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Effective mode volumes and Purcell factors for leaky optical cavities
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We show that for optical cavities with any finite dissipation, the term “cavity mode” should
be understood as a solution to the Helmholtz equation with outgoing wave boundary conditions.
This choice of boundary condition renders the problem non-Hermitian, and we demonstrate that
the common definition of an effective mode volume is ambiguous and not applicable. Instead, we
propose an alternative effective mode volume which can be easily evaluated based on the mode
calculation methods typically applied in the literature. This corrected mode volume is directly
applicable to a much wider range of physical systems, allowing one to compute the Purcell effect
and other interesting optical phenomena in a rigorous and unambiguous way.

Optical microcavities are inherently dissipative and are
typically characterized by a quality factor, or Q-value,
describing the relative energy loss per cycle as well as
an effective mode volume, Veff, which gives a measure
of the spatial confinement of the electromagnetic field in
the cavity. Cavities with high Q-values and small mode
volumes provide enhanced light-matter interaction and
are of fundamental as well as technological interest [1, 2].
Effective mode volumes are ubiquitous in physics and
connect to a wide range of phenomena, including sens-
ing [3], switching [4], cavity quantum electrodynamics
(QED) [5], circuit-QED [6], and optomechanics [7]. As a
striking example of the use of mode volumes, an emitter
in an optical cavity will experience a medium-enhanced
radiation rate relative to that in a homogeneous medium
given by the so-called Purcell factor [8]

FP =
3

4π2

(

λc

nc

)3 (
Q

Veff

)

, (1)

where λc is the free space wavelength, and nc is the ma-
terial refractive index at the field antinode rc. Purcell
factors are widely used in quantum optics as a figure of
merit for single photon sources [9].
Mode volumes are often attributed to the physically

appealing idea of a single cavity mode. However, in spite
of the fact that cavity modes are widely used in the lit-
erature, there seems to be a disturbing lack of a precise
definition, and their mathematical properties therefore
remain unspecified. The lack of a definition is evidenced
in part by the diverse nomenclature at use (“resonance”,
“leaky mode” or “quasi mode”), suggesting that the dis-
sipative nature of cavity modes somehow makes them
different from other modes, but an explicit distinction is
rarely made. It appears that cavity modes are widely be-
lieved to share the properties of Hermitian eigenvectors,
although a mode with a finite lifetime is incompatible
with the solution space of Hermitian eigenvalue prob-
lems. Strictly, only in the limit of large (infinite) Q will
the modes in optical cavities appear as the solutions to
Hermitian eigenvalue problems. For finite Q, the lack of
hermiticity effectively renders expressions such as Eq. (1)

ambiguous, since the volume Veff cannot be inferred from
the usual inner product of Hermitian systems. In particu-
lar, if ǫr(r) describes the relative permittivity distribution
and f̃c(r) is the cavity mode, then a direct application of
the common normal mode prescription

V N
eff =

∫

V

ǫr(r)|fc(r)|2
ǫr(rc)|fc(rc)|2

dr, (2)

cannot be expected to provide the correct mode volume.
In many practical calculations, the leaky cavity mode
is found with the finite-difference time-domain (FDTD)
method by launching a short pulse and monitoring the
resonant field that leaks from the cavity at a rate set by
the Q-value [10]. Figure 1 shows a sketch of an example
cavity along with mode profiles calculated with FDTD
[11]. For this cavity mode the integral in Eq. (2) diverges
as a function of the integration volume V , and indeed
this is formally the case for all cavities with a finite Q.
For very high-Q cavities, however, the divergence is slow
and may not be discernable in practice due to numerical
accuracy, but the formal divergence still renders Eq. (2)
questionable.
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FIG. 1. Sketch of a photonic crystal made from a triangular
lattice of air holes (lattice constant a) in a membrane of high
refractive index. A defect cavity is formed by the omission of
a single hole. Right: Absolute value of the y-polarized cavity
mode in the planes z = 0 (top) and y = 0 (bottom).

In this Letter we argue that the term “cavity mode”
should be understood as a solution to the Helmholtz
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equation with outgoing wave boundary conditions. This
definition renders the cavity modes identical to the quasi-
normal modes of Lee et al. [12] which have complex res-
onance frequencies (with a negative imaginary part, as
expected for dissipative modes) and exhibit an inherent
exponential divergence at large distances. We illustrate
directly how this definition complies with typical calcula-
tions of cavity modes using FDTD and we elucidate how
the cavity modes from FDTD calculations also show an
exponential divergence. Quasinormal modes have prop-
erties that are different from the solutions to Hermitian
eigenvalue problems and therefore important results such
as orthogonality and completeness of the solutions can-
not be taken for granted. Nevertheless, an inner product
and a corresponding orthogonality relation can be de-
fined, and the quasinormal modes can be used as a basis
for expansion of the electromagnetic Green’s tensor in
certain regions [12]. This enables a precise and unam-
biguous description of light-matter interaction in general
leaky optical cavities, including an expression for the ef-
fective mode volume and thus the Purcell factor.
It is illustrative to start by highlighting the differ-

ences between two types of modes that can be associ-
ated with fields in optical cavities. The electric field in
general non-magnetic materials satisfy the wave equa-
tion with time-harmonic solutions of the form E(r, t) =
E(r, ω) exp{−iωt}. The position-dependent electric field
E(r) solves the vector Helmholtz equation

∇×∇×E(r, ω)− k20ǫr(r)E(r, ω) = 0, (3)

where k0 = ω/c. Together with a suitable set of bound-
ary conditions, Eq. (3) provides a generalized eigenvalue
equation. We will use the term normal mode to denote
a solution to Eq. (3) with any set of boundary condi-
tions that renders the problem Hermitian. In this case
we denote the vector eigenfunctions and corresponding
real eigenfrequencies as fµ(r) and ωµ, respectively. The
normal modes are normalized as

〈fµ|fλ〉 =
∫

V

ǫr(r) f
∗

µ(r) · fλ(r) dr = δµ,λ, (4)

where the integral is over the volume defined by the
boundary conditions. In many applications, the limit
V → ∞ is taken, in which case the spectrum of eigenval-
ues becomes continuous. We will use the term quasinor-

mal modes for solutions to Eq. (3) with outgoing wave
boundary conditions (the Sommerfeld radiation condi-
tion [13]). This choice of boundary condition renders
the eigenvalue problem non-Hermitian with a discrete
spectrum, and we denote the vector eigenfunctions with
a tilde as f̃µ(r). The corresponding eigenfrequencies,
ω̃µ = ω̃R

µ + iω̃I
µ, are in general complex with ω̃I

µ < 0, and
it follows from Eq. (3) that, contrary to the Hermitian
case, f̃µ(r) and f̃

∗

µ(r) are not eigenvectors corresponding
to the same eigenvalue. The quasinormal modes may be

normalized as [12]

〈〈f̃µ|f̃λ〉〉 = lim
V →∞

∫

V

ǫr(r) f̃µ(r) · f̃λ(r) dr

+ i

√
ǫr

ω̃µ + ω̃λ

∫

∂V

f̃µ(r) · f̃λ(r) dr = δµ,λ, (5)

where ∂V denotes the border of the volume V . The limit
V → ∞ is calculated by increasing the volume to obtain
convergence. For the systems that we investigate in this
Letter, the convergence is remarkably fast. For very low-
Q cavities, however, the convergence is nontrivial due
to the exponential divergence of the quasinormal modes
which may cause the inner product to oscillate around
the proper value as a function of calculation domain size.
In addition to the modes of the cavity it is convenient

to introduce the electromagnetic Green’s tensor through

∇×∇×G(r, r′, ω)−k20ǫr(r)G(r, r′, ω) = Iδ(r−r
′), (6)

subject to the Sommerfeld radiation condition. The
Green’s tensor provides the proper framework for cal-
culating light emission and scattering in general dielec-
tric structures. In general, the decay rate Γα(r, ω) of a
dipole emitter with orientation eα may be enhanced or
suppressed as compared to the rate ΓB in a homogeneous
medium. The relative rate may be expressed as

Γα(r, ω)

ΓB(ω)
=

Im {eαG(r, r, ω)eα}
Im {eαGB(r, r, ω)eα}

, (7)

whereGB(r, r
′, ω) is the Green’s tensor in a homogeneous

background medium with ǫr(r) = ǫB [14]. In certain re-
gions, such as inside the scattering region, the transverse
part of the Green’s tensor may be expanded through [12]

G
T(r, r′, ω) = c2

∑

µ

f̃µ(r)f̃µ(r
′)

2ω̃µ(ω̃µ − ω)
. (8)

The implicit assumption behind the notion of a cavity
mode is that one term µ = c dominates the expansion
in Eq. (8) and hence that the Green’s tensor can be ap-
proximated by this term only. With this assumption,
and noting that Im{G(r, r, ω)} = Im{GT(r, r, ω)}, one
can use Eqs. (7) and (8) with ω = ωc = ω̃R

c to recover
Eq. (1) with a corrected effective mode volume given as

V Q
eff =

1

n2
c

|vQ|2
vRQ

, vQ =
〈〈f̃c|f̃c〉〉
f̃2c (rc)

, (9)

where vQ = vRQ + ivIQ is complex in general. This pre-
scription provides a direct and unambiguous way of cal-
culating the effective mode volume.
The quasinormal modes can be calculated analytically

for sufficiently simple structures, but for general struc-
tures the outgoing wave boundary conditions are not im-
mediately compatible with standard numerical solution
methods. One option is to rewrite Eq. (3) as

∇×∇×E(r, ω)− k20ǫBE(r, ω) = k20∆ǫ(r)E(r, ω), (10)



3

where ∆ǫ = ǫr(r) − ǫB, and calculate the quasinormal
modes from a Fredholm type integral equation,

E(r, ω) =
(ω

c

)2
∫

V

G
B(r, r′, ω)∆ε(r′)E(r′, ω)dr′, (11)

which manifestly respects the outgoing wave boundary
conditions. Another option is to use FDTD to calculate
the quasinormal mode as the resonant field that is ex-
cited by an initial short input pulse. We have used both
Eq. (11) and FDTD to calculate the quasinormal modes
in different example cavities in two and three dimensions.
For our example below, we solve Eq. (11) using the ex-
pansion technique of Ref. [15] with an additional iteration
of k0 to make the solution self-consistent. In addition, we
perform FDTD calculations using perfectly matched lay-
ers (PMLs) [16] to enforce the outgoing wave bounday
conditions.
We first consider a 2D finite-sized hexagonal crystal-

lite of high-index rods in air with a single missing rod in
the center. The rods have relative permittivity ǫr=11.4
and radius R=0.15 a, where a is the lattice constant. We
focus on transverse magnetic (TM) polarization in which
the electric field is in the direction of the rods. In the
limit of infinite size, the photonic crystal exhibits a pho-
tonic band gap [17], and the Q of the cavity therefore
depends on the size of the structure which we may char-
acterize by the number of rod layers, N . For N=1 and
N=2, Fig. 2 shows the supported cavity modes with fre-
quencies ω̃ca/2πc=0.4259−0.0135i (Q = −ω̃R/2ω̃I ≈ 16)
and ω̃ca/2πc = 0.4218−0.0013i (Q ≈ 163). In the case of
N=3 (not shown), the structure supports a cavity mode
with frequency ω̃ca/2πc = 0.4216− 0.0001i (Q ≈ 1576).
As expected, the quasinormal modes are concentrated
in the center of the cavity and seem to fall off with in-
creasing distance to the crystallite. At large distances,
however, the quasinormal modes (by definition) behave
as outgoing waves of the form f̃(r) ∝ exp(ik0r)/

√
r (2D)

and f̃(r) ∝ exp(ik0r)/r (3D), and since k0 = kR + ikI
with kI < 0, they diverge exponentially as r → ∞. For
the case of N=1, the top panel in Fig. 2 illustrates di-
rectly that the solutions to Eq. (11) are identical to those
obtained from FDTD. In particular, both solution meth-
ods pick up the divergence in the field at large distances.
Figure 3 shows, as a function of the size of the calcu-
lation domain, the corrected effective mode volume in
Eq. (9) along with the common definition in Eq. (2) with
fc(r) = f̃c(r). From the figure it is clear that whereas

V Q
eff converges quickly to the limiting values, V N

eff seems
to increase with the size of the domain. The linear diver-
gence in V N

eff with the size of the normalization domain
was also noted in Ref. [18] and derives from the fact that
the field does not go to zero at positions outside the crys-
tallite, cf. Fig. 2. At much larger V , the field, and hence
V N
eff , diverges exponentially. For increasing Q, the linear

divergence with domain size becomes less and less pro-
nounced, suggesting that the two formalisms converge in
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FIG. 2. (a): Absolute value along the x-axis of the quasinor-
mal mode in the 2D crystallite for the case of N=1. Blue solid
line shows the solution to Eq. (11), and black circles show the
calculation using FDTD. Inset shows long distance behavior
on a logarithmic scale. (b): Absolute value along the x-axis
of the quasinormal mode for the case of N = 2 with the inset
showing the distribution in the xy-plane. Grey shaded areas
indicate the high-index rods.

the limit of infinite Q as expected.

Next, for a practical 3D example we consider a pho-
tonic crystal membrane (ǫr=12) of thickness h = 0.5 a
and hole radius r = 0.275a. A single air hole is omit-
ted to create a cavity, and Fig. 1 shows the supported
cavity mode with frequency ω̃a/2πc=0.2904 − 0.0004i
(Q ≈ 362). From the results in two dimensions we know
that the quasinormal modes can be directly calculated
using FDTD with PMLs. The field in Fig. 1 was cal-
culated in the same way, and we therefore argue that
it is indeed a quasinormal mode and that we should use
Eq. (9) rather than Eq. (2) to calculate the effective mode

volume. Fig. 4 shows both V Q
eff and V N

eff as a function of
calculation domain size. At the quasinormal mode fre-
quency, the photonic band gap prevents in-plane propa-
gation, and therefore the only way for the field to leak out
of the cavity is in the z-direction. This means that both
V Q
eff and V N

eff converge quickly as a function of width and
depth of the calculation domain and we focus only on the
variation in the effective mode volumes with the height
of the calculation domain. As in two dimensions, the
data shows a fast convergence of V Q

eff , while V N
eff clearly

diverges, confirming that Eq. (2) is not applicable.
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FIG. 3. Effective mode volumes V N
eff (thick lines) and V Q

eff

(thin lines) for N = 1 (red dash-dotted), N = 2 (green
dashed) and N = 3 (blue solid) as a function of radius R
of the calculation domain. Circles indicate reference mode
volumes V tot

eff from independent Green’s tensor calculations
[15], and grey dashed areas show the rod cross sections along
the x-axis.
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FIG. 4. Effective mode volume V N
eff (red dashed) and V Q

eff

(blue solid) for the cavity in Fig. 1 as a function of height
of the calculation domain. Circles indicate reference mode
volumes V tot

eff derived from independent Green’s tensor cal-
culations [10] with estimated error bars at different domain
heights. Gray dashed area shows the extend of the membrane.

Finally, we compare the calculated mode volumes to in-
dependent calculations using the Green’s tensor [10, 15].
Substituting FP = Γc(r, ωc)/ΓB(ωc) in the expression for
the Purcell factor [19] defines an effective mode volume
V tot
eff . For each of the cavities, V tot

eff is indicated with a
circle in Fig. 3. The maximum estimated absolute error
in these calculations is less than 0.0003. The observable
discrepancies for N=1 and N=2 stem from the single
mode approximation and indicates the limited validity of
the Purcell factor. In Fig. 4, V tot

eff was calculated with
FDTD as the response to an input dipole source at three
different domain sizes and with estimated error bars as
indicated. These independent calculations confirm that
Eq. (9) not only is unambiguous, but also leads to the
correct value within the single mode approximation.

In conclusion, we have shown that the term “cavity

mode” should be understood as a so-called quasinor-
mal mode, defined as a solution to the Helmholtz equa-
tion with outgoing wave boundary conditions. This can
have profound consequences, since this choice of bound-
ary conditions renders the differential equation problem
non-Hermitian so that common results from Hermitian
eigenvalue analysis do not apply. In particular, the quasi-
normal modes have complex frequencies and exhibit an
inherent divergence at long distances which makes the
calculation of an effective mode volume nontrivial. In-
troducing an inner product that carefully accounts for
the long distance behavior, it is possible to normalize the
quasinormal modes and to define an effective mode vol-
ume in a direct and unambiguous way. In practical cal-
culations, this corrected mode volume can be obtained
in a straightforward way using exactly the same cavity
modes that are typically computed for use in mode vol-
ume calculations.
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