On the distance between non-isomorphic groups

Gábor Ivanyos* François Le Gall $^{\dagger} \quad$ Yuichi Yoshida ${ }^{\ddagger}$

Abstract

A result of Ben-Or, Coppersmith, Luby and Rubinfeld on testing whether a map between two groups is close to a homomorphism implies a tight lower bound on the distance between the multiplication tables of two non-isomorphic groups.

In [2] Drápal showed that if \circ and $*$ are two binary operations on the finite set G such that (G, \circ) and $(G, *)$ are non-isomorphic groups then the Hamming distance between the two multiplication tables is greater than $\frac{1}{9}|G|^{2}$. In [3] it is shown that if (G, \circ) and $(G, *)$ are non-isomorphic 3-groups then the distance is at least $\frac{2}{9}|G|^{2}$; and infinite families of non-isomorphic pairs of 3-groups with distance exactly $\frac{2}{9}|G|^{2}$ are given.

In this note we show that the lower bound $\frac{2}{9}|G|^{2}$ holds for arbitrary non-isomorphic group structures. The proof is a simple application of the following result from [1].

Fact 1. Let (G, \circ) and $(K, *)$ be two groups and $f: G \rightarrow K$ be a map such that

$$
\frac{\#\{(x, y) \in G \times G: f(x \circ y)=f(x) * f(y)\}}{|G|^{2}}>\frac{7}{9} .
$$

Then there exists a group homomorphism $h: G \rightarrow K$ such that $\frac{\#\{x \in G: f(x)=h(x)\}}{|G|} \geq \frac{5}{9}$.
Fact 1 is a weak version of Theorem 1 in [1]. Here is a brief sketch of its proof. For every $x \in G, h(x)$ is defined as the value taken most frequently by the expression $f(x \circ y) * f(y)^{-1}$ where y runs over G. Then the first step is showing that for every $x \in G$, \#\{y $\left.\in G: f(x \circ y) * f(y)^{-1}=h(x)\right\}>\frac{2}{3}|G|$. The homomorphic property of h and equality of $h(x)$ with $f(x)$ for $\frac{5}{9}$ of the possible elements x follow from this claim easily.

We apply Fact 1 to obtain a result on the distance of multiplication tables of groups of not necessarily equal size. It will be convenient to state it in terms of a quantity complementary to the distance. Let (G, \circ) and $(K, *)$ be finite groups. We define the overlap between (G, \circ) and $(K, *)$ as

$$
\max _{\gamma: G \hookrightarrow S, \kappa: K \hookrightarrow S} \#\left\{(x, y) \in G \times G: \exists\left(x^{\prime}, y^{\prime}\right) \in K \times K \text { s.t. } \begin{array}{rl}
\gamma(x) & =\kappa\left(x^{\prime}\right), \\
\gamma(y) & =\kappa\left(y^{\prime}\right), \\
\gamma(x \circ y) & =\kappa\left(x^{\prime} * y^{\prime}\right)
\end{array}\right\},
$$

where S is any set with $|S| \geq \max (|G|,|K|)$.

[^0]Corollary 1. If $|G| \leq|K|$ and (G, \circ) is not isomorphic to a subgroup of $(K, *)$ then the overlap between (G, \circ) and $(K, *)$ is at most $\frac{7}{9}|G|^{2}$.

Proof. Assume that the overlap is larger than $\frac{7}{9}|G|^{2}$. Then there exist injections $\gamma: G \hookrightarrow S, \kappa: K \hookrightarrow S$ such that the set

$$
Z=\left\{(x, y) \in G \times G: \exists\left(x^{\prime}, y^{\prime}\right) \in K \times K \text { s.t. } \begin{array}{rl}
\gamma(x) & =\kappa\left(x^{\prime}\right), \\
\gamma(y) & =\kappa\left(y^{\prime}\right), \\
\gamma(x \circ y) & =\kappa\left(x^{\prime} * y^{\prime}\right)
\end{array}\right\}
$$

has cardinality larger than $\frac{7}{9}|G|^{2}$. Put

$$
G_{0}=\left\{x \in G \mid \exists x^{\prime} \in K \text { such that } \gamma(x)=\kappa\left(x^{\prime}\right)\right\} .
$$

Then $\kappa^{-1} \circ \gamma$ embeds G_{0} into K and it can be extended to an injection $\phi: G \hookrightarrow K$. For $(x, y) \in Z$ we have

$$
\phi(x \circ y)=\kappa^{-1}(\gamma(x \circ y))=\kappa^{-1}(\gamma(x)) * \kappa^{-1}(\gamma(y))=\phi(x) * \phi(y),
$$

therefore, by Fact 1 , there exists a homomorphism $\psi: G \rightarrow K$ such that

$$
\#\{x \in G: \psi(x) \neq \phi(x)\}<\frac{4}{9}|G| .
$$

This, together with the injectivity of ϕ implies the ψ is injective as well and its image is a subgroup of ($K, *$) isomorphic to (G, \circ).

References

[1] M. Ben-Or, D. Coppersmith, M. Luby, R. Rubinfeld, Non-abelian homomorphism testing, and distributions close to their self-convolutions. Random Structures and Algorithms, 32 (2008), 49-70.
[2] A. Drápal, How far apart can the group multiplication tables be?, European Journal of Combinatorics 13 (1992), 335-343.
[3] A. Drápal, On distances of 2-groups and 3-groups, in: C. M. Campbell, E. F. Robertson, G. C. Smith (Eds.), Groups St Andrews 2001 in Oxford: Volume 1 (LMS Lecture Notes Series No. 304), Cambridge University Press, Cambridge, 2003, pp. 143-149.

[^0]: ${ }^{*}$ Computer and Automation Research Institute of the Hungarian Academy of Sciences, Kende u. 13-17, H-1111 Budapest, Hungary. E-mail: Gabor.Ivanyos@sztaki.hu
 ${ }^{\dagger}$ Department of Computer Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan. E-mail: legall@is.s.u-tokyo.ac.jp
 ${ }^{\ddagger}$ School of Informatics, Kyoto University, and Preferred Infrastructure, Inc., Yoshida-Honmachi, Kyoto 606-8501, Japan. Email: yyoshida@kuis.kyoto-u.ac.jp

