a diagram D be fixed, and let Ω = Ω1 ∪ Ω2 ⊂ B, with Ω1 a set of a
positive measure µ, and Ω2 a discrete set. We assume that the sets Ω1 and
Ω2 are 2µ1(B)

MD
-separated, where MD is the frequency bound for D.

Proposition 2.8. ωD(Ω) ≥ µ+ ωD(Ω2)

Proof. By definition ωD(Ω) = supε ε[M(ε,Ω)−MD], and this supremum is

achieved for ε ≤ µ1(B)
MD

. Indeed, otherwise M(ε,Ω)−MD would be negative.
Hence by a separation assumption we have M(ε,Ω) = M(ε,Ω1) +M(ε,Ω2)
and therefore ωD(Ω) = supε ε(M(ε,Ω1)+M(ε,Ω2)−MD) ≥ µ1(Ω1)+ωD(Ω2).

So in situations as above Theorem 1.2 improves the original Turán-Nazarov
inequality, and the frequency bound applies only to the discrete part of Ω.

2.1.3 Interpolation with exponential polynomials

This is a classical topic starting at least with [5] and actively studied today
in connection with numerous applications. Theorems 1.2, 2.5, 2.6 bridge
Turán-Nazarov inequality on Ω ⊂ B with estimates for the robustness of the
interpolation from Ω to B. In particular, they provide robustness estimates
in solving the “generalized Prony system” for non-uniform samples. See [7]
for some initial results in this direction.

3 Multi-dimensional case

In this section we consider a version of Turán-Nazarov inequality for quasipoly-
nomials in one or several variables due to A. Brudnyi [1, Theorem 1.7].
We provide a strengthening of this result in the same lines as above: The
Lebesgue measure is replaced with an appropriate “metric span”.

Before we formulate Brudnyi’s result, let us recall some definitions.

7



Definition 3.1. Let f1, . . . , fk ∈ (Cn)∗ be a pairwise different set of complex
linear functionals fj which we identify with the scalar products fj · z, z =
(z1, . . . , zn) ∈ Cn. We shall write

fj = aj + ibj

A quasipolynomial is a finite sum

p(z) =

k
∑

j=1

pj(z)e
fj ·z

where pj ∈ C[z1, . . . , zn] are polynomials in z of degrees dj . The degree of p

is m = deg p =
∑k

j=1(dj + 1).

Following A.Brudnyi [1], we introduce the exponential type of p

t(p) = max
1≤j≤k

max
z∈Bc(0,1)

|fj · z|

where Bc(0, 1) is the complex Euclidean ball of radius 1 centered at 0.

Below we consider p(x) for the real variables x = (x1, . . . , xn) ∈ R
n.

Theorem 3.1 ([1]). Let p be a quasipolynomial with parameters n,m, k de-

fined on Cn. Let B ⊂ Rn be a convex body, and let Ω ⊂ B be a measurable

set. Then

sup
B

|p| ≤
(

cnµn(B)

µn(Ω)

)ℓ

· sup
Ω

|p|

where ℓ = (c(m, k) + (m − 1) log(c1max{1, t(p)}) + c2t(p) diam(B)), and

c, c1, c2 are absolute positive constants, and c(k,m) is a positive number de-

pending only on m and k.

In generalizing this result we follow the lines of [10] and of Sections 1 and
2 above.

3.1 Covering number of sublevel sets

For a relatively compact A ⊂ Rn, the covering number M(ε, A) is defined
now as the minimal number of ε-cubes Qε covering A (which are translations
of the standard ε-cubes Qn

ε := [0, ε]n).

8



Verbally repeating the proof of Lemma 2.1 above, we conclude that

q(x) = |p(x)|2 =
∑

0≤i≤j≤k

e(ai+aj)·x[Pi,j(x) sin((bi−bj)·x)+Qi,j(x) cos((bi−bj)·x)]

with Pi,j, Qi,j real polynomials in x of degree di + dj. Clearly, all the partial

derivatives ∂q(x)
∂xj

have exactly the same form.

Let us denote the vectors bi−bj ∈ Rn by bi,j and let λ = max ‖bi,j‖ be the
maximal frequency in q. The following geometric construction is required by
the Khovanskii’s bound we use below: Let Qi,j = {x ∈ R

n, bi,jx ≤ π
2
} and

let Q =
⋂

0≤i≤j≤k Qi,j. For any B ⊂ Rn we define M(B) as the minimal
number of translations of Q covering B. For an affine subspace V of Rn we
define M(B ∩ V ) as the minimal number of translations of Q ∩ V covering
B∩V . Notice that for B = Qn

r a cube of size r we have M(Qn
r ) ≤ ( 2

π

√
nrλ)n.

Indeed, Q always contains a ball of radius π
2λ
.

As above, applying the Khovanskii’s bound ([3], Section 1.4) for real
exponential-trigonometric quasipolynomials we get the following:

Lemma 3.2. Let B ⊂ Rn and let V be a parallel translation of the coordinate

subspace in Rn generated by xj1 , . . . , xjs. Then the number of non-degenerate

real solutions on V ∩ B of the system

∂q(x)

∂xj1

= · · · = ∂q(x)

∂xjs

= 0

is at most Cs ·M(B ∩ V ), where

Cs =

s
∏

r=1

(djr + 2)(

s
∑

r=1

djr + κ+ s+ 1)κ2κ(κ+1)/2

with κ = (k2 + 5k+ 2)/2. In particular, for B = Qn
ρ the number of solutions

does not exceed Ĉs(ρλ)
s with Ĉs = ( 2

π

√
s)sCs.

Let a quasipolynomial p be as above. A sublevel set A = Aρ of p is
defined as A = {x ∈ Rn : |p(x)| ≤ ρ}. The following lemma extends to the
case of sublevel sets of exponential polynomials the result of Vitushkin [9]
for semi-algebraic sets. It can be proved using a general result of Vitushkin
in [9] through the use of “multi-dimensional variations”. However, in our
specific case the proof below is much shorter and it produces explicit (“in
one step”) constants.

9



Lemma 3.3. For any 1 ≥ ε > 0 we have

M(ε, A ∩Qn
1 ) ≤ C0 + C1

(

1

ε

)

+ · · ·+ Cn−1

(

1

ε

)n−1

+ µn(A)

(

1

ε

)n

where C0, . . . , Cn−1 are positive constants, which depend only on k, di and the

maximal frequency λ of the quasipolynomial p.

Proof. The sublevel set Aρ is defined via the real exponential-trigonometric
quasipolynomial q(x) = |p(x)|2, i.e. A = Aρ(p) = {x ∈ Qn

1 : q(x) ≤ ρ2}.
Let us subdivide Qn

1 into adjacent ε-cubes Qε with respect to the standard
Cartesian coordinate system. Each Qε having a nonempty intersection with
A, is either entirely contained in A, or it intersects the boundary ∂A of A.
Certainly, the number of those boxes Qε, which are entirely contained in
A, is bounded by µn(A)/µn(Qε) = µn(A)/ε

n. In the other case, where Qε

intersects ∂A, it has a face of the smallest dimension s that intersects ∂A,
for some s = 0, 1, . . . , n.

Let us fix an s-dimensional affine subspace V , which corresponds to an
s-face F of a Qε intersecting ∂A. Then F contains completely some of the
connected components of A ∩ V , otherwise ∂A would intersect a face of Qε

of a dimension strictly less than s. Clearly, inside each compact connected
component of A ∩ V there is a critical point of q, which is defined by the
system of equations ∂q(x)

∂xj1

= · · · = ∂q(x)
∂xjs

= 0 (assuming that V is a parallel

translation of the coordinate subspace in Rn generated by xj1, . . . , xjs). After
a small perturbation of q we can always assume that all such critical points
are non-degenerate. Hence by Lemma 3.2 the number of these points, and
therefore of the boxes Qε of the considered type, is bounded by Ĉsλ

s.
According to the partitioning construction ofQn

1 , we have at most
(

1
ε
+ 1

)n−s

s-dimensional affine subspaces with respect to the same s coordinates. On
the other hand, the number of different choices of s coordinates is

(

n
s

)

. It
means the number of boxes that have an s-face F , which contains completely
some connected component of A∩ V , is at most

(

n
s

)

·
(

1
ε
+ 1

)n−s
Ĉsλ

s, which

does not exceed, assuming ε ≤ 1, the constant Cn−s :=
(

n
s

)

2n−sĈsλ
s(1

ε
)n−s.

Note that C0 is the bound on the number of boxes that contain completely
some of the connected components of A. Thus, we have

M(ε, A) ≤ C0 + C1

(

1

ε

)

+ · · ·+ Cn−1

(

1

ε

)n−1

+ µn(A)

(

1

ε

)n

This completes our proof.
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4 Metric span and generalized Brudnyi’s in-

equality

Let p be a quasipolynomial as above, with the parameters n, k, dj. These
parameters, together with the maximal frequency λ of p form the multi-
dimensional diagram D of p. Notice that in contrast to the one-dimensional
case (and with Theorem 3.1) we restrict ourselves to the unit box Qn

1 . So B
does not appear in the diagram.

For a given 0 < ε ≤ 1 let us denote by MD(ε) the quantity MD(ε) =
∑n−1

j=0 Cj(
1
ε
)j , where C0, . . . , Cn−1 are the constants from Lemma 3.3. Ex-

tending terminology from the one-dimensional case above, we call MD(ε) the
“frequency bound” for D. Note that the constants Cj depend only on the
parameters n, k, di and on the maximal frequency λ of the quasipolynomial
p. By Lemma 3.3 for any sublevel set Aρ of p we have

M(ε, A) ≤ M(ε) + µn(A)

(

1

ε

)n

Now for any subset Ω ⊂ Qn
1 we introduce the metric span ωD of Ω with

respect to a given diagram D as follows:

Definition 4.1. For a subset Ω ⊂ Rn the metric span ωD is defined as

ωD(Ω) = sup
ε>0

εn[M(ε,Ω)−MD(ε)]

Lemma 4.1. Let A ⊂ Qn
1 be a sublevel set of a real quasipolynomial with the

diagram D. Then for any Ω ⊂ A we have

µn(A) ≥ ωD(Ω)

Proof. This fact follows directly from Lemma 3.3. Indeed, for any ε > 0 we
have

M(ε,Ω) ≤ M(ε, A) ≤ MD(ε) + µn(A)

(

1

ε

)n

Consequently, for any ε > 0 we have µn(A) ≥ εn[M(ε,Ω) − MD(ε)]. Now,
we can take the supremum with respect to ε.

11



For some examples and properties of sets in Rn with positive metric span,
see [10, Section 5]. Here we mention only that for a measurable Ω ⊂ Rn

always ωD(Ω) ≥ µn(Ω). The proof is exactly the same as in the remark after
Theorem 1.2.

Now we can prove our generalization of Brudnyi’s Theorem 3.1 above.

Theorem 4.2. Let p be as above and let Ω ⊂ Qn
1 . Then

sup
Qn

1

|p| ≤
(

cnµn(B)

ωD(Ω)

)ℓ

· sup
Ω

|p|.

Proof. Let ρ̂ := supΩ |p|. For the sublevel set Aρ̂ of the quasipolynomial p
we have Ω ⊂ Aρ̂. By Lemma 4.1 we have µn(Aρ̂) ≥ ωD(Ω). Now since p is
bounded in absolute value by ρ on Aρ̂ by definition, we can apply Theorem
3.1 with B = Qn

1 and Aρ̂. This completes the proof.
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Université Pierre et Marie Curie (Paris 6)
4 Place Jussieu,
75005 Paris, France
e-mail: friedland@math.jussieu.fr

Y. Yomdin,
Department of Mathematics,
The Weizmann Institute of Science,
Rehovot 76100, Israel
e-mail: yosef.yomdin@weizmann.ac.il

13


	1 Introduction
	2 One-dimensional case
	2.1 Some examples
	2.1.1 Subsets  dense ``in resolution "
	2.1.2 Combining the discrete and positive measure cases
	2.1.3 Interpolation with exponential polynomials


	3 Multi-dimensional case
	3.1 Covering number of sublevel sets

	4 Metric span and generalized Brudnyi's inequality

