用中子活化分析镀膜厚度及其探测极限研究

姚茂莹1,徐家云1,高党忠2,张地大1,杨尊勇1,姚振强1,王明秋1

(1.四川大学 物理科学与技术学院,四川 成都 610064)(2.中国工程物理研究院 激光聚变研究中心,四川 绵阳 621900)

摘要:本工作提出用中子活化分析有基底的单层或多层镀膜厚度的方法。用 Am-Be 中子源对 Au、Al、 Cu 等薄膜活化后,用 HPGe 探测器测量被活化薄膜放出的特征 γ 射线全能峰面积,并用蒙特卡罗方法 模拟计算 HPGe 探测器对不同特征 γ 射线的探测效率,得到用反应堆中子源活化分析不同元素镀膜厚 度的方法和探测极限。与目前广泛使用的 X 射线荧光方法相比,其分析灵敏度可提高几个量级。 关键词:镀膜厚度;中子活化;测量灵敏度 中图分类号:TL364.5 文献标志码:A 文章编号:1000-6931(2010)12-1509-04

Investigation on Feasibility and Detection Limits for Determination of Coating Film Thickness by Neutron Activation Analysis

YAO Mao-ying1, XU Jia-yun1, GAO Dang-zhong2, ZHANG Di-da1,

YANG Zun-yong¹, YAO Zhen-qiang¹, WANG Ming-qiu¹

School of Physics Science and Technology, Sichuan University, Chengdu 610064, China;
 Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, China)

Abstract: A method for the determination of coating film thickness by neutron activation was proposed in this paper. After Au, Al and Cu et al. films were activated with a Am-Be neutron source, the characteristic γ -rays emitted by the activated nuclides in the films were counted with a HPGe γ spectrometer. The detection limits of film thickness by using a nuclear reactor neutron source were deduced on the basis of the γ -ray counts and the Monte-Carlo simulated detection efficiencies. The possible detection limits are typically 4-5 orders of magnitude better than those by fluorescent X-ray method, which is currently widely used to determine coating film thickness.

Key words: coating film thickness; neutron activation; measuring sensitivity

对于有基底材料的单层或多层镀膜材料的 厚度测量,目前有效的分析手段是 X 射线荧光 分析方法。该方法是用 X 射线在辐照的同时 用 X 射线能谱仪分析从镀层元素激发出的特征 X 射线,由于辐照和测量同时进行,激发源X 射线的散射本底会严重干扰特征 X 射线的

基金项目:国家自然科学基金-中国工程物理研究院联合基金资助项目(10476017)

收稿日期:2010-04-14;修回日期:2010-04-21

作者简介:姚茂莹(1984一),女,四川成都人,硕士研究生,核技术应用专业

测量,这种干扰使镀层厚度测量的灵敏度受到 限制,只能达到零点几 µm,因此,该方法不能 用于对更薄的镀层薄膜厚度进行测量:另外,激 发源 X 射线和特征 X 射线由于穿透力弱,在穿 入和穿出被测样品的过程中存在的自吸收也会 明显影响镀膜厚度测量的准确性。本文提出用 中子活化法分析镀膜材料的厚度,可避免上述 X 荧光分析的问题,这是由于在中子活化分析 过程中,辐照和测量过程在时空上是分开进行, 测量中不存在有激发源的干扰;中子和活化后 样品放出的特征 γ 射线都有很强的穿透能力, 因此,用中子活化分析单层或多层镀膜材料的 厚度,其灵敏度和准确性可大为提高。但其镀 层膜厚测量的灵敏度能够达到多少,以及对于 由不同元素构成的薄膜,怎样选择和优化影响 因素才能使灵敏度和准确性最好,只有通过实 验和理论分析研究才能得到。

1 分析方法

将待分析镀膜材料置于热中子场中辐照, 通过辐射俘获(n, γ)反应使薄膜元素中的一部 分稳定同位素转化为放射性核素,然后将活化 样品转移到 HPGe γ 谱仪的测量位置,对被活 化样品发射的特征 γ 射线进行能谱测量。通过 记录这些 γ 射线的全能峰峰位和面积,得到发 射这些特征 γ 射线的放射性核素的种类和放射 性活度,由此活度得到薄膜元素的含量,其含量 W 与 γ 射线的全能峰面积 N_0 间的定量关 系为:

$$N_{0} = \frac{WN_{A} \eta \sigma \varphi f_{\gamma} \varepsilon}{M \lambda} (1 - e^{-\frac{\ln 2}{T_{1/2}} t_{0}}) \cdot e^{-\frac{\ln 2}{T_{1/2}} (t_{1} - t_{0})} \left[1 - e^{-\frac{\ln 2}{T_{1/2}} (t_{2} - t_{1})}\right]$$
(1)

式中:M 为待分析元素的原子量; N_A 为阿 伏伽德罗常数; η 为同位素丰度; λ 为放射性 核的衰变常量; $T_{1/2}$ 为放射性核的半衰期; f_{γ} 为一次核衰变发射某一能量 γ 射线的几 率; σ 为热中子(n, γ)反应截面; φ 为热中子 注量率; ϵ 为所用探测器的探测效率; t_0 为活 化时间; $t_1 - t_0$ 为冷却时间; $t_2 - t_1$ 为测量 时间。

在由式(1)得到元素含量 W 的情况下,根据镀层薄膜面积可得到薄膜的质量厚度 X_m, X_m=W/S,还可由已知密度得到镀层线性厚度 $X, X = X_{\rm m}/\rho_{\circ}$

由式(1)可见,γ射线在全能峰下的计数 N₀不仅与被分析元素含量有关,还与同位素 丰度、活化截面、中子注量率、放射性核的半 衰期、γ射线的发射几率、γ射线的探测效 率、活化时间、冷却时间和测量时间等参数 有关。因此,需通过选择或优化这些参数, 实现镀层膜厚的中子活化分析和膜厚分析 灵敏度的提高。

2 参数的选择与确定

从提高测量灵敏度和准确性出发,应在被 测元素含量一定、活化及测量条件一定时,追求 足够大的全能峰峰面积 N_0 。由于一种元素可 有多种同位素,各种同位素具有不同的丰度,每 种同位素又各以一定的核反应截面被中子活化 成放射性同位素,各种放射性同位素具有各自 的半衰期、以不同几率发射不同能量的特征 γ 射线,各种能量 γ 射线又以不同的探测效率被 γ 探测器记录,所以,峰面积 N_0 要受上述各种 因素的影响。因此,用中子活化对镀膜材料进 行分析,须对上述各量进行分析和选择,以使计 数 N_0 在一定条件下最大化。对常用镀层金属 元素 Au、Mg、Al、Ti、Cr、Fe、Cu、Gd,按照使计 数 N_0 最大化的选择原则,经分析比较,各元素 参数的选择列于表 1。

表1给出了能使 N₀最大化的核参数,未给 出与各元素对应的辐照时间、冷却时间和测量 时间的大小,因这些参数的选择除需根据各核 素的半衰期决定外,还需根据辐照时的中子强 弱和测量时的计数率大小决定。影响 N₀的还 有辐照时的中子注量率,测量时探测器的γ探 测效率,前者由所用中子源决定,后者由所用探 测器、γ射线能量、样品与探测器的几何关系 决定。

3 薄膜材料的中子活化与实验测量

为了从实验上说明用中子活化分析镀膜材 料厚度所能达到的灵敏度,用 Am-Be 中子源对 Al、Cu、Au 等薄膜进行活化辐照,用 HPGe γ 谱仪对活化后的薄膜进行能谱测量,获得的 γ 能谱示于图 1。

兀系	问位系	丰度/ %	10^{24} (n, γ) 截 m/cm^{-2}	生成核的半衰期	γ 射线能量/keV	γ 射线友射儿率/ %				
Mg	$^{26}\mathrm{Mg}$	11.01	0.038 2	9.462 min	843.7	71.8				
Al	²⁷ Al	100	0.231	2.240 6 min	1 779.0	100				
Si	³⁰ Si	3.1	0.107	2.622 h	1 266.1	0.07				
Ti	⁵⁰ Ti	5.4	0.179	5.76 min	320.1	93.0				
Cr	$^{50}\mathrm{Cr}$	4.35	15.9	27.704 d	320.1	9.83				
Fe	$^{58}\mathrm{Fe}$	0.28	1.28	44.496 d	1 099.3	56.5				
Cu	⁶⁵ Cu	30.83	2.17	5.10 min	1 039.2	8.0				
Gd	$^{160}\mathrm{Gd}$	21.86	0.77	3.66 min	360.9	60.6				
Au	¹⁹⁷ Au 100 98.65		2.693 5 d	411.8	95.5					
a •.			h		•					
			U		· · ·					
				•						

 	台九条 <i>梅肤序</i> 夜而中了 后 化分 们 的 多 数 远洋
主 1	久 元 志 蒲 問 同 由 田 由 ヱ 洋 ル ム 垢 的 糸 粉 洪 垎

图 1 中子活化 Al 薄膜(a)、Cu 薄膜(b)、Au 薄膜(c)的 γ 射线谱

Fig. 1 γ-ray spectra emitted from Al film (a), Cu film (b), and Au film (c) activated by neutron

从图 1 可看出,即使用低中子注量率的 Am-Be中子源经慢化后对含量极少薄膜材料 辐照,也能获得明显的特征 γ 射线全能峰面积。 图 1c 是用质量为 2.6 mg、厚 0.7 μm 的金膜得 到的,如果用反应堆中子源活化,用低若干量级 的金含量也能获得同样大小的 γ 谱峰,因为反 应堆中子注量率比 Am-Be 中子源的要大若干 (约 10¹⁰)量级。

4 探测极限

对面积一定的镀层薄膜,能分析的最小薄膜厚度称为膜厚分析的探测极限。最小薄膜厚度与薄膜的最低元素含量 W_{min}相对应,能够测出这一最低含量的最低计数记为 N_{0min},根据式(1),两者之间的关系为:

$$W_{\min} = N_{0\min} \frac{M\lambda}{N_{A} \eta \, \sigma \varphi f_{\gamma} \, \varepsilon} \, \bullet \\ \frac{1}{(1 - e^{-\frac{\ln 2}{T_{1/2}}t_{0}}) e^{-\frac{\ln 2}{T_{1/2}}(t_{1} - t_{0})} \left[1 - e^{-\frac{\ln 2}{T_{1/2}}(t_{2} - t_{1})}\right]} \quad (2)$$

根据式(2), W_{min}与 N_{0min}有关, N_{0min}由 γ本 底计数和对计数测量的统计误差的要求决定。 由于测量与辐照分开进行, 从图 1 可知, γ本底 很小, 可忽略不计, 因此, N_{0min}的大小仅由对计 数统计误差的要求决定。另外, W_{min}还与一系 列参数有关, 当同位素丰度、活化截面、半衰期 以及γ发射几率等参数由表1给定时,灵敏度 还与中子注量率、特征γ的探测效率有关。中 子注量率由所用中子源决定;γ射线探测效率 与所用探测器、γ射线能量和样品探测器的几 何关系有关,从实验上确定表1中所列各种能 量γ射线的探测效率比较困难,因缺乏发射这 些能量γ射线的已知活度的标准样品。本工作 用蒙特卡罗模拟计算得出实验室的 HPGe 探 测器对不同能量γ射线的探测效率。该探测器 为圆柱形,直径5.8 cm,高6 cm。不同元素镀 层被假定覆盖在面积为1 cm²、厚为5 mm 的有 机玻璃上。计算得到的探测效率列于表2。

表 2 HPGe 探测器对不同能量 γ 射线的探测效率 Table 2 Detection efficiencies

of different energy γ -rays for HPGe detector

放射性核	γ能量/keV	探测效率/%
	/ HD = / MC /	
$^{27}\mathrm{Mg}$	843.7	6.48
²⁸ Al	1 779	2.7
$^{51}\mathrm{Ti}$	320.1	9.78
$^{51}\mathrm{Cr}$	320.1	9.78
$^{59}\mathrm{Fe}$	1 099.3	3.88
⁶⁶ Cu	1 039.2	4.04
$^{161}\mathrm{Gd}$	360.9	8.94
¹⁹⁸ Au	411.8	8.07

式(2)中各参数确定后,得出用中子活化方法分析 Au、Mg、Al、Ti、Cr、Fe、Cu、Gd 等元素 镀层厚度,考虑用中子注量率为10¹⁴ cm⁻² • s⁻¹

的反应堆中子源活化, 假定 N_{0min} 为 100 或 1 000, 镀膜面积为 1 cm², 用本工作使用的 HPGe 探测器测量的探测极限列于表 3。

	表 3	中子活化方	5法分析得:	到的镀层厚	厚度的探	测极限	
Table 3	Detectio	on limits of	coating thic	kness with	neutron	activation	analysis

元素	生成核	半衰期	γ能量/ keV	探测 效率/%	活化 时间	测量 时间	γ本底 计数	$N_{0\min}$	${W}_{ m min}$	密度/ (g・cm ⁻³)	膜厚探 测极限
Mg	$^{27}\mathrm{Mg}$	9.46 min	843.7	6.48	38 min	28 min	2	100	9.9 ng	1.74	$57 \mathrm{pm}$
Al	$^{28}\mathrm{Al}$	2.24 min	1 779	2.7	9 min	6.7 min	7	100	2.15 ng	2.7	7.9 pm
Ti	$^{51}\mathrm{Ti}$	5.76 min	320.1	9.78	23 min	17.3 min	27	100	0.95 μg	4.5	2 nm
Cr	$^{51}\mathrm{Cr}$	27.7 d	320.1	9.78	4 d	4 h	240	100	0.54 µg	7.14	0.7 nm
Fe	$^{59}\mathrm{Fe}$	44.5 d	1 099.3	3.88	4 d	2 d	221	100	0.8 μg	7.85	1 nm
Cu	⁶⁶ Cu	5.1 min	1 039.2	4.04	20 min	15 min	3	100	4.2 ng	8.92	4.7 pm
Gd	$^{161}\mathrm{Gd}$	3.66 min	360.9	8.94	14 min	11 min	8	100	4.6 ng	7.9	5.8 pm
Au	$^{198}\mathrm{Au}$	2.69 d	411.8	8.07	3 d	12 h	450	1 000	1.1 ng	18.88	0.58 pm

由表 3 可看出,对于 1 cm²大小的镀层,用 中子活化方法分析铁、钛等元素镀层的厚度可 薄至 10⁻⁹ m 量级;对铬元素镀层厚度可达 10⁻¹⁰ m量级;对镁元素镀层可达 10⁻¹¹ m 量级; 对铝、铜、钆元素可达到 10⁻¹² m 量级;对金元 素可达 10⁻¹³ m 量级。

5 结论

利用高注量率的核反应堆中子源对单层或 多层镀膜材料进行活化,再利用高纯锗γ谱仪 分析被活化材料释放的特征γ射线,可容易地 得到镀层材料各层的质量厚度。用该方法可达 到极高的膜层厚度分析灵敏度,其膜层厚度的 探测极限视不同元素可达到1个单原子层、十 分之一、百分之一甚至千分之一个单原子层(假 定膜层面积为1 cm²)。这一灵敏度比目前广 泛使用的 X 荧光方法分析镀层所能达到的零 点几 μm 的测量极限要高出几个量级,因此,用 中子活化分析镀层厚度是一种高灵敏的方法, 特别适于分析厚度极薄的单层或多层镀膜材料 的各层厚度。

参考文献:

[1] 巩岩,陈波,尼启良,等.同步辐射掠出射X射线
 荧光分析薄膜膜厚[J].高能物理与核物理,
 2005,11:1 104-1 106.

GONG Yan, CHEN Bo, NI Qiliang, et al. Fluo-

rescent with synchrotron radiation source [J]. High Energy Physics and Nuclear Physics, 2005, 11: 1 104-1 106(in Chinese).

[2] 谷振军,张一云,徐显启,等. 中子活化片活度测量方法研究[J]. 核动力工程,2007,28(4):122-124.

GU Zhenjun, ZHANG Yiyun, XU Xianqi, et al. Research of method for activity measurement ofneutron-activation-foil[J]. Nuclear Power Engineering, 2007, 28(4): 122-124(in Chinese).

- [3] 赵国庆. 核分析技术[M]. 北京:原子能出版社, 1989:15-35.
- [4] SOETE D D, GIJBELS R, HOSTE J. Neutron activation analysis[M]. Enland: John Whley & Sons Ltd., 1972.
- [5] MUGHABGHAB S F. Neutron cross sections: Neutron resonance parameters and thermal cross sections, Part B: Vol. I [M]. New York: Academic Press, 1984: 61-100.
- [6] TOMOYA A. An X-ray fluorescent spectrometer for the measurement of thin layered materials on silicon wafers[J]. Advances in X-ray Analysis, 1987, 30: 315.
- [7] 韩小元,卓尚军,王佩玲. X 射线荧光光谱法表征 薄膜进展[J]. 光谱学与光谱分析,2006,26(1): 159-165.

HAN Xiaoyuan, ZHUO Shangjun, WANG Peiling. Analysis of films by X-ray fluorescence spectrometry [J]. Spectroscopy and Spectral Analysis, 2006, 26(1): 159-165(in Chinese).