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Abstract

This paper proposes a new algorithm for solving constrainedglobal optimiza-
tion problems where both the objective function and constraints are one-dimensional
non-differentiable multiextremal Lipschitz functions. Multiextremal constraints
can lead to complex feasible regions being collections of isolated points and inter-
vals having positive lengths. The case is considered where the order the constraints
are evaluated is fixed by the nature of the problem and a constraint i is defined only
over the set where the constrainti−1 is satisfied. The objective function is defined
only over the set where all the constraints are satisfied. In contrast to traditional ap-
proaches, the new algorithm does not use any additional parameter or variable. All
the constraints are not evaluated during every iteration ofthe algorithm providing
a significant acceleration of the search. The new algorithm either finds lower and
upper bounds for the global optimum or establishes that the problem is infeasible.
Convergence properties and numerical experiments showinga nice performance
of the new method in comparison with the penalty approach aregiven.

Key Words: Global optimization, multiextremal constraints, Lipschitz functions,
continuous index functions.

∗This research was supported by the following grants: FIRB RBNE01WBBB, FIRB RBAU01JYPN, and
RFBR 04-01-00455-a. The author thanks Prof. D. Grimaldi forproposing the application discussed in the
paper.

1

http://arxiv.org/abs/1107.5269v1


1 Introduction

In last decades univariate global optimization problems were studied intensively (see
[7, 15, 18, 19, 22, 28, 31, 37, 43]) because there exists a large number of real-life
applications where it is necessary to solve such problems (see [6, 15, 27, 30, 33, 37,
40]). On the other hand, it is important to study these problems because mathematical
approaches developed to solve them can be generalized to themultidimensional case
by numerous schemes (see, for example, one-point based, diagonal, simplicial, space-
filling curves, and other popular approaches in [14, 16, 17, 23, 26, 29, 37]).

Electrotechnics and electronics are among the fields where one-dimensional global
optimization methods can be used successfully (see [8, 9, 10, 11, 24, 33, 40]). Let us
consider, for example, the following so-called ‘mask problem’ for transmitters. We
have a transmitter (for instance, that of GSM cellular phones) that in a frequency inter-
val [a,b] has an amplitudeA(x) that should be inside the mask defined by functionsl(x)
andu(x), i.e., it should bel(x) ≤ A(x) ≤ u(x). The mask is defined by international
rules agreed to avoid interference appearing when amplitude is too high for a given
frequency and by properties of electronic components used to construct the transmitter.
Then, it is necessary to find a frequencyx∗ ∈ [a,b] such that the power,p(x), of the
transmitted signal is maximal.

It happens often in engineering optimization problems (see[37, 40]) that if a con-
strained is not satisfied at a point then many other constraints and the objective function
are not defined at this point. This situation holds in our maskproblem because if for
a frequencyξ if happens thatA(ξ)> u(ξ) or A(ξ)< l(ξ) then there is no transmission
and the functionp(ξ) is not defined. Since the amplitude can touch the mask both from
its internal and its external parts, isolated points in the admissible region ofp(x) can
take place. If the maximal powerp(x∗) is attained at an isolated pointx∗, then this
point should be discarded from consideration because it cannot be realized in practice.
Thus, the solution is acceptable only if it belongs to a finiteinterval of a certain length.

This problem can be reformulated in the following general framework of global
optimization problems considered in this paper. It is necessary to find the global mini-
mizers and the global minimum of a functionf (x) subject to constraintsg j(x)≤ 0,1≤
i ≤ m, over an interval[a,b]. The objective functionf (x) and constraintsg j(x),1≤ i <
m, are multiextremal non-differentiable ‘black-box’ Lipschitz functions with a priori
known Lipschitz constants (to unify the description process the designationgm+1(x),
f (x) is used hereinafter). Very often in real-life applicationsthe order the constraints
are evaluated is fixed by the nature of the problem and not all the constraints are de-
fined over the whole search region[a,b]. The worst case is considered here, i.e., a
constraintg j+1(x) is defined only over subregions whereg j(x)≤ 0. This means that if
a constraint is not satisfied at a point, the rest of constraints and the objective function
are not defined at that point. The setsQ j ,1≤ j ≤ m+1, can be so defined as follows

Q1 = [a,b], Q j+1 = {x∈ Q j : g j(x)≤ 0}, 1≤ j ≤ m, (1)

Q1 ⊇ Q2 ⊇ . . .⊇ Qm ⊇ Qm+1.

Since the constraints are multiextremal, the admissible region Qm+1 and regionsQ j ,
1≤ j ≤ m, can be collections of intervals having positive lengths andisolated points.
Particularly, isolated points appear when one of the constraints touches zero, for exam-
ple, if g j(x) is the square of some function, theng j(x)≤ 0 only wheng j(x) = 0. To be
implementable in practice, optimal solutions should have afeasible neighborhood of
positive length thus, an additional constraint is includedin the model: a pointx∗ should
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belong to an admissible interval having length equal to or greater thanδ > 0 – a value
supplied by the final user. The set of all such intervals is designated asQδ (of course,
Qδ ⊆ Qm+1). Eventually found isolated points and feasible subregions having length
less thanδ should be excluded from consideration. If the case of infeasible problem
Qδ = /0 holds, it should be also determined.

We can now state the problem formally. Find the global minimizersx∗ and the
corresponding valuef ∗ such that

f ∗ = f (x∗) = min{ f (x) : x∈ Qδ}, (2)

where the objective functionf (x) and constraintsg j(x),1≤ i < m, are multiextremal
functions satisfying the Lipschitz condition in the form

| g j(x
′)−g j(x

′′) |≤ L j | x′− x′′ |, x′,x′′ ∈ Q j , 1≤ j ≤ m+1, (3)

and the constants
0< L j < ∞, 1≤ j ≤ m+1, (4)

are known (this supposition is classical in global optimization (see [15, 17, 28])). Meth-
ods working on the basis of this assumption are called ‘exact’ in literature, methods
estimating these values are ‘practical’. On the one hand, the exact methods serve as
a basis for studying theoretical properties of practical ones and are used as a unit of
measure of the speed of practical methods. On the other hand,in certain cases, when
additional information about the objective function and constraints is available, they
can be applied directly.

An example of such a problem is shown in Fig. 1. It has two non-differentiable
multiextremal constraintsg1(x) andg2(x). The corresponding setsQ1 = [a,b],Q2, and
Q3 are shown. The pointc belongs to the setsQ1,Q2, andQ3 butc /∈ Qδ. The setQδ is
shown by the grey color. It can be seen from Fig. 1 that the setsQ2,Q3, andQδ consist
of disjoint subregions andQ2,Q3 contain also an isolated point.

It is not easy to find a traditional algorithm for solving the problem (2)–(4). For
example, the penalty approach requires thatf (x) andgi(x), 1≤ i ≤ m, are defined over
the whole search interval[a,b]. It seems that missing values can be simply filled in with
either a big number or the function value at the nearest feasible point. Unfortunately,
in the context of Lipschitz algorithms, incorporating suchideas can lead to infinitely
high Lipschitz constants, causing degeneration of the methods and non-applicability of
the penalty approach.

A promising approach called theindex schemehas been proposed in [38] (see also
[39, 40]) in combination with stochastic Bayesian algorithms. An important advantage
of the index scheme is that it does not introduce additional variables and/or parameters
by opposition to classical approaches in [2, 3, 16, 17, 25]. It has been recently shown
in [35] that the index scheme can be also successfully used incombination with the
Branch-and-Bound approach. Unfortunately, this scheme can not be applied directly
for solving the problem (2)–(4) because it has good convergence properties when all
the setsQ j ,1 ≤ j ≤ m+ 1, have no isolated points – requirement hardly verified in
practice without some additional information about the problem.

Thus, isolated points give serious problems when one has only Lipschitz informa-
tion. First, because it is not possible to say a priori whether the feasible region has
isolated points or not (for example, the method from [35] converges only to global
minimizers if it is ensured absence of isolated points). Second, in Lipschitz global
optimization isolated points can lead to two problems: accumulation of trial points in
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Figure 1: An example of the problem (2)–(4).

their neighborhood (this happens even if there exists a sub-region where a constraint
does not touch zero but is only close to zero) and increasing the estimates of Lipschitz
constants to infinity. This fact means that the search regionwill be covered by a uni-
form mesh of trials) if the Lipschitz constant is estimated or the method simply will not
work if the Lipschitz constant is given – our case – because local adaptively obtained
information will contradict the given one. Therefore, traditional Lipschitz methods
cannot be used in the presence of isolated points and, since their absence can be hardly
determined in practice, developments of methods that are able to work independently
of the presence or absence of them becomes very important.

In this paper, such a method is proposed. It evolves the idea of separate consid-
eration of each constraint introduced in [38] in a new way andreduces the original
constrained problem to a new continuous problem. The methodfrom [35] is used as a
basis for construction of the new scheme. Instead of discontinuous support functions
proposed in [35], new continuous functions are built. Thesenew structures are very
important because by using them it becomes possible to applynumerous tools devel-
oped in Lipschitz unconstrained optimization to a very general class of constrained
problems. It is also necessary to emphasize that the new approach does not introduce
additional variables and/or parameters during this passage from initial discontinuous
constrained partially defined problem to the continuous unconstrained one.

To conclude this introduction it is necessary to emphasize once again that the prob-
lem of multi-dimensional extensions of one-dimensional Lipschitz global optimization
methods to many dimensions is a non-trivial serious problem(P. Hansen and B. Jau-
mard write in their survey on Lipschitz optimization [15] published in the Handbook
of Global Optimization: ‘Large problems (with 10 variablesor more) appear to be of-
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ten intractable, at least if high precision is required’) and is beyond the scope of this
paper dedicated to the univariate algorithms and univariate applications. However, the
approach proposed here is very promising from this point of view. In the future, a num-
ber of various multi-dimensional extensions (starting from the adaptive diagonal and
space-filling curves approaches (see [34, 40])) of the algorithm presented in this paper
will be studied.

The rest of the paper is organized as follows. The new method is described in
Section 2. Section 3 contains computational results and a brief conclusion.

2 Continuous index functions and the new algorithm

The index scheme (see [38, 39, 40]) considers constraints one at a time at every point
where it has been decided to calculatef (x) determining the indexν = ν(x),1 ≤ ν ≤
m+1, by the following conditions

g j(x)≤ 0, 1≤ j ≤ ν−1, gν(x)> 0, (5)

where forν = m+ 1 the last inequality is omitted. The termtrial used hereinafter
means determining the indexν(x) at a pointx by evaluationgi(x),1 ≤ i ≤ ν(x). The
indexν(x) and the valuegν(x)(x) are calledresults of the trial.

The discontinuous index functionJ(x),x ∈ [a,b], can be written for the problem
(2)–(4) following [38]

J(x) = gν(x)(x)−

{

0, ν(x) < m+1,
f ∗ , ν(x) = m+1,

(6)

where the valuef ∗ is the unknown solution to this problem.
Let us start our theoretical consideration by noticing thatthe global minimizer of

the original constrained problem (2)–(4) in the caseQδ 6= /0 coincides with the solution
to the following unconstrained discontinuous problem

J(x∗) = min{J(x) : x∈ Q
δ
}, (7)

where
Q

δ
= [a,b]\ {Qm+1\Qδ}. (8)

Suppose now that trials have been executed in a way at some points

a= x0 < x1 < .. . < xi < .. . < xk = b (9)

andνi = ν(xi),0 ≤ i ≤ k, are theirstarting indexes. Note that the notion ofindex is
different with respect to [38, 39, 40] where the index is calculated once and then used
in the course of optimization. In this paper, formula (5) defines the starting value for
the index that can then be changed during the work of the algorithm.

The points from (9) form the list (called hereinafterHistory List H(k)) of intervals
[l i , r i ],1≤ i ≤ k, where

l i < r i , 1≤ i ≤ k,

r i = l i+1, 1≤ i < k.

The recordx ∈ H(k) means that the pointx= l i or x= r i for an intervali from H(k).
Every elementi,1≤ i ≤ k, of the list contains the following information:

[l i , r i ], ν(l i), ν(r i), gν(l i)(l i), gν(r i)(r i). (10)
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The second list,W(k), calledWorking List is built during the work of the method to be
introduced by excluding fromH(k) intervals where global minimizers of the problem
(2)–(4) can not be located (initially it is statedW(k) =H(k)). In contrast toH(k) where
the information (10) is calculated once and then is kept during the search, indexesν(l i)
andν(r i) in W(k) can be changed in the course of optimization.

In order to pass from the problem (2)–(4) to the problem (7) itis necessary to
estimate the valuef ∗ from (2) and the setQδ. Using the results of trials at the points
from the row (9) the value

Z∗
k = min{gm+1(x) : ν(x) = m+1,x∈W(k)}. (11)

estimatingf ∗ can be calculated if there exist pointsx with the indexν(x) = m+1. This
value allows us to define the functionJk(x),x∈ [a,b], by replacing the unknown value
f ∗ in (6) byZ∗

k :

Jk(x) = gν(x)(x)−

{

0, ν(x)< m+1,
Z∗

k , ν(x) = m+1.
(12)

The following Lemma establishes some useful properties of the functionsJ(x) and
Jk(x).

Lemma 1 The following assertions hold for the functions J(x) and Jk(x):

i. for all points x having indexesν(x)< m+1, it follows Jk(x) = J(x)> 0;

ii.
Jk(x)≤ 0, x∈ {x : gm+1(x)≤ Z∗

k}. (13)

iii. if ν(x) = m+1 and Z∗k ≥ f ∗ then

Jk(x)≤ J(x). (14)

Proof. Truth of assertions i – iii follows from definitions of the functionsJ(x) and
Jk(x).

Particularly, it follows from Lemma 1 that (14) holds if the trial point corresponding
to Z∗

k belongs toQδ. The estimate (14) is not true ifZ∗
k ≤ f ∗, the situation which can

occur only ifx∗k belongs to the setQm+1 \Qδ where

x∗k = argmin{gm+1(x) : ν(x) = m+1,x∈W(k)}. (15)

Let us introduce the followingcontinuous index function C(x),x ∈ Q
δ
, and study

its properties.
C(x) = max

y∈Q
δ
{J(x), J(y)−Kν(y) | x− y |)}, (16)

whereKν(y) such thatLν(y) < Kν(y) < ∞ is an overestimate of the Lipschitz constant
corresponding to the functiongν(y)(y) and J(x) is the discontinuous index function
from (6).

As an illustration, the functionC(x) corresponding to the problem presented in
Fig. 1 is shown in Fig. 2. The parts of the functionC(x) corresponding tox andy such
that

J(x)< J(y)−Kν(y) | x− y |

are shown by the thin line.
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Figure 2: The functionC(x) corresponding to the problem presented in Fig. 1.

If Qδ 6= /0, the global minimizers of the original constrained problem(2)–(4) coin-
cide with the solutions of the following continuous problem

C(x∗) = min{C(x) : x∈ Q
δ
}. (17)

In the caseQδ = /0 the setQ
δ
= [a,b]\ Qm+1 and we haveν(x)< m+1,x∈ Q

δ
. Thus,

due to Lemma 1, it follows
C(x) > 0, x∈ Q

δ
. (18)

Similarly to definition of the functionJk(x), the valueZ∗
k is used to define the

functionsCk(x),x∈ [a,b], as follows.

Ck(x) = max
y∈[a,b]

{Jk(x), Jk(y)−Kν(y) | x− y |)}. (19)

Lemma 2 The following assertions hold for the functions C(x) and Ck(x):

i. inequalities C(x)≥ J(x), Ck(x)≥ Jk(x) hold over the setQ
δ
;

ii. if ν(x)< m+1 then Ck(x)> 0;

iii. if ν(x) = m+1 and x∈W(k) then Ck(x)≥ 0;

iv. if x ∈ {x : gm+1(x)≤ Z∗
k} then Ck(x)≤ 0.

v. if x∗k ∈ Qδ then Ck(x)≤C(x), x∈ Qδ.

Proof. The truth of the assertions follows from Lemma 1 and formulae (11),(15), (16),
and (19).

It follows from Lemma 2 that ifx∗k ∈ Qδ, the global minimizers cannot be located
in zones whereCk(x) > 0,x∈ Qδ. Over every interval[l i , r i ] we are interested in sub-
regions having the index greater or equal to

νi = max{ν(l i),ν(r i)},
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because, due to construction of the functionCk(x), only these subregions can probably
contain a global minimizer. It can be shown (see [35]) that

[l i , r i ]∩Qνi ⊆







[y−i ,y
+
i ], ν(l i) = ν(r i),

[y−i , r i ], ν(l i)< ν(r i),
[l i ,y+i ], ν(l i)> ν(r i),

(20)

where
y−i = l i + z(l i)/Kν(l i), (21)

y+i = r i − z(r i)/Kν(r i), (22)

andz(x) = Jk(x). Let us call any valueRi ,1≤ i ≤ k, characteristicof the interval[l i , r i ]
if the following inequality is true

min{Ck(x) : x∈ [l i , r i ],ν(x) = νi} ≥ Ri . (23)

It follows from assertion i of Lemma 2 and [35] that (23) is fulfilled for Ri = Ři where

Ři = Ř(l i , r i) =







0.5(z(l i)+ z(r i)−Kν(r i)(r i − l i)), ν(l i) = ν(r i),
z(r i)−Kν(r i)(r i − y−i ), ν(l i)< ν(r i),
z(l i)−Kν(l i)(y

+
i − l i), ν(l i)> ν(r i).

(24)

The characterističRi from (24) depends only on the values of the functionJk(x) evalu-
ated at the pointsl i andr i . It does not use any information from other intervals belong-
ing to the working listW(k).

We are ready now to introduce the Algorithm working with Continuous Index Func-
tions (ACIF). It either solves the problem (17) or determines that the case (18) takes
place. The ACIF works by calculating characteristicsRi initially using (24) and then
improving them during the search by constructing the function Ck(x). On the one
hand, the method tries to find a good estimateZ∗

k . On the other hand, it searches and
eliminates fromW(k) intervals that cannot containx∗ using the fact following from
Lemma 2 and (23) that ifx∗k ∈ Qδ, an interval[l j , r j ] having a characteristicRj > 0 can
be eliminated from consideration. The constraint introducing the parameterδ helps to
exclude more intervals.

Let us take a generic interval[lt , rt ],1 ≤ t ≤ q(k+ 1), from the working list and
calculate its characteristicR(lt , rt). We will also show how the functionCk(x) allows
us to improve characteristics of intervals adjacent to[lt , rt ].

Initially characteristic for the interval[lt , rt ] is calculated asR(lt , rt) = Ř(lt , rt ). If
R(lt , rt) ≤ 0 or ν(lt ) = ν(rt ), then the characteristicR(lt , rt) has been computed. If
R(lt , rt)> 0 andν(lt)< ν(rt ) go to the operationBackward motion.Otherwise execute
the operationOnward motion.

Backward motion.Exclude fromW(k+1) all the intervalsi such that

z(rt)−Kν(rt)(rt − l i))> 0, 1≤ j +1≤ i ≤ t −1, (25)

where the intervalj violates (25). Calculate the value

R−
j =







0.5(z(l j)+ z−(r j )−Kν(rt)(r j − l j)), ν(l j ) = ν(rt )
z−(r j)−Kν(r j )(r j − l j − z(l j)/Kν(l j )), ν(l j )< ν(rt )

z(l j)−Kν(l j )(r j − l j − z−(r j)/Kν(rt )), ν(l j )> ν(rt )
(26)

where
z−(r j) = z(rt)−Kν(rt)(rt − r j)). (27)
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Figure 3: Improving characteristics by the operationBackward motion.

If R−
j < Rj , set in the working listW(k+1)

z(r j) = z−(r j ), ν(r j ) = ν(rt), Rj = R−
j ,

maintaining in the history listH(k+1) the original values ofgν(r j )(r j ) andν(r j ). Cal-
culate the numberq(k+1) of the intervals inW(k+1).

An illustration to the operationBackward motionis given in Fig. 3. Three intervals
are presented in Fig. 3:

[l i−2, r i−2] = [p,q], [l i−1, r i−1] = [q,h], [l i , r i ] = [h,d].

Suppose that the functionCk(x) has been evaluated at the pointsp,q,h, andd and

ν(p) = ν(q) = ν(h)< ν(d).

CharacteristicŘi−2 of the interval[p,q] is negative and the bold line shows the zone
where the global minimizer could be probably found. The samesituation holds for
the interval[q,h]. Since the characterističRi of the interval[h,d] is positive and
ν(h)< ν(d), the operationBackward motionstarts to work. It can be seen from Fig. 3
that the new characteristicsRi−2 andRi−1 calculated using information obtained at the
point d are positive and, therefore, the intervals[p,q] and[q,h] cannot contain global
minimizers and can be so excluded from the working list.

Onward motion.Exclude fromW(k+1) all the intervalsi such that

z(lt )−Kν(lt)(r i − lt))> 0, t +1≤ i ≤ j −1≤ q(k), (28)

where the intervalj violates (28). Calculate the value

R+
j =







0.5(z+(l j )+ z(r j)−Kν(r j )(r j − l j)), ν(lt) = ν(r j )

z(r j )−Kν(r j)(r j − l j − z+(l j)/Kν(lt )), ν(lt)< ν(r j )

z+(l j)−Kν(lt )(r j − l j − z(r j)/Kν(r j )), ν(lt)> ν(r j )
(29)

9



where
z+(l j ) = z(lt )−Kν(lt)(l j − lt)). (30)

If R+
j < Rj , set in the working listW(k+1)

z(l j ) = z+(l j), ν(l j ) = ν(lt ), Rj = R+
j ,

maintaining in the history listH(k+1) the original values ofgν(l j )(l j) andν(l j). Cal-
culate the numberq(k+1) of the intervals inW(k+1).

In order to describe the method we need some definitions and initial settings. It is
supposed that:

– the search accuracy 0< ε ≤ δ has been chosen, whereδ is from (2);

– two initial trials have been executed at the pointsx0 = a andx1 = b;

– It has been assignedW(1) = H(1) = [x0,x1] and the numbert of the interval to be
subdivided at the next iteration has been set tot = 1;

– the valuesZ∗
k and

Mk = max{ν(xi) : 0≤ i ≤ k} (31)

have been calculated fork= 1;

– the setVδ containing the pointsx ∈ H(k) such thatx ∈ Qm+1 \Qδ has been set to
Vδ = /0.

Suppose now thatk,k ≥ 1, iterations have been made by the ACIF, the listH(k)
containsk intervals,W(k) containsq(k) intervals for which characteristics have been
evaluated, and an interval[lt , rt ] for subdivision has been found. The choice of the next
interval to be subdivided is made as follows.

Step 1. (Subdivision and the new trial.)UpdateW(k+1) andH(k+1) by
substituting the interval[lt , rt ] in W(k) andH(k) by the new intervals[lt ,xk+1],
[xk+1, rt ] where

xk+1 =







0.5(y−t + y+t ), ν(lt) = ν(rt)
0.5(y−t + rt), ν(lt)< ν(rt)
0.5(lt + y+t ), ν(lt)> ν(rt)

(32)

Execute the(k+1)-th trial at the pointxk+1 and, as the result, obtain the values
ν(xk+1) andgν(xk+1)(x

k+1). RecalculateMk+1.

Step 2. (Calculation of the estimate Z∗k+1 and characteristics.) Associate
with the pointxk+1 the valuezk+1 = Jk+1(xk+1) and recalculate the estimateZ∗

k+1

if ν(xk+1) = m+1. If Z∗
k+1 < Z∗

k then for all pointsx∈W(k+1),x 6= xk+1, such
thatν(x) =m+1 setz(x) = z(x)+Z∗

k −Z∗
k+1 and recalculate characterisitcs of the

intervals inW(k+1). Otherwise calculate characteristics only for the intervals
[lt ,xk+1] and[xk+1, rt ]. Go to Step 3.

Step 3. (Finding an interval for the next subdivision.)If W(k+1) = /0, then
Stop (the feasible region is empty). Otherwise, find in the working list W(k+1)
an interval[lt , rt ] such that

t = min{argmin{Ri : 1≤ i ≤ q(k+1)}} (33)

and go to Step 4.
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Step 4. (Verifying appurtenance to the set Qδ.) If the interval to be subdi-
vided can belong to the setQδ then go to Step 5. Otherwise exclude all found
intervals that are out ofQδ from the working list and include the points forming
these intervals and having the indexm+1 in the setVδ. If the pointx∗k+1 belongs
to one of the excluded intervals then go to Step 6 otherwise goto Step 3.

Step 5. (Verifying accuracy.)If the inequality

rt − lt > ε (34)

holds, then go to Step 1. In the opposite case, Stop (the required accuracy has
been reached).

Step 6. (Restarting.) Recalculate the estimateZ∗
k+1 without usage of the

points included inVδ. Form the new setW(k+ 1) including in it all the inter-
vals fromH(k+1) that do not contain points fromVδ and intervals containing
pointsx ∈ Vδ such thatz(x) > Z∗

k+1. For all intervals inW(k+ 1) recalculate
characteristicsRi applying backward motion for all intervalsi havingRi > 0 if
ν(lt) < ν(rt ) and onward motion ifν(lt ) > ν(rt ). In the latter case, characteris-
tics of the intervals satisfying (28) are not calculated. Exclude fromW(k+1) all
the intervals having positive characteristics. Then go to Step 4.

Step 4 executes an important operation – verifying appurtenance to the setQδ.
To do this we check whether the interval[lt , rt ] chosen for subdivision can contain a
feasible interval having a length greater thanδ. Four cases should be considered.

i. (Caseν(lt)< m+1, ν(rt )< m+1.) If

y+t − y−t = rt − lt − z(rt)/Kν(rt )− z(lt)/Kν(lt ) < δ (35)

then[lt , rt ] /∈ Qδ because over[lt , rt ] only the interval[y−t ,y
+
t ] can possibly con-

tain a global minimizer but its length is less thanδ.

ii. (Caseν(lt) = m+1, ν(rt )< m+1.) Analogously, if

rt − lt − z(rt)/Kν(rt ) > δ

then the interval[lt , rt ] can belong to the setQδ. Otherwise, if in the history list
H(k+1) there exists an interval[l j , r j ], j < t, such thatν(l j )< m+1 and

rt − l j − z(rt)/Kν(rt )− z(l j)/Kν(l j ) < δ (36)

or ν(l j ) = m+1, j = 1, and

rt − l j − z(rt)/Kν(rt ) < δ (37)

then all the intervals[l j , r j ], . . . , [lt , rt ] /∈Qδ and the corresponding pointsr j , . . . , lt ∈
Qm+1\Qδ.

iii. (Caseν(lt ) < m+ 1, ν(rt) = m+1.) This case is considered analogously
to the previous one but confirmation of possibility for[lt , rt ] to belong toQδ is
searched among intervalsi > t.

iv. (Caseν(lt) = ν(rt) =m+1.) This case is a combination of the cases ii and iii.

11



The introduced procedure verifies inclusion[lt , rt ] ∈ Qδ for all possible combina-
tions of indexesν(lt),ν(rt ). Of course, it is also possible to simplify Step 4 and verify
only condition (35) – the rule determining during the searchthe major part of intervals
belonging toQm+1 \Qδ. In this case, after satisfying the stopping rule from Step 5,
it is necessary to check whether the found solutionx∗k+1 belongs toQm+1 \Qδ and, if
necessary, to reiterate the method starting from Step 6.

The following situations can, therefore, hold after fulfillment of the stopping rule:

i. The algorithm has finished its work and the working list is empty, thenQδ = /0
and the setVδ contains the points fromQm+1\Qδ if any.

ii. The working list is not empty and it does not contain intervals [lp, rp] such that
Rp < 0 and

max{ν(lp),ν(rp)}< m+1. (38)

In this case it is necessary to check locally in the neighborhood of x∗k whether
x∗k ∈ Qδ. If this situation holds, then the global minimumz∗ of the problem
(2)–(4) can be bounded as follows

z∗ ∈ [Rt(k)+Z∗
k ,Z

∗
k ]

whereRt(k) is the characteristic corresponding to the interval numbert = t(k)

from (33). In the opposite case it is necessary to include thepoint x∗k in Vδ and
to return to Step 6.

iii. The last case considers the situation where the workinglist is not empty and there
exists an interval[lp, rp] such thatRp < 0 and (38) holds. Again, it is necessary
to check locally in the neighborhood ofx∗k whetherx∗k ∈ Qδ. If this analysis
shows thatx∗k /∈ Qδ then it is necessary to include the pointx∗k in Vδ and return
to Step 6. Otherwise, the valueZ∗

k can be taken as an upper bound of the global
minimumz∗. A lower bound can be calculated easily by taking from the working
list the trial pointsxi such thatν(xi) =m+1 and constructing forf (x) the support
function of the type [28] using only these points. The globalminimum of this
support function over the intervals belonging to the working list will be a lower
bound forz∗.

Consider now the infinite trial sequence{xk} generated by the algorithm ACIF
whenε = 0 in the stopping rule (34). We denote byX∗ the set of the global minimizers
of the problem (2)–(4) and byX′ the set of limit points of the sequence{xk}. The
following two theorems describe convergence conditions ofthe ACIF. Since they can
be derived as a particular case of general convergence studies given in [17] (Branch-
and-Bound approach) and [32] (Divide the Best algorithms) their proofs are omitted.

Theorem 1 If the problem (2)–(4) is feasible, i.e. Qδ 6= /0, then X∗ = X′.

Theorem 2 If the problem (2)–(4) is infeasible then the algorithm ACIFstops in a
finite number of iterations.

3 Numerical comparison and conclusion

The ACIF has been numerically compared to the algorithm (indicated hereinafter as
PEN) proposed by Pijavskii (see [28, 15]) combined with a penalty function. The
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Table 1: Numerical results obtained by the PEN on 10 non-differentiable and 10 dif-
ferentiable problems.

Problem Non-differentiable Differentiable
Iterations Evaluations Iterations Evaluations

1 247 494 83 166
2 241 482 954 1906
3 797 1594 119 238
4 272 819 1762 5286
5 671 2013 765 2295
6 909 2727 477 1431
7 199 597 917 2751
8 365 1460 821 3284
9 1183 4732 262 1048
10 135 540 2019 8076

Average 501.9 1545.8 817.9 2648.1

PEN has been chosen for comparison because the method of Pijavskii in literature (see
[14, 16, 17, 23, 26, 29, 37]) is used as a kind of the unit of measure of efficiency
of the new Lipschitz global optimization algorithms and it uses in its work the same
information about the problem as the ACIF – the Lipschitz constants for the objective
function and constraints. The usage of the penalty scheme allows us to emphasize
advantages of the index approach.

Since the PEN in every iteration evaluates the objective function f (x) andall the
constraints, twenty feasible test problems (ten differentiable and ten non-differentiable)
introduced in [13] have been used for testing the new algorithm. The ACIF has also
been applied to one differentiable and one non-differentiable infeasible test problems
from [13]. In all the experiments there has been chosen the original (see [13]) order
the constraints are evaluated during optimization, without determining the best for the
ACIF order.

In the PEN, the constrained problems were reduced to the unconstrained ones as
follows

P∗(x) = f (x)+Pmax{g1(x),g2(x), . . . ,gNv(x),0} (39)

and coefficientsP from [13] have been used. The same accuracyε = 10−4(b−a)
(whereb anda are from (2)) and the starting trial pointsa andb have been used in all
the experiments for both ACIF and PEN.

Table 1 contains numerical results obtained for the PEN. Thecolumn “Evaluation”
shows the total number of evaluations equal to

(Nv+1)×Niter,

whereNv is the number of constraints andNiter is the number of iterations for each
problem.

Tables 2 and 3 present numerical results for the new method for δ = ε andδ = 10ε.
The columns in the Tables have the following meaning:

- the columnsNg1, Ng2, andNg3 present the number of trials where the constraint
gi,1≤ i ≤ 3, was the last evaluated constraint;

- the columnNf shows how many times the objective functionf (x) has been eval-
uated;
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Table 2: Results obtained by the new algorithm on the non-differentiable problems.

Problem δ = ε δ = 10ε
Ng1 Ng2 Ng3 Nf Iter. Eval. Ng1 Ng2 Ng3 Nf Iter. Eval.

1 23 − − 28 51 79 23 − − 28 51 79
2 18 − − 16 34 50 17 − − 16 33 49
3 95 − − 18 113 131 80 − − 18 98 116
4 107 14 − 84 205 387 82 11 − 84 177 356
5 153 88 − 24 265 401 114 66 − 24 204 318
6 16 16 − 597 629 1839 16 15 − 597 628 1837
7 52 18 − 39 109 205 49 14 − 39 102 194
8 28 11 3 21 63 143 28 11 3 21 63 143
9 8 81 49 183 321 1049 8 59 32 183 282 954
10 32 3 17 13 65 141 30 2 17 13 62 137

Average 53.2 33.0 23.0 102.3 185.5 442.5 44.7 25.4 17.3 102.3 170.0 418.3

Table 3: Results obtained by the new algorithm on the differentiable problems.

Problem δ = ε δ = 10ε
Ng1 Ng2 Ng3 Nf Iter. Eval. Ng1 Ng2 Ng3 Nf Iter. Eval.

1 10 − − 13 23 36 10 − − 13 23 36
2 199 − − 21 220 241 155 − − 21 176 197
3 40 − − 22 62 84 38 − − 22 60 82
4 480 127 − 189 796 1301 212 73 − 189 474 925
5 8 13 − 122 143 400 8 13 − 122 143 400
6 14 55 − 18 87 178 13 34 − 18 65 135
7 36 13 − 241 290 785 35 13 − 241 289 784
8 94 21 5 82 202 479 80 19 5 82 186 461
9 7 35 6 51 99 299 7 32 6 51 96 293
10 36 14 174 1173 1397 5278 35 10 92 1173 1310 5023

Average 92.4 39.7 61.7 193.2 331.9 908.1 59.3 27.7 34.3 193.2 282.2 833.6

- the column ”Eval.” is the total number of evaluations of theobjective function
and the constraints. This quantity is equal to:

- Ng1 +2×Nf , for problems with one constraint;

- Ng1 +2×Ng2 +3×Nf , for problems with two constraints;

- Ng1 +2×Ng2 +3×Ng3 +4×Nf , for problems with three constraints.

It can be seen from the Tables that in all the experiments the ACIF significantly
outperforms the PEN both in iterations and evaluations. TheACIF works faster if the
difference betweenδ andε increases. This effect is especially notable for problems
where it is necessary to execute many iterations out of the feasible region (see columns
Ng1, Ng2, Ng3 for non-differentiable problems 3–5, 9 and differentiableproblems 2, 4,
8, 10).

Note that the penalty approach requires an accurate tuning of the penalty coeffi-
cient in contrast to the ACIF that works without necessity todetermine any additional
parameter. Moreover, when the penalty approach is used and aconstraintg(x) is de-
fined only over a subregion[c,d] of the search region[a,b], the problem of extending
g(x) to the whole region[a,b] arises. The ACIF does not have this difficulty because
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the constraints and the objective function are evaluated only within their regions of
definition.

Finally, the penalty approach is not able to determine whether a problem is in-
feasible. The ACIF withδ = ε has determined infeasibility of the non-differentiable
problem from [13] in 86 iterations consisting of 81 evaluations of the first constraint
and 5 evaluations of the first and second constraints (i.e., 91 evaluations in total). The
infeasibility of the differentiable problem from [13] has been determined by the ACIF
with δ = ε in 38 iterations consisting of 9 evaluations of the first constraint and 29
evaluations of the first and second constraints (i.e., 67 evaluations in total). Naturally,
the objective functions have not been evaluated in both cases.

In conclusion, we illustrate performance of the new method (see Fig. 4) and the
PEN (see Fig. 5) on the non-differentiable problem 9 from [13].
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The problem has 3 disjoint feasible subregions shown in Fig.4 by continuous bold in-
tervals on the linef (x) = 0, the global optimum is located at the pointx∗ = 0.95019236
(see Fig. 4). The objective function is shown by a solid line and the constraints are
drawn by dotted/mix-dotted lines.

The first line (from up to down) of “+” located under the graph of the problem 9
in the upper subplot of Fig. 4 represents the points where thefirst constraint has not
been satisfied (number of iterations equal to 8). Thus, due tothe decision rules of
the ACIF, the second constraint has not been evaluated at these points. The second
line of “+” represents the points where the first constraint has been satisfied but the
second constraint has been not (number of iterations equal to 59). In these points both
constraints have been evaluated but the objective functionhas been not. The third line
of “+” represents the points where both the first and the second constraints have been
satisfied but the third constraint has been not (number of iterations equal to 32). The last
line represents the points where all the constraints have been satisfied and, therefore,
the objective function has been evaluated (number of evaluations equal to 183). The
total number of evaluations is equal to 8+ 59× 2+ 32× 3+ 183× 4 = 954. These
evaluations have been executed during 8+59+32+183= 282 iterations. The lower
subplot in Fig. 4 shows dynamics of the search.

Fig. 5 shows the penalty function corresponding toP = 15 and dynamics of the
search executed by the PEN. The line of “+” located under the graph in the upper
subplot of Fig. 5 represents the points where the function (39) has been evaluated.
The number of iterations is equal to 1183 and the number of evaluations is equal to
1183×4= 4732.
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Figure 4: Behaviour of the new method on the non-differentiable problem 9 from [13].
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Figure 5: Behaviour of the PEN on the non-differentiable problem 9 from [13].
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