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Abstract

This paper proposes a new algorithm for solving constragieblal optimiza-
tion problems where both the objective function and con#isare one-dimensional
non-differentiable multiextremal Lipschitz functions. ulMextremal constraints
can lead to complex feasible regions being collectionsatéted points and inter-
vals having positive lengths. The case is considered wherertler the constraints
are evaluated is fixed by the nature of the problem and a @nttis defined only
over the set where the constraiipt 1 is satisfied. The objective function is defined
only over the set where all the constraints are satisfiedontrast to traditional ap-
proaches, the new algorithm does not use any additionafres or variable. All
the constraints are not evaluated during every iteratich@flgorithm providing
a significant acceleration of the search. The new algoritiineefinds lower and
upper bounds for the global optimum or establishes that ithielggm is infeasible.
Convergence properties and numerical experiments shoavimge performance
of the new method in comparison with the penalty approaclyiass.
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1 Introduction

In last decades univariate global optimization problemeevatudied intensively (see
[, [15,[18,/19] 22, 28, 31, 87, 43]) because there exists & lamgnber of real-life
applications where it is necessary to solve such probleess |6 15[ 2i7, 30, 33, 37,
4Q0]). On the other hand, it is important to study these prolsleecause mathematical
approaches developed to solve them can be generalized toulidimensional case
by numerous schemes (see, for example, one-point baseondi simplicial, space-
filling curves, and other popular approaches in [14/ 16, B728,29[ 37]).

Electrotechnics and electronics are among the fields wheredomensional global
optimization methods can be used successfully (se€ [8,,2.1,@4) 33, 40]). Let us
consider, for example, the following so-called ‘mask pesbl for transmitters. We
have a transmitter (for instance, that of GSM cellular pt)tigat in a frequency inter-
val [a, b] has an amplitud&(x) that should be inside the mask defined by functigrs
andu(x), i.e., it should bd(x) < A(x) < u(x). The mask is defined by international
rules agreed to avoid interference appearing when amplitsidoo high for a given
frequency and by properties of electronic components usedrtstruct the transmitter.
Then, it is necessary to find a frequencye [a,b] such that the powep(x), of the
transmitted signal is maximal.

It happens often in engineering optimization problems {8&¢g40]) that if a con-
strained is not satisfied at a point then many other conssraird the objective function
are not defined at this point. This situation holds in our m@agblem because if for
a frequency if happens thaf\(§) > u(§) or A(§) < 1(&) then there is no transmission
and the functiorp(§) is not defined. Since the amplitude can touch the mask bath fro
its internal and its external parts, isolated points in thmigsible region op(x) can
take place. If the maximal powey(x*) is attained at an isolated poikt, then this
point should be discarded from consideration because itatdye realized in practice.
Thus, the solution is acceptable only if it belongs to a fimiterval of a certain length.

This problem can be reformulated in the following generahfework of global
optimization problems considered in this paper. It is neagsto find the global mini-
mizers and the global minimum of a functidfx) subject to constraintgj(x) < 0,1 <
i <m, over an intervala, b]. The objective functiorf (x) and constraintg;(x),1 <i <
m, are multiextremal non-differentiable ‘black-box’ Lipsthfunctions with a priori
known Lipschitz constants (to unify the description practe designatiogm. 1(x) £
f(x) is used hereinafter). Very often in real-life applicatiadhe order the constraints
are evaluated is fixed by the nature of the problem and nobaltonstraints are de-
fined over the whole search regigmb]. The worst case is considered here, i.e., a
constraingj,1(x) is defined only over subregions wheggx) < 0. This means that if
a constraint is not satisfied at a point, the rest of condaind the objective function
are not defined at that point. The s@s1 < j < m+ 1, can be so defined as follows

Qi=[ab], Qj1={x€Qj:gj(x) <0}, 1<j<m, (1)

Q12Q2D... 2Qm D Qmyt1.

Since the constraints are multiextremal, the admissilg@neQm, 1 and regiong);,

1 < j <m, can be collections of intervals having positive lengths eothted points.
Particularly, isolated points appear when one of the caimgs touches zero, for exam-
ple, if gj(x) is the square of some function, thej{x) < 0 only wheng;j(x) = 0. To be
implementable in practice, optimal solutions should haveasible neighborhood of
positive length thus, an additional constraint is incluatetthe model: a poirt* should



belong to an admissible interval having length equal to eatgr thard > 0 — a value
supplied by the final user. The set of all such intervals isgheged as® (of course,
Q% C Qm.1). Eventually found isolated points and feasible subregimaving length
less tham should be excluded from consideration. If the case of inld@aproblem
Q% = 0 holds, it should be also determined.

We can now state the problem formally. Find the global mizenéx* and the
corresponding valué* such that

f* = f(x*) = min{ f(x) : x € Q%}, )

where the objective functiof(x) and constraintg;(x),1 < i < m, are multiextremal
functions satisfying the Lipschitz condition in the form

[9i(X) —gi(X) <Ly X =X"], X X"€Qj, 1<j<m+l, ®3)

and the constants
O<Lj<o, 1<j<m+1, 4)

are known (this supposition is classical in global optirtima(see([15, 17, 28])). Meth-
ods working on the basis of this assumption are called ‘éxaditerature, methods
estimating these values are ‘practical’. On the one hareleftact methods serve as
a basis for studying theoretical properties of practicasand are used as a unit of
measure of the speed of practical methods. On the other irandrtain cases, when
additional information about the objective function andhstaints is available, they
can be applied directly.

An example of such a problem is shown in Hi. 1. It has two niffergntiable
multiextremal constraintg; (X) andgz(x). The corresponding se@ = [a,b], Q2, and
Qs are shown. The poirtbelongs to the set®;,Q2, andQs butc ¢ Q°. The selQ® is
shown by the grey color. It can be seen from Eig. 1 that the@git93, andQ?® consist
of disjoint subregions an@,, Qs contain also an isolated point.

It is not easy to find a traditional algorithm for solving theoplem [2)-{(#). For
example, the penalty approach requires tha) andg;(x), 1 <i < m, are defined over
the whole search intervi, b]. It seems that missing values can be simply filled in with
either a big number or the function value at the nearestliEapoint. Unfortunately,
in the context of Lipschitz algorithms, incorporating sudbas can lead to infinitely
high Lipschitz constants, causing degeneration of the agsthnd non-applicability of
the penalty approach.

A promising approach called tliedex schembas been proposed in [38] (see also
[39,/40]) in combination with stochastic Bayesian algarith An important advantage
of the index scheme is that it does not introduce additioaghbles and/or parameters
by opposition to classical approacheslin[[2, 3,[16/ 17, 23as been recently shown
in [35] that the index scheme can be also successfully usedrbination with the
Branch-and-Bound approach. Unfortunately, this schemenca be applied directly
for solving the problem{2)E{4) because it has good converg@roperties when all
the setsQj,1 < j < m+ 1, have no isolated points — requirement hardly verified in
practice without some additional information about thebpem.

Thus, isolated points give serious problems when one haslgpéchitz informa-
tion. First, because it is not possible to say a priori whethe feasible region has
isolated points or not (for example, the method froml [35]w&rges only to global
minimizers if it is ensured absence of isolated points). o8dc in Lipschitz global
optimization isolated points can lead to two problems: anglation of trial points in



Figure 1: An example of the problei (2)3-(4).
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their neighborhood (this happens even if there exists aregion where a constraint
does not touch zero but is only close to zero) and increakimgstimates of Lipschitz
constants to infinity. This fact means that the search regitirbe covered by a uni-
form mesh of trials) if the Lipschitz constant is estimatethe method simply will not
work if the Lipschitz constant is given — our case — becausal ladaptively obtained
information will contradict the given one. Therefore, titawhal Lipschitz methods
cannot be used in the presence of isolated points and, $iateabsence can be hardly
determined in practice, developments of methods that destalvork independently
of the presence or absence of them becomes very important.

In this paper, such a method is proposed. It evolves the iflsapgarate consid-
eration of each constraint introduced in[38] in a new way esdlices the original
constrained problem to a new continuous problem. The méftiood [35] is used as a
basis for construction of the new scheme. Instead of dismootis support functions
proposed in[[35], new continuous functions are built. These structures are very
important because by using them it becomes possible to appherous tools devel-
oped in Lipschitz unconstrained optimization to a very gahelass of constrained
problems. It is also necessary to emphasize that the nevoagipdoes not introduce
additional variables and/or parameters during this pas§agn initial discontinuous
constrained partially defined problem to the continuousustrained one.

To conclude this introduction it is necessary to emphasime @gain that the prob-
lem of multi-dimensional extensions of one-dimensionglchitz global optimization
methods to many dimensions is a non-trivial serious prol{lentHansen and B. Jau-
mard write in their survey on Lipschitz optimizatidn [15]ldished in the Handbook
of Global Optimization: ‘Large problems (with 10 variabl@smore) appear to be of-



ten intractable, at least if high precision is required’)las beyond the scope of this
paper dedicated to the univariate algorithms and univagpplications. However, the
approach proposed here is very promising from this pointesvin the future, a num-
ber of various multi-dimensional extensions (startingrfrthe adaptive diagonal and
space-filling curves approaches (se€ [34, 40])) of the dlgompresented in this paper
will be studied.

The rest of the paper is organized as follows. The new methatkscribed in
Section 2. Section 3 contains computational results angeédanclusion.

2 Continuous index functions and the new algorithm

The index scheme (sele |38, 89] 40]) considers constraigtsba time at every point
where it has been decided to calculéte) determining the index = v(x),1 <v <
m+ 1, by the following conditions

gi(x) <0, 1<j<v-1 gu(x)>0, (5)

where forv = m+ 1 the last inequality is omitted. The tertrial used hereinafter
means determining the indexx) at a pointx by evaluationg;(x),1 <i <v(x). The
indexv(x) and the valu@, ) (x) are calledesults of the trial

The discontinuous index functiai(x),x € [a,b], can be written for the problem

(2)-(@) following [38]

=0 ®-{ 11 v it ©

where the valud* is the unknown solution to this problem.

Let us start our theoretical consideration by noticing thatglobal minimizer of
the original constrained probleffl (22-(4) in the c@8e# 0 coincides with the solution
to the following unconstrained discontinuous problem

I) =min{I(x) : x e Q°}, (7
where

Q= [ab]\ {Qmi1\ Q. ®)

Suppose now that trials have been executed in a way at somts poi
a=X <X <...<X%<..<X=Db 9

andv; =v(x),0 <i <k, are theirstarting indexes Note that the notion oihndexis
different with respect td [38, 39, 40] where the index is a&ted once and then used
in the course of optimization. In this paper, formulh (5) defi the starting value for
the index that can then be changed during the work of the isthgor
The points from[() form the list (called hereinaftdistory List H(k)) of intervals
[li,ri],1 <i <k, where
li <ri, 1<i<Kk,

ri = liy1, 1<i<k.

The recordx € H(k) means that the point= |; or x = r; for an intervali from H (k).
Every element,1 <i <k, of the list contains the following information:

lisril, v(ti), v(ri), Guay (), Gy (ri)- (10)
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The second lis\W(k), calledWorking Listis built during the work of the method to be
introduced by excluding frorhl (k) intervals where global minimizers of the problem
(2)-(@) can not be located (initially it is statéd(k) = H(k)). In contrast tdH (k) where
the information[(ID) is calculated once and then is keptduttie search, indexesl; )
andv(ri) in W(k) can be changed in the course of optimization.

In order to pass from the problernl (2)3-(4) to the probl€éin (4% ihecessary to
estimate the valué* from (2) and the se@?®. Using the results of trials at the points
from the row [[9) the value

Zi =min{gmy1(X) : v(X) = m+ 1 xe W(k)}. (12)

estimatingf* can be calculated if there exist poimtaith the indexv(x) = m+1. This
value allows us to define the functidh(x),x € [a,b], by replacing the unknown value
f*in (6) by Z;:
Koy 0, v(xX)<m+1,
J (X) - gV(X) (X) - { Z;, V(X) =m+1. (12)

The following Lemma establishes some useful propertiedefftinctionsl(x) and
J¥(x).

Lemma 1 The following assertions hold for the functionsJand X(x):
i. for all points x having indexes(x) < m+ 1, it follows X(x) = J(x) > 0;

i.
KX) <0, xe{X:gm1(X)<Z}. (13)

jii. if v(x) =m+1and Z > f* then
K(x) < I(x). (14)

Proof. Truth of assertions i — iii follows from definitions of therfationsJ(x) and
J(x). m

Particularly, it follows from Lemm@l1 thdf (114) holds if théal point corresponding
to Z;¢ belongs toQ®. The estimate(14) is not trueZf; < f*, the situation which can
occur only ifxg belongs to the se&my1 \ Q% where

Xg = argmin{gm+1(X) 1 v(X) =m+1,xe W(k)}. (15)

Let us introduce the followingontinuous index function&),x € 65, and study

its properties.
C) =max{I(x), I(y) — Ky [ x=yD)}, (16)
yeQ
whereK,y) such thatl,, < Ky < % is an overestimate of the Lipschitz constant
corresponding to the functiog,,(y) andJ(x) is the discontinuous index function
from (8).

As an illustration, the functio€(x) corresponding to the problem presented in
Fig.[ is shown in Fig.J2. The parts of the functiBtx) corresponding tax andy such
that

I(X) <I(Y) =Ky [ x=y|

are shown by the thin line.



Figure 2: The functioil©(x) corresponding to the problem presented in Eig. 1.
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If Q%+ 0, the global minimizers of the original constrained probi@-4) coin-
cide with the solutions of the following continuous problem

C(x") = min{C(x) : x € Q). (17)

In the case&Q® = 0 the seK_f’ = [a,b]\ Qm+1and we have(x) <m+1xe 56. Thus,
due to Lemmall, it follows
C(x) >0, xeQ. (18)

Similarly to definition of the functiord¥(x), the valueZ; is used to define the
functionsC*(x),x € [a, b], as follows.

Ck(x) = y@[gg;]{Jk(x), IKy) — Ky | X=y ]} (19)

Lemma 2 The following assertions hold for the functionsdCand C<(x):
i. inequalities Gx) > J(x), CK(x) > JX(x) hold over the seQ";
ii. if v(x) <m+Lthen &(x) >0;
iii. if v(x) =m+1and xe W(k) then &(x) > 0;
iv. if x€{X:gmr1(X) < Z} then &(x) <O0.
v. if x € Qthen¥(x) <C(x), xe€Qd.

Proof. The truth of the assertions follows from Lemma 1 and forre &) (15),[(15),
and [19)m

It follows from Lemmd2 that ik € QJ, the global minimizers cannot be located
in zones wher€X(x) > 0,x € Q%. Over every intervall;,ri] we are interested in sub-
regions having the index greater or equal to

Vi = max{v(l;),v(r;)},



because, due to construction of the funci@iix), only these subregions can probably
contain a global minimizer. It can be shown (se€ [35]) that

vyl v(li) = v(ri),
li,ri]NQy C ¢ Lyiril, v(li) < v(ri), (20)
[IivyiJr]a V(Ii) >V(ri)7
where
Yi =li+z(li)/Koq) (21)
ylJr =ri— Z(ri)/Kv(ri)v (22)

andz(x) = J"(x). Let us call any valu®;, 1 < i <k, characteristicof the intervall;, ri]
if the following inequality is true

min{C¥(x) : x € [Ii,ri],v(x) =V} > R. (23)
It follows from assertion i of Lemmi@ 2 and [35] th&f123) isfilbd for R = R, where

0.5(z(1i) + 2(ri) — Ky(ry (ri = i), v(l;) = v(ri),
{ zZ(ri) — Ky (ri = ¥i s v(li) <v(ri), (24)
z(li) — Ky (Vi = 1), v(li) > v(ri).

The characteristi& from (24) depends only on the values of the functib(x) evalu-
ated at the points andr;. It does not use any information from other intervals betong
ing to the working lisW (k).

We are ready now to introduce the Algorithm working with doobus Index Func-
tions (ACIF). It either solves the problem {17) or deternsitieat the casé (18) takes
place. The ACIF works by calculating characterisfsnitially using (24) and then
improving them during the search by constructing the fumc@(x). On the one
hand, the method tries to find a good estiméte On the other hand, it searches and
eliminates fromW (k) intervals that cannot contaxi using the fact following from
Lemmd2 and(23) that i € Q°, an intervallj,rj] having a characterist®; > 0 can
be eliminated from consideration. The constraint intradgt¢he parametes helps to
exclude more intervals.

Let us take a generic intervél},ri],1 <t < q(k+ 1), from the working list and
calculate its characteristR(l,r). We will also show how the functio@*(x) allows
us to improve characteristics of intervals adjacerktoy].

Initially characteristic for the interval, ;] is calculated a&(l;,rt) = Ii(lt,rt). If
R(t,rt) <0 orv(lt) = v(ry), then the characteristi®(l,r;) has been computed. If
R(lt,rt) > 0andv(ly) < v(rt) go to the operatioBackward motionOtherwise execute
the operatiorOnward motion.

Backward motionExclude fromW (k+ 1) all the intervald such that

R =R(li,r) =

z(rt)—Kv(rt)(rt—Ii))>O, 1§j+1§i§t—l, (25)
where the interva] violates [25). Calculate the value

{ 0.5(z(1j) +z7(rj) = Kugry (rj = 1)), v(Ij) =v(rt)

R —

|
J z(rj) = Ky (rj =1y = z(15) /Koqj)), v(lj) <v(r) (26)
|

21j) = Koy (rj =1 =z (rj) /Kyry)), v(lj) >v(r)

where
Z(rj) = 2re) — Kygry (re —rj))- (27)
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Figure 3: Improving characteristics by the operatBatkward motion

2(d)

If Rj” <R, setin the working lisW/(k+ 1)
2rj) =z (rj), v(rj))=v(), R =Ry,

maintaining in the history listi (k+ 1) the original values ofj,,)(rj) andv(r;). Cal-
culate the numbeg(k+ 1) of the intervals inW(k+ 1).

An illustration to the operatioBackward motioris given in Fig[8. Three intervals
are presented in Fif] 3:

li—z,ric2] =1[p,al, [li-a,rica] =[a,h],  [li,ri] = [h,d].
Suppose that the functic@l(x) has been evaluated at the poipts;, h, andd and

v(p) =v(q) =v(h) <v(d).

CharacteristidR;_» of the interval[p,q] is negative and the bold line shows the zone
where the global minimizer could be probably found. The saihetion holds for
the interval|g,h]. Since the characteristi®; of the interval|h,d] is positive and
v(h) < v(d), the operatioBackward motiorstarts to work. It can be seen from Hig. 3
that the new characteristi€_» andR,_1 calculated using information obtained at the
pointd are positive and, therefore, the intervglsq] and|g, h] cannot contain global
minimizers and can be so excluded from the working list.

Onward motion Exclude fromW (k+ 1) all the intervals such that

2(l0) =Koy (i —1)) >0, t+1<i<j—1<q(k), (28)
where the interva] violates [28). Calculate the value
{O-S(f(lj)+2( i)— K( H(ri=1j), v(l) =v(rj)

i~
Z(rj) = Ky '1)/ i) V() <v(ry) (29)

Rfr =
Z5(1j) — Ky (rj IJ = 2(rj)/Kury)), v(lt) > v(rj)



where
z"(1j) = z(lt) = Kygy (1 — ). (30)
If R < Ry, setin the working lisw/(k+ 1)

20) =20, Vi) =vik), R =R},

maintaining in the history listi (k+ 1) the original values of,;(lj) andv(l;). Cal-
culate the numbeg(k+ 1) of the intervals inW(k + 1).

In order to describe the method we need some definitions atial settings. It is
supposed that:

— the search accuracy<0¢ < & has been chosen, whe¥és from (2);
— two initial trials have been executed at the poidts- a andx! = b;

— It has been assignéti(1) = H(1) = [x°,x!] and the number of the interval to be
subdivided at the next iteration has been set=ol;

— the valueg;; and _
MK =max{v(x):0<i<k} (31)
have been calculated fér=1;

— the setv® containing the points € H (k) such thaix € Qm,1\ Q® has been set to
Ve =0.
Suppose now thdt k > 1, iterations have been made by the ACIF, the Higk)
containsk intervals,W(k) containsq(k) intervals for which characteristics have been

evaluated, and an intervify, r;] for subdivision has been found. The choice of the next
interval to be subdivided is made as follows.

Step 1. (Subdivision and the new trialYpdateW (k+ 1) andH (k+ 1) by
substituting the intervdl,r;] in W(k) andH (k) by the new intervalgl;, x<t1],
XL r] where

05y +¥), V() =v(r)
Xt =3 05(y; +r), v(lt) <v(r) (32)
0.5(lt + ¥¢"), V(ly) > v(ry)

Execute thek + 1)-th trial at the poink“** and, as the result, obtain the values
v(X*) andg, ey (). Recalculaté .

Step 2. (Calculation of the estimate,Z, and characteristics.) Associate
with the point** the valuezt? = J<*1(x<*1) and recalculate the estimatg, ,
if v(X*1) =m+ 1. If Z;, ; < Z; then for all pointsc € W(k+1),x # x**1, such
thatv(x) = m+ 1 setz(x) = z(x) + Z; — Z; , , and recalculate characterisitcs of the
intervals inW(k+ 1). Otherwise calculate characteristics only for the interva
[lt,X*"1] and[x**1,r;]. Go to Step 3.

Step 3. (Finding an interval for the next subdivisiondf)W(k+ 1) = 0, then
Stop (the feasible region is empty). Otherwise, find in theking list W (k+ 1)
an intervalll, r] such that

t =min{argmin{R : 1 <i <q(k+1)}} (33)
and go to Step 4.
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Step 4. (Verifying appurtenance to the sefQ If the interval to be subdi-
vided can belong to the s€P then go to Step 5. Otherwise exclude all found
intervals that are out d®® from the working list and include the points forming
these intervals and having the index- 1 in the se¥/°. If the pointx;, ; belongs
to one of the excluded intervals then go to Step 6 otherwide &ep 3.

Step 5. (Verifying accuracy.)f the inequality
re—lg>¢ (34)

holds, then go to Step 1. In the opposite case, Stop (thereztjaccuracy has
been reached).

Step 6. (Restarting.) Recalculate the estimai  , without usage of the

points included inv®. Form the new sétV(k + 1) including in it all the inter-
vals fromH (k + 1) that do not contain points from® and intervals containing
pointsx € V% such thatz(x) > Z - For all intervals inW(k+ 1) recalculate
characteristic® applying backward motion for all intervaishavingR; > O if
v(lt) < v(rt) and onward motion i (l) > v(r¢). In the latter case, characteris-
tics of the intervals satisfying (28) are not calculatedclEge fromwW (k+ 1) all
the intervals having positive characteristics. Then gotep 4.

Step 4 executes an important operation — verifying appartea to the se@?®.
To do this we check whether the intervhlr] chosen for subdivision can contain a
feasible interval having a length greater tRarfFour cases should be considered.

i. (Casev(ly) <m+1,v(r;) <m+1)If
Y=Y =1 —h—2(r) /Ky — 2(lt) /Koy < O (35)

then(l,ri] ¢ Q° because ovdi, ri] only the intervally;,y;"] can possibly con-
tain a global minimizer but its length is less than

ii. (Casev(ly) =m+1,v(ry) < m+ 1.) Analogously, if
re—Iy— Z(rt)/K\)(rt) >0

then the intervall;, ri] can belong to the s&°. Otherwise, if in the history list
H(k+ 1) there exists an intervdl;,r;], j <t, such thav(l;) < m+1 and

rt—|j—Z(rt)/Kv(rt)—Z(lj)/Kv(|j) <o (36)
orv(lj)=m+1,j=1, and
re—lj—2z(r) /Ky <8 (37)

then all the interval,ri],..., [It,r] ¢ Q® and the corresponding points. .., I €
Qm+1\Q%.

iii. (Casev(lt) < m+1, v(ry) =m+1.) This case is considered analogously
to the previous one but confirmation of possibility farr;] to belong toQ? is
searched among intervals- t.

iv. (Casev(lt) =v(rt) = m+1.) This case is a combination of the cases ii and iii.

11



The introduced procedure verifies inclusifyri] € Q° for all possible combina-
tions of indexew(lt),v(rt). Of course, it is also possible to simplify Step 4 and verify
only condition [35) — the rule determining during the seahghmajor part of intervals
belonging toQm.1 \ Q. In this case, after satisfying the stopping rule from Step 5
it is necessary to check whether the found solusipn, belongs toQm.1\ Q% and, if
necessary, to reiterate the method starting from Step 6.

The following situations can, therefore, hold after fulfignt of the stopping rule:

i. The algorithm has finished its work and the working list ispty, thenQ® = 0
and the se¥? contains the points fro@m,; 1\Q° if any.

ii. The working list is not empty and it does not contain inas [l p, rp] such that
Rp <0and
max{v(lp),v(rp)} <m+1. (38)

In this case it is necessary to check locally in the neighbodhof x; whether
X € Q2. If this situation holds, then the global minimuzh of the problem
(2)—(2) can be bounded as follows

Z € [Rgg +Z, 4

whereRyy is the characteristic corresponding to the interval nuntiett (k)

from (33). In the opposite case it is necessary to includgtiet x; in Vo and
to return to Step 6.

iii. The last case considers the situation where the workét g not empty and there
exists an intervall,, rp] such thaR, < 0 and [38) holds. Again, it is necessary
to check locally in the neighborhood af whetherx; € Q2. If this analysis
shows that;; ¢ Q° then it is necessary to include the pokitin V3 and return
to Step 6. Otherwise, the valig can be taken as an upper bound of the global
minimumz*. A lower bound can be calculated easily by taking from thekivay
list the trial points¢ such thav(x;) = m+ 1 and constructing fof (x) the support
function of the typel[28] using only these points. The glofmahimum of this
support function over the intervals belonging to the wogHist will be a lower
bound forz*.

Consider now the infinite trial sequenég} generated by the algorithm ACIF
whene = 0 in the stopping ruld(34). We denote Ky the set of the global minimizers
of the problem[(R)E(4) and by’ the set of limit points of the sequende&}. The
following two theorems describe convergence conditionthefACIF. Since they can
be derived as a particular case of general convergencesstgilien in[[17] (Branch-
and-Bound approach) and [32] (Divide the Best algorithrhsjrtproofs are omitted.

Theorem 1 If the problem[(R)-{4) is feasible, i.e.2& 0, then X* = X'.
Theorem 2 If the problem [(R)£{4) is infeasible then the algorithm AGHeps in a
finite number of iterations.

3 Numerical comparison and conclusion

The ACIF has been numerically compared to the algorithmi¢atéd hereinafter as
PEN) proposed by Pijavskii (seé [28,115]) combined with a pgnéalnhction. The
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Table 1: Numerical results obtained by the PEN on 10 norextfitiable and 10 dif-
ferentiable problems.

Problem Non-differentiable Differentiable
Iterations  Evaluationg lterations Evaluations

1 247 494 83 166
2 241 482 954 1906
3 797 1594 119 238
4 272 819 1762 5286
5 671 2013 765 2295
6 909 2727 477 1431
7 199 597 917 2751
8 365 1460 821 3284
9 1183 4732 262 1048
10 135 540 2019 8076

Average 5019 15458 8179 26481

PEN has been chosen for comparison because the methodwsidija literature (see
[14,[16,[17) 2B 26, 29, 37]) is used as a kind of the unit of measf efficiency
of the new Lipschitz global optimization algorithms and #es in its work the same
information about the problem as the ACIF — the Lipschitzstants for the objective
function and constraints. The usage of the penalty schelo@sals to emphasize
advantages of the index approach.

Since the PEN in every iteration evaluates the objectivetfan f(x) andall the
constraints, twenty feasible test problems (ten diffaadaé and ten non-differentiable)
introduced in[[18] have been used for testing the new algoritThe ACIF has also
been applied to one differentiable and one non-differbigitnfeasible test problems
from [13]. In all the experiments there has been chosen tiggnat (seel[13]) order
the constraints are evaluated during optimization, witltmtermining the best for the
ACIF order.

In the PEN, the constrained problems were reduced to thensiradned ones as
follows

P*(%) = f(x) + Pmax{g1(x),g2(x). .., On,(¥), 0} (39)

and coefficientd from [13] have been used. The same accumey10~4(b—a)
(whereb anda are from [2)) and the starting trial poirasandb have been used in all
the experiments for both ACIF and PEN.

Table[d contains numerical results obtained for the PEN.cbhémn “Evaluation”
shows the total number of evaluations equal to

(Ny+ 1) x Niter,

whereNy is the number of constraints amdier is the number of iterations for each

problem.
Table$ 2 anfl]3 present numerical results for the new methrdikfce andd = 1Ce.

The columns in the Tables have the following meaning:

- the columns\gy,, Ng,, andNg, present the number of trials where the constraint
0i,1 <i < 3, was the last evaluated constraint;

- the columnN; shows how many times the objective functibfx) has been eval-
uated;
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Table 2: Results obtained by the new algorithm on the ndieriftiable problems.

Problem o=¢ 60=10C
1 23 - - 28 51 79 23 - — 28 51 79
2 18 — — 16 34 50 17 — — 16 33 49
3 95 — — 18 113 131 80 — — 18 98 116
4 107 14 - 84 205 387 82 11 — 84 177 356
5 153 88 — 24 265 401 114 66 — 24 204 318
6 16 16 — 597 629 1839| 16 15 — 597 628 1837
7 52 18 - 39 109 205| 49 14 — 39 102 194
8 28 11 3 21 63 143 28 11 3 21 63 143
9 8 81 49 183 321 1049 8 59 32 183 282 954
10 32 3 17 13 65 141 30 2 17 13 62 137
Average | 532 330 230 1023 1855 4425 | 447 254 173 1023 1700 4183
Table 3: Results obtained by the new algorithm on the difféable problems.
Problem o=¢ 60=10C
1 10 - - 13 23 36 10 - — 13 23 36
2 199 — — 21 220 241 155 — — 21 176 197
3 40 — — 22 62 84 38 — — 22 60 82
4 480 127 - 189 796 1301 212 73 — 189 474 925
5 8 13 — 122 143 400 8 13 — 122 143 400
6 14 55 — 18 87 178 13 34 — 18 65 135
7 36 13 - 241 290 785 35 13 — 241 289 784
8 94 21 5 82 202 479 80 19 5 82 186 461
9 7 35 6 51 99 299 7 32 6 51 96 293
10 36 14 174 1173 1397 5278 35 10 92 1173 1310 5023
Average | 924 397 617 1932 3319 9081 | 593 277 343 1932 2822 8336

- the column "Eval.” is the total number of evaluations of tigective function
and the constraints. This quantity is equal to:

- Ng; + 2 x Ng, for problems with one constraint;
- Ng, +2x Ng, + 3 x N¢, for problems with two constraints;
- Ng; +2x Ng, 4+ 3 x Ng, +4 x N¢, for problems with three constraints.

It can be seen from the Tables that in all the experiments tBE-Aignificantly
outperforms the PEN both in iterations and evaluations. AGH- works faster if the
difference betwee® ande increases. This effect is especially notable for problems
where it is necessary to execute many iterations out of tmslte region (see columns
Ng,, Ng,, Ng, for non-differentiable problems 3-5, 9 and differentigteblems 2, 4,

8, 10).

Note that the penalty approach requires an accurate tuditigegoenalty coeffi-
cient in contrast to the ACIF that works without necessitgdétermine any additional
parameter. Moreover, when the penalty approach is used andstraintg(x) is de-
fined only over a subregioje, d] of the search regiofa, b], the problem of extending
g(x) to the whole regiona, b] arises. The ACIF does not have this difficulty because

14



the constraints and the objective function are evaluatéy within their regions of
definition.

Finally, the penalty approach is not able to determine wérethproblem is in-
feasible. The ACIF withd = € has determined infeasibility of the non-differentiable
problem from[13] in 86 iterations consisting of 81 evaloas of the first constraint
and 5 evaluations of the first and second constraints (ileey8luations in total). The
infeasibility of the differentiable problem frorm [13] hasén determined by the ACIF
with & = € in 38 iterations consisting of 9 evaluations of the first ¢oaiat and 29
evaluations of the first and second constraints (i.e., 6luatians in total). Naturally,
the objective functions have not been evaluated in bothscase

In conclusion, we illustrate performance of the new methsee (Fig[#) and the
PEN (see Fid.]5) on the non-differentiable problem 9 fronj.[13

iyt =3-2e0( 5 () fon(v(5 )

subject to
. (5 . /11 1, 1
= — = — ——x—— <
01(X) 3(exp( sm(25|n(5x))D+loox 2)_0,
1\?2 1
o(x-3) 3 x<t
gz(X) = <0,
1,5 x> 1
4 2 2
4 . (24 6 X
= —_ - —— | <0.
93(x) z <S|n<5 x> +25 20)_0

The problem has 3 disjoint feasible subregions shown indrtay continuous bold in-
tervals on the lind (x) = 0, the global optimum is located at the poxht= 0.95019236
(see Fig[M). The objective function is shown by a solid linel #he constraints are
drawn by dotted/mix-dotted lines.

The first line (from up to down) of “+” located under the graphttoe problem 9
in the upper subplot of Fidl] 4 represents the points wherditsteconstraint has not
been satisfied (humber of iterations equal to 8). Thus, dubdalecision rules of
the ACIF, the second constraint has not been evaluated se fh@nts. The second
line of “+” represents the points where the first constrai been satisfied but the
second constraint has been not (number of iterations eq&&)t In these points both
constraints have been evaluated but the objective funbtisrbeen not. The third line
of “+” represents the points where both the first and the secomstraints have been
satisfied but the third constraint has been not (numberiaititns equal to 32). The last
line represents the points where all the constraints haga batisfied and, therefore,
the objective function has been evaluated (number of etiahsmequal to 183). The
total number of evaluations is equal to+&9x 2+ 32x 3+ 183x 4 = 954. These
evaluations have been executed during®9+ 32+ 183= 282 iterations. The lower
subplot in Figl[# shows dynamics of the search.

Fig.[d shows the penalty function correspondingPte- 15 and dynamics of the
search executed by the PEN. The line of “+” located under taplyin the upper
subplot of Fig[h represents the points where the funcfi@) s been evaluated.
The number of iterations is equal to 1183 and the number dfiatians is equal to
1183x 4=4732.
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Figure 4: Behaviour of the new method on the non-differéai¢i@roblem 9 from([13].
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