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Abstract Conflict-free coloring is a kind of coloring of hypergraphs requiring each hyperedge
to have a color which appears only once. More generally, there are k-conflict-free coloring (k-CF-
coloring for short) and k-strong-conflict-free coloring (k-SCF-coloring for short) for some positive
integer k. Let Hn be the hypergraph induced by the points {1, 2, . . . , n} with respect to intervals.
At first, we study the k-SCF-coloring of Hn and give the exact k-SCF-coloring number of Hn for
k = 2, 3. Second, we give the exact k-CF-coloring number of Hn for all k. Finally, we extend some
results about online conflict-free coloring for hypergraphs obtained in [5] to online k-CF-coloring.

1 Introduction

A hypergraph is a pair (V, E) where V is a set and E is a collection of subsets of V . The elements
of V are called vertices and the elements of E are called hyperedges. If for any e ∈ E , |e| = 2,
then the pair (V, E) is a simple graph. For a subset V

′ ⊂ V , we call the hypergraph H(V
′
) =

(V
′
, {S ∩ V

′ |S ∈ E}) the sub-hypergraph induced by V
′
. An m-coloring for some m ∈ N of (the

vertices of) H is a function φ : V → {1, . . . , m}. Let φ be an m-coloring of H , if for any e ∈ E
with |e| ≥ 2, there exist at least two vertices x, y ∈ e such that φ(x) 6= φ(y), we call φ proper or
non-monochromatic. Let χ(H) denote the least integer m for which H admits a proper coloring
with m colors. The following coloring is more restrictive than non-monochromatic coloring.

Definition 1.1 (Conflict-Free Coloring) Let H = (V, E) be a hypergraph and let C : V →
{1, . . . , m} be some coloring of H. C is called a conflict-free coloring (CF-coloring for short) if
for any e ∈ E there is a vertex x ∈ e such that ∀y ∈ e, y 6= x ⇒ C(y) 6= C(x).

Let χcf(H) denote the least integer m for which H admits a CF-coloring with m colors.

The notion of CF-coloring was first introduced and studied by Smorodinsky [19] and Even
et al. [12]. Such coloring is very useful in wireless networks, radio frequency identification

1Supported by NNSFC (Grant No. 10801072) and the Fundamental Research Funds for the Central Universities
(Grant No. 1116020301).
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(RFID) networks and vertex ranking prolem. Refer to the survey paper [21] by Smorodinsky
and the references therein for more descriptions. Such coloring have attracted many researchers
from the computer science and mathematics community. As to CF-coloring of hypergraphs that
arise in geometry, refer to Smorodinsky [19], Even et al. [12], Har-Peled and Smorodinsky [14],
Smorodinsky [20], Pach and Tardos [18], Ajwani et al. [2], Chen et al. [10], Alon and Smorodinsky
[3], Lev-Tov and Peleg [16] and etc. As to CF-coloring of arbitrary hypergraphs, refer to Pach
and Tardos [17].

Smorodinsky [19] considered extensions of CF-coloring and introduced the following notion.

Definition 1.2 (k-CF-coloring) Let H = (V,E) be a hypergraph, k be a positive integer. A
coloring χ : V → {1, . . . , m} is called a k-CF-coloring of H if for any e ∈ E there is a color j

such that 1 ≤ |{v ∈ e|χ(v) = j}| ≤ k.

Let χkcf(H) denote the smallest number of colors in any possible k-CF-coloring of H . Note that
1-CF-coloring of a hypergraph is simply a CF-coloring.

Refer to Smorodinsky [19] and Har-Peled and Smorodinsky [14] for the study of k-CF-coloring.
Another extension of CF-coloring is called k-SCF-coloring, which is defined as follows:

Definition 1.3 (k-SCF-coloring) Let H = (V, E) be a hypergraph, k be a positive integer. A
coloring χ : V → {1, . . . , m} is called a k-SCF-coloring if for any e ∈ E with |e| ≥ k, there are at
least k colors which appear only once in e, and for any e ∈ E with |e| < k all points in e are of
different colors.

Let fH(k) denote the smallest number of colors in any possible k-SCF-coloring of H . Note that
1-SCF-coloring is just a CF-coloring.

Abellanas et al. [1] were the first to study k-SCF-coloring2. Aloupis et al. [4] introduced
another coloring called k-colorful coloring, which has interesting connection with strong-conflict-
free coloring. Refer to Horev et al. [15] for the connection and research for k-SCF-coloring.

Throughout the rest of this paper, we let Hn = (Vn, En) be a hypergraph, where Vn =
{1, 2, . . . , n}, and En = {E ⊂ Vn|E = (a, b) ∩ Vn, a, b ∈ R, a < b and E 6= ∅}. Har-Peled
and Smorodinsky [14] proves that χcf(Hn) = ⌊log n⌋ + 1 as a simple yet an important example
of CF-coloring of a hypergraph.

In Section 2, we consider k-SCF-coloring of Hn and give the exact k-SCF-coloring number of
Hn for k = 2, 3. In Section 3, we give the exact k-CF-coloring number of Hn for all k. In the last
section, we consider online k-CF-coloring of any hypergraph.

For simplicity, in the following we denote by ⌈x⌉e the least even number greater than x, and
⌈x⌉o the least odd number greater than x for x ≥ 0.

2They referred to such a coloring as k-conflict-free coloring
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2 k-SCF-coloring of Hn

In this section, we consider k-SCF-coloring of Hn and focus on fHn
(k) especially. To this end,

define for m = 1, 2, . . . ,
gk(m) = sup{n : fHn

(k) ≤ m},
i.e. gk(m) is the largest n such that we can give Hn a k-SCF-coloring by using m colors. The
idea is that if we can get one clear expression of gk(m) as a function of m, then we will be able
to obtain fHn

(k) by the formula fHn
(k) = inf{m : gk(m) ≥ n}. Generally, we have the following

inequalities.

Theorem 2.1 Suppose k,m, p ∈ N, m ≥ k and m > p+ 1. Then we have
(i) if k = 2p, then gk(m) ≤ gk(m− p) + gk(m− p− 1) + 1;
(ii) if k = 2p+ 1, then gk(m) ≤ 2gk(m− p− 1) + 1.

Proof. (i) Suppose that k = 2p and the inequality in (i) is not true, then there is some way to
color gk(m − p) + gk(m − p − 1) + 2 points using m colors and the coloring is k-SCF. Suppose
these gk(m− p) + gk(m− p− 1) + 2 points are

1, 2, ..., gk(m−p)−1, gk(m−p),
︸ ︷︷ ︸

M region

A, gk(m−p)+2, gk(m−p)+3, ..., gk(m−p)+gk(m−p−1)+1,
︸ ︷︷ ︸

N region

B,

where A,B are two points. Because the coloring is k-SCF, there are k colors {a1, . . . , ak}, which
appear only once over the gk(m−p)+ gk(m−p−1)+2 points. But no more than p (including p)
of these k colors could appear in {N region} ∪ {B}, otherwise there will be at most m− p colors
in {M region} ∪ {A}, which is a contradiction with respect to (w.r.t. for short) the definition of
gk(m−p). So there are at most p−1 colors of {a1, . . . , ak} which appear in {N region}∪{B}, that
is, at least k−(p−1) = p+1 colors of {a1, . . . , ak} appear in {M region}∪{A}. So now there will
be at most m−(p+1) = m−p−1 colors which appear in {N region}∪{B}. This is a contradiction
w.r.t. the definition of gk(m− p− 1). Hence we have that gk(m)≤gk(m− p) + gk(m− p− 1) + 1.

(ii) Suppose that k = 2p+ 1 and the inequality in (ii) is not true. Then there is some way to
color 2gk(m−p−1)+2 points using m colors and the coloring is k-SCF. Let these 2gk(m−p−1)+2
points be arranged as follows:

1, 2, ..., gk(m−p−1)−1, gk(m−p−1),
︸ ︷︷ ︸

M region

A, gk(m−p−1)+2, gk(m−p−1)+3, ..., 2gk(m−p−1)+1,
︸ ︷︷ ︸

N region

B.

By k-SCF-coloring condition, there are k colors {a1, . . . , ak}, which appear only once over the
2gk(m− p− 1)+2 points. By the same arguments in (i) above, we know that there are at most p
colors of {a1, . . . , ak} which appear in {N region}∪ {B}, and thus at least k− p = p+1 colors of
{a1, . . . , ak} appear in {M region}∪{A}. So now there will be at mostm−(p+1) = m−p−1 colors
which appear in {N region} ∪ {B}. This is a contradiction w.r.t. the definition of gk(m− p− 1).
Hence we have gk(m) ≤ 2gk(m− p− 1) + 1.

Now we focus on two simple cases that k = 2 and k = 3.
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Theorem 2.2 For any m = 2, 3, . . . , we have

g2(m+ 1) = g2(m) + g2(m− 1) + 1. (2.1)

Proof. By Theorem 2.1(i), in order to prove (2.1), we need only prove that for any m = 2, 3, . . . ,
g2(m+ 1) ≥ g2(m) + g2(m− 1) + 1, i.e. there exists a 2-SCF-coloring for g2(m) + g2(m− 1) + 1
points by using m+ 1 colors.

One can check that g2(1) = 1, g2(2) = 2. Then we can obtain that g2(3) = 4, g2(4) = 7, g2(5) =
12, . . . , g2(m+1) = g2(m) + g2(m− 1)+ 1, if we can give a 2-SCF-coloring to 4 points by using 3
colors, to 7 points by using 4 colors, to 12 points by using 5 colors, . . . , to g2(m) + g2(m− 1) + 1
points by using m+ 1 colors. For simplicity, in the following we use one sequence a1, a2, . . . , an,
to denote a 2-SCF-coloring χ : {1, 2, . . . , n} → {1, 2, . . . , m} for some m with the meaning that
χ(i) = ai for i = 1, . . . , n.

When m = 1, 2, 3 and 4, we have the following 2-SCF-coloring respectively:

• 1;

• 1, 2;

• 1, 2, 3, 1;

• 1, 2, 3, 1, 4, 2, 1.

When m = 5, we have the following 2-SCF-coloring

1, 2, 3, 1, 4, 2, 1, 5, 2, 3, 1, 2.

Note that the color sequence on the left side of “5” is “1, 2, 3, 1, 4, 2, 1”. The reversion of the
sequence on the right side of “4” is “2, 1, 3, 2, 5, 1, 2”. One of these two color sequences is changed
to the other one if we exchange the colors 5 and 4, 2 and 1.

When m = 6, the 2-SCF-coloring is

1, 2, 3, 1, 4, 2, 1, 5, 2, 3, 1, 2, 6, 3, 2, 4, 3, 1, 2, 3.

Note that the color sequence on the left side of “6” is “1, 2, 3, 1, 4, 2, 1, 5, 2, 3, 1, 2”. The reversion
of the sequence on the right side of “5” is “3, 2, 1, 3, 4, 2, 3, 6, 2, 1, 3, 2”. One of these two color
sequences is changed to the other one if we exchange the colors 6 and 5, 3 and 1.

Now we assume that for m ≥ 3 and any l = 3, . . . , m, we have constructed the 2-SCF-coloring
to g2(l) + g2(l − 1) + 1 points by using l + 1 colors and following the above idea. Denote the
2-SCF-coloring for l = m by the following color sequence

1, 2, . . . , ag2(m−2),m− 1, ag2(m−2)+2, . . . , ag2(m−1),m, ag2(m−1)+2, . . . , ag2(m), (2.2)

where the colors m− 1 and m appear only once. Basing on the coloring (2.2), we construct one
(m+ 1)-coloring for g2(m) + g2(m− 1) + 1 points as follows:

1, 2, . . . , ag2(m−2), m− 1, ag2(m−2)+2, . . . , ag2(m−1),m, ag2(m−1)+2, . . . , ag2(m),m+ 1,

ag2(m−1), . . . , ag2(m−2)+2, m− 1, ag2(m−2), . . . , 2̄, 1̄, (2.3)

4



where the color sequence on the left side of “m+1”

1, 2, . . . , ag2(m−2), m− 1, ag2(m−2)+2, . . . , ag2(m−1),m, ag2(m−1)+2, . . . , ag2(m) (2.4)

and the reversion of the sequence on the right side of “m”

1̄, 2̄, . . . , ag2(m−2), m− 1, ag2(m−2)+2, . . . , ag2(m−1),m+ 1, ag2(m), . . . , ag2(m−1)+2 (2.5)

can be transformed mutually if we exchange the colors m+ 1 and m, and some other color pairs
which appear in the color sequence “ag2(m−1)+2, . . . , ag2(m)” between the colors m and m+ 1.
Obviously, the colors m and m+ 1 appear only once.

Next we prove that the coloring (2.3) is 2-SCF. For any hyperedge e of Hg2(m)+g2(m−1)+1, if it
contains both color m and color m+ 1, then it satisfies the condition of 2-SCF-coloring. If not,
then the color sequence associated with e is a subsequence of (2.4) or (2.5), and thus it satisfies
the condition of 2-SCF-coloring by our construction.

Corollary 2.3 For any n = 1, 2, . . ., we have fHn
(2) = min{An, Bn}, where

An =

⌈

log 1+
√
5

2

√
5(n + 1) +

√

5(n+ 1)2 − 4

2(2 +
√
5)

+ 1

⌉

o

,

Bn =

⌈

log 1+
√
5

2

√
5(n + 1) +

√

5(n+ 1)2 + 4

2(2 +
√
5)

+ 1

⌉

e

.

Proof. By Theorem 2.2, we have g2(m + 1) = g2(m) + g2(m − 1) + 1, ∀m ≥ 2. Let ĝ2(m) =
g2(m) + 1, ∀m ≥ 2. Then ĝ2(m) satisfies the following recursive relation:

ĝ2(m+ 1)− ĝ2(m)− ĝ2(m− 1) = 0.

By the theory of linear sequence, the character equation of ĝ2(m) is

λ2 − λ− 1 = 0,

with two roots being α = 1+
√
5

2
, β = 1−

√
5

2
= − 1

α
. So we can write

ĝ2(m) = C1α
m + C2β

m, C1, C2 ∈ R.

By ĝ2(1) = 2 and ĝ2(2) = 3, we get that

C1 =
3− 2β

α(α− β)
, C2 =

2α− 3

β(α− β)
.

Thus we have

g2(m) = ĝ2(m)− 1

=
(3− 2β)αm−1 + (2α− 3)βm−1

α− β
− 1

=
1√
5



(2 +
√
5)

(

1 +
√
5

2

)m−1

+ (
√
5− 2)(−1)m−1

(

1 +
√
5

2

)−(m−1)


− 1. (2.6)

By (2.6) and the formula fHn
(2) = inf{m : g2(m) ≥ n}, we obtain that fHn

(2) = min{An, Bn}.

5



Theorem 2.4 For any m = 3, 4, . . . , we have

g3(m) = 2g3(m− 2) + 1. (2.7)

Proof. By Theorem 2.1(ii), in order to prove (2.7), we need only prove that for any m = 3, 4, . . . ,
g3(m) ≥ 2g3(m − 2) + 1, i.e. there exists a 3-SCF-coloring for 2g3(m − 2) + 1 points by using
m colors. As in the proof of Theorem 2.2, in the following we use one sequence a1, a2, . . . , an,
to denote a 3-SCF-coloring χ : {1, 2, . . . , n} → {1, 2, . . . , m} for some m with the meaning that
χ(i) = ai for i = 1, . . . , n.

Step 1. We consider the sequence {3, 5, 7, . . .} of odd numbers. For m = 3, 5, 7, we have the
following 3-SCF-colorings:

• 1, 2, 3;

• 1, 2, 3, 4, 1, 5, 3;

• 1, 2, 3, 4, 1, 5, 3, 6, 1, 2, 3, 7, 1, 5, 3.

Hence g3(3) = 3 = 2g3(1) + 1; g3(5) = 7 = 2g3(3) + 1; g3(7) = 15 = 2g3(5) + 1.

Note that the third coloring for m = 7 has the following structure:

1,2,3,
︸︷︷︸

A

4, 1,5,3,
︸︷︷︸

B

6, 1,2,3,
︸︷︷︸

A

7, 1,5,3
︸︷︷︸

B

. (2.8)

When m = 9, two new colors 8 and 9 are added. We can construct the following coloring:

A, 4, B, 6, A, 7, B, 8, A, 4, B, 9, A, 7, B. (2.9)

Now we show that (2.9) is a 3-SCF-coloring. Notice that the three colors 6, 8, 9 appear only once.

If a hyperedge contains the colors 6, 8 and 9, then it satisfies the condition of 3-SCF-coloring.
So we need only check those hyperedges which do not contain all these three colors. Hyperedges
which do not contain all the colors 6, 8 and 9 have the following four types (with overlapping):

1. Those which do not contain color 9;

2. Those which do not contain color 6;

3. Those which do not contain color 8 and color 9;

4. Those which do not contain color 6 and color 8.

Type 4 is a version of type 3 with color 6 being substituted by color 9, so any hyperedge belongs to
these two types satisfies the condition of 3-SCF-coloring by the 3-SCF-coloring property of (2.8).
Type 2 is a version of type 1 with colors 4, 6, 7, 8 being substituted by 7, 8, 4, 9, respectively.
So we need only check type 1.

6



Notice that colors 6, 7, and 8 appear only once in the color sequence “A, 4, B, 6, A, 7, B, 8, A, 4, B”
on the left side of color 9 in (2.9). Then any hyperedge of type 1 which contains colors 6, 7 and
8 satisfies the condition of 3-SCF-coloring. Further, those of type 1 which do not contain all the
colors 6, 7 and 8 have the following types (with overlapping):

5. Those which do not contain color 8;

6. Those which do not contain color 6;

7. Those which do not contain color 7 and color 8;

8. Those which do not contain color 6 and color 7.

Type 6 is a version of type 5 with colors 4, 6, 7 being substituted by colors 7, 8, 4, respectively.
Type 5 belongs to type 3 and so any hyperedge in types 5 and 6 satisfies the condition of 3-SCF-
coloring. Type 8 is a version of type 7 with A and B being exchanged, and colors 4, 6 being
substituted by colors 8, 4. Any hyperedge of type 7 satisfies the condition of 3-SCF-coloring by
the 3-SCF-coloring for m = 7.

In a word, the coloring (2.9) with m = 9 colors is 3-SCF. Hence g3(9) = 2g3(7) + 1.

Next we show that the coloring (2.9) still has the structure of (2.8):

A, 4, B,
︸ ︷︷ ︸

A′

6, A, 7, B,
︸ ︷︷ ︸

B′

8, A, 4, B,
︸ ︷︷ ︸

A′

9, A, 7, B,
︸ ︷︷ ︸

B′

(2.10)

The structure is reserved by substituting A and B by A′ and B′, and the colors 6, 8, 9 appears
only once in the whole coloring (2.10), just as 4, 6, 7 do in coloring (2.8).

Because the coloring structure is reserved, new 3-SCF-coloring could always be constructed
when two new colors are added. Hence by induction, we get that for m = 3, 5, 7, . . . , (2.7) holds.

Step 2. We consider the sequence {4, 6, 8, . . .} of even numbers. For m = 4, we have the
following 3-SCF-coloring

1, 2, 3, 4, 1.

So g3(4) = 2g3(2) + 1 = 5.

For m = 6, we have the following 3-SCF-coloring

1, 2, 3, 4, 1, 5, 3, 6, 1, 2, 3,

which can be expressed by

A3, 4, B3, 6, A3, (2.11)

where A3 = {1, 2, 3} and B3 = {1, 5, 3}. So g3(6) = 2g3(4) + 1 = 11.

For m = 8, we have the following 3-SCF-coloring

1,2,3,
︸︷︷︸

A3

4, 1,5,3,
︸︷︷︸

B3

6, 1,2,3,
︸︷︷︸

A3

7, 1,5,3
︸︷︷︸

B3

8, 1,2,3,
︸︷︷︸

A3

4, 1,5,3,
︸︷︷︸

B3

,

7



which can be expressed by

A4, 6, B4, 8, A4, (2.12)

where A4 = {A3, 4, B3} and B4 = {A3, 7, B3}. So g3(8) = 2g3(6) + 1 = 23.

For m = 10, we can construct the following 3-SCF-coloring

A4, 6, B4, 8, A4, 9, B4, 10, A4, 6, B4,

which can be expressed by

A5, 8, B5, 10, A5, (2.13)

where A5 = {A4, 6, B4} and B5 = {A4, 9, B4}. So g3(10) = 2g3(8) + 1 = 47.

Notice that (2.11), (2.12) and (2.13) have the same structure, and we can construct 3-SCF-
coloring for m = 2(k + 1) basing the coloring with this structure for m = 2k, k = 3, 4, . . .. Hence
for m = 4, 6, 8, . . . , (2.7) holds. The proof is completed.

Corollary 2.5 For any n = 1, 2, . . . , we have

fHn
(3) = min

{⌈

2(1 + log2
n + 1

3
)

⌉

e

, ⌈2log2(n + 1) + 1⌉o
}

. (2.14)

Proof. By Theorem 2.4, we have known that g3(m) = 2g3(m − 2) + 1, ∀m≥3. Let ĝ3(m) =
g3(m) + 1, ∀m ≥ 3, then ĝ3(m) satisfies the following recursive relation

ĝ3(m+ 2) = 2ĝ3(m), ∀m ≥ 1,

which together with ĝ3(1) = 2, ĝ3(2) = 3 implies that

g3(m) =

{
3 · 2p−1 − 1 if m = 2p ;

2p − 1 if m = 2p+ 1.
(2.15)

By (2.15) and the formula fHn
(3) = inf{m : g3(m) ≥ n}, we obtain (2.14).

3 k-CF-coloring of Hn

In this section, we consider k-CF-coloring of Hn for any k = 1, 2, . . . and obtain the following
result.

Theorem 3.1 For any k, n = 1, 2, . . . , we have χkCF (Hn) = ⌊log(k+1)n⌋+ 1.
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Proof. Step 1: We prove that for any m = 1, 2, . . . , when n ≥ (k + 1)m, χkCF (Hn) ≥ m+ 1. If
m = 1, it is right. Suppose that the claim holds for some m ∈ {1, 2, . . .}. For n ≥ (k+ 1)m+1, we
express Vn = {1, 2, . . . , n} by

Vn = Vn,1 ∪ Vn,2 ∪ · · · ∪ Vn,k+1 ∪ Vn,k+2, (3.1)

where

Vn,1 = {1, 2, . . . , (k + 1)m},
Vn,2 = {(k + 1)m + 1, (k + 1)m + 2, . . . , 2(k + 1)m},

· · ·
Vn,k+1 = {k(k + 1)m + 1, k(k + 1)m + 2, . . . , (k + 1)m+1},

and if n = (k + 1)m+1, then Vn,k+2 = ∅; if n > (k + 1)m+1, then Vn,k+2 = {(k + 1)m+1 + 1, . . . , n}.
By the expression (3.1) and the induction hypothesis, we can easily get that χkCF (Hn) ≥ m+ 2.
Hence the claim holds for any m = 1, 2, . . ..

Step 2: We prove that for m = 1, 2, . . . , n = (k + 1)m − 1, χkCF (Hn) = m. When m = 1,
n = k and so χkCF (Hn) = 1 = m. Suppose that the claim holds for some m ∈ {1, 2, . . .}. For
n = (k + 1)m+1 − 1, we express Vn = {1, 2, . . . , n} by

Vn = V n,1 ∪ {(k + 1)m} ∪ V n,2 ∪ {2(k + 1)m} ∪ · · · ∪ V n,k ∪ {k(k + 1)m} ∪ V n,k+1, (3.2)

where

V n,1 = {1, 2, . . . , (k + 1)m − 1},
V n,2 = {(k + 1)m + 1, (k + 1)m + 2, . . . , 2(k + 1)m − 1},

· · ·
V n,k+1 = {k(k + 1)m + 1, k(k + 1)m + 2, . . . , (k + 1)m+1 − 1}.

For any i = 1, . . . , k + 1, by the induction hypothesis, we know that the sub-hypergraph induced
by V n,i has a k-CF-coloring by using m colors e.g. colors 1, 2, . . . , m. Use color m + 1 to color
the vertices (k + 1)m, 2(k + 1)m, . . . , k(k + 1)m. We can easily check that this coloring is a k-CF-
coloring of Hn. So χkCF (Hn) ≤ m+ 1. By Step 1 and the fact that (k + 1)m+1 − 1 ≥ (k + 1)m,
we get that χkCF (Hn) = m + 1 for n = (k + 1)m+1 − 1. Hence for any m = 1, 2, . . . , the claim
holds.

By Step 1 and Step 2, we obtain that for any k, n = 1, 2, . . . , χkCF (Hn) = ⌊log(k+1)n⌋+ 1.

4 Online k-CF-coloring of hypergraphs

To capture a dynamic scenario where antennae can be added to the network, Chen et al. [8]
initiated the study of online conflict-free colouring of hypergraphs. They proposed a natural,
simple, and obvious coloring algorithm called the UniMax greedy algorithm, but showed that
the UniMax greedy algorithm may require Ω(

√
n) colors in the worst case. They also introduced
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a 2-stage deterministic variant of the UniMax greedy algorithm and showed that the maximum
number of colors that it uses is Θ(log2 n). In addition, they described a randomized version of
the UniMax greedy algorithm, which uses, with high probability, only O(logn) colors.

Among other results, Fiat et al. [13] provided a randomized algorithm for online conflict-free
coloring of n points on the line with O(logn log log n) colors with high probability. Chen, Kaplan
and Sharir [7, 9] considered the hypergraphs induced by points in the plane with respect to in-
tervals, half-planes, and unit disks and otained randomized online conflict-free coloring algorithm
that use O(logn) colors with high probability.

Bar-Noy et al. [5] gave a more general framework for online CF-coloring of hypergraph than
[7, 8, 9]. This framework is used to obtain efficient randomized online algorithms for hypergraphs
provided that a special parameter referred to as the degeneracy of the underlying hypergraph is
small.

In this section, we extend some results about the online conflict-free coloring in [5] to online
k-CF-coloring. First, we give some necessary definitions. Second, we present a framework for
online k-CF-coloring. Finally, we give an online randomized k-CF-coloring algorithm.

4.1 Some definitions

Definition 4.1 For a hypergraph H = (V,E) and an integer m ≥ 2, define an m-uniform
hypergraph Dm(H) = (V, F ), where F = {e ∈ E | |e| = m}.

If m = 2, then Dm(H) is just the Delaunay graph G(H) of H .

Definition 4.2 Let H = (V, E) be a hypergraph and φ be an m-coloring of H. If for any e ∈ E
with |e| ≥ k + 1, we have

|{a | ∃v ∈ e s.t. φ(v) = a}| ≥ 2,

then φ is called k-proper non-monochromatic.

Notice that 1-proper non-monochromatic coloring is just proper or non-monochromatic coloring.

Definition 4.3 Let k > 0, q > 0 be two fixed integers and H = (V,E) be a hypergraph on the
n vertices v1, v2, . . . , vn. For a permutation π : {1, 2, . . . , n} → {1, 2, . . . , n}, and t = 1, . . . , n,
define

Sπ
k (t) =

t∑

j=1

dk(vπ(j)),

where dk(vπ(j)) = |{e ∈ Dk+1(H({vπ(1), . . . , vπ(j)})) : vπ(j) ∈ e}|. If, for any permutation π and
any t ∈ {1, 2, . . . , n}, we have

Sπ
k (t) ≤ qt,

then we say that H is q-degenerate of degree k.

Notice that q-degenerate of degree 1 is just q-degenerate defined in [5].
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4.2 A framework for online k-CF-coloring

Let H = {V, E} be any hypergraph. We define a framework that colors the vertices of V in
an online fashion, i.e., when the vertices of V are revealed by an adversary one at a time. At
each time step t, the algorithm must assign a color to the newly revealed vertex vt. This color
cannot be changed in future times t′ > t. The coloring has to be k-conflict-free for all the induced
hypergraphs H(Vt) with t = 1, ..., n, where Vt ⊆ V is the set of vertices revealed by time t. The
framework is almost the same with the one for online conflict-free coloring in [5]. In fact, we need
only change “proper non-monochromatic coloring” to “k-proper non-monochromatic coloring”.
For the reader’s convenience, we spell out the details.

For a fixed positive integer h, let A = {a1, ..., ah} be a set of h auxiliary colors. Let f : N → A

be some fixed function. In the following, we define the framework that depends on the choice of
the function f and the parameter h.

A table (to be updated online) is maintained with row entries indexed by the variable i with
range in N. Each row entry i at time t is associated with a subset V i

t ⊆ Vt in addition to an
auxiliary k-proper non-monochromatic coloring of H(V i

t ) with at most h colors. We say that
f(i) is the auxiliary color that represents entry i in the table. At the beginning all entries of
the table are empty. Suppose all entries of the table are updated until time t − 1 and let vt be
the vertex revealed by the adversary at time t. The framework first checks if an auxiliary color
can be assigned to vt such that the auxiliary coloring of V 1

t−1 together with the color of vt is
a k-proper non-monochromatic coloring of H(V 1

t−1 ∪ {vt}). Any (k-proper non-monochromatic)
coloring procedure can be used by the framework: for example, a first-fit greedy method in which
all colors in the order a1, ..., ah are checked until one is found. If such a color cannot be found for
vt, then entry 1 is left with no changes and the process continues to the next entry. If however,
such a color can be assigned, then vt is added to the set V 1

t−1. Let c denote such an auxiliary color
assigned to vt. If this color is the same as f(1) (the auxiliary color that represents entry 1), then
the final color of vt in the online k-CF-coloring is 1 and the updating process for the t-th vertex
stops. Otherwise, if an auxiliary color cannot be found or if the assigned auxiliary color is not
the same as f(1), then the updating process continues to the next entry. The updating process
stops at the first entry i for which vt is both added to V i

t and the auxiliary color assigned to vt
is the same as f(i). Then, the main color of vt in the final k-CF-coloring is set to i.

It is possible that vt never gets a final color. In this case we say that the framework does
not halt. However, termination can be guaranteed by imposing some restrictions on the auxiliary
coloring method and the choice of the function f . Later, a randomized online algorithm based
on this framework is derived under the oblivious adversary model. This algorithm always halts,
or to be more precise halts with probability 1, and moreover it halts after a “small” number of
entries with high probability. We prove that the above framework produces a valid k-CF-coloring
if it halts.

Proposition 4.4 If the above framework halts for any vertex vt then it produces a valid online
k-CF-coloring of H.

Proof. The proof is similar to the one of [5, Lemma 3.1]. Let H(Vt) be the hypergraph induced
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by the vertices already revealed at time t. Let S be a hyperedge in this hypergraph and let j be
the maximum integer for which there is a vertex v of S colored with j. We claim that at most
k such vertices in S exist. Assume to the contrary that there is (for example) k + 1 vertices in
S colored with j. This means that at time t all these k + 1 vertices were present at entry j of
the table and that they all got an auxiliary color (in the auxiliary coloring of the set V j

t ) which
equals f(j). However, since the auxiliary coloring is a k-proper non-monochromatic coloring of
the induced hypergraph at entry j, S ∩ V

j
t is not monochromatic so there must exist a (k+2)-th

vertex v′ ∈ S ∩ V
j
t that was present at entry j and was assigned an auxiliary color different from

f(j). Thus, v′ got its final color in an entry greater than j, which contradicts the maximality of
j in the hyperedge S.

4.3 An online randomized k-CF-coloring algorithm

Based on the framework of Section 4.2, we can obtain an online randomized k-CF-coloring algo-
rithm by using the same choices with [5] for (a) the set of auxiliary colors of each entry, (b) the
function f , and (c) the algorithm for the auxiliary coloring at each entry, i.e. we use the set of
auxiliary colors A = {a1, ..., a2q+1}, where q is a parameter on degeneracy of the hypergraph, see
Theorem 4.5 below; for each entry i, the representing color f(i) is chosen uniformly at random
from A; we use a first-fit algorithm for the auxiliary coloring.

Following the proof of [5, Theorem 4.1], we obtain the following result. The complete proof
can be found in [11].

Theorem 4.5 Let H = (V, E) be a q-degenerate hypergraph of degree k on n vertices. Then, there
exists a randomized online k-CF-coloring algorithm for H which uses at most O(log1+ 1

4q+1

n) =

O(qlogn) colors with high probability against an oblivious adversary.
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