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Superstatistics as the statistics of quasi-equilibrium states:

Application to fully developed turbulence
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Abstract

In non-equilibrium states, currents are produced by irreversible processes that take a system

toward the equilibrium state, where the current vanishes. We demonstrate, in a general setting,

that a superstatistics arises when the system relaxes to a (stationary) quasi-equilibrium state

instead, where only the mean current vanishes because of fluctuations. In particular, we show

that a current with Gaussian white noise takes the system to a unique class of quasi-equilibrium

states, where the superstatistics coincides with Tsallis escort q-distributions. Considering the fully

developed turbulence as an example of such quasi-equilibrium states, we analytically deduce the

power-law spectrum of the velocity structure functions, yielding a correction to the log-normal

model which removes its shortcomings with regard to the decreasing higher order moments and

the Novikov inequality, and obtain exponents that agree well with the experimental data.

PACS numbers: 05.40.-a, 05.70.Ln, 47.27.Jv, 47.27.eb
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INTRODUCTION

Recent experimental and numerical studies have shown that many complex systems, and

of particular relevance to this work, the fully developed turbulent system [1–7], exhibit

non-Gibbsian distributions that are well fitted by Tsallis q-distributions [8]. When these

distributions are involved, physical mean values correspond to the q-average values, which are

averages over the postulated escort q-distributions. The physical interpretation of the escort

distributions is, however, not clear. Addressing from a physical foundation the question of

why such generalized distributions arise is crucial to understanding the behavior of these

complex systems. Despite several attempts [4, 9–11], a comprehensive answer to this question

is still lacking. In this report, we approach the problem from a general perspective that

provides a new insight and consider, as an application, the example of fully developed

turbulence.

We consider a macroscopic system with a relevant extensive variable X and a conjugated

(entropic) intensive variable P = ∂XS, where S(X, . . .) is the system’s entropy. Let X0, P0,

S0 represent the same quantities for the system’s environment, which acts as a reservoir.

The closed composite system has entropy Stot = S + S0, and the closure condition requires

that X + X0 = Xtot (const.). If X and X0 are otherwise unconstrained, their equilibrium

values X̃ and Xtot−X̃ are obtained by the vanishing of the affinity [12] (the thermodynamic

force) F = ∂XStot = P − P0. Thus, if F is zero the system is in equilibrium, but if F is

nonzero an irreversible process occurs, producing a current Ẋ that takes the system toward

the equilibrium state (dot denotes time derivative). Since the current vanishes if the affinity

vanishes, we can expand the current in terms of the affinity with no constant term. Assuming

sufficiently small affinities throughout, we have Ẋ = ℓF , where ℓ > 0 is called the Onsager

kinetic coefficient. This relationship between the current and the affinity characterizes the

relaxation flow of the system. Thus, since

Ḟ = (∂XP ) ℓF ≈ ∂XP |X̃ ℓF (1)

the equilibrium state, F = 0, is an attractor provided ∂XP |X̃ = ∂2
XS|X̃ < 0. This is, of

course, the stability criterion which implies that the response function (like the heat capacity,

the compressibility, and so on) is positive.

In the equilibrium state, the probability distribution function (p.d.f.) of the intensive

variable, therefore, is ρ0(P ) = δ(P − P0). The extensive variable is, however, distributed
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about the mean equilibrium value X̃ with a p.d.f. p0(X) ∝ w(X)e−P0X (kB = 1), where

w(X) is the ‘density of states’. This standard result, which forms the basis of of equilibrium

statistical mechanics, is obtained by applying the principle of equal probability of microstates

to the closed composite system and imposing the equilibrium condition P = P0. The latter

condition marginalizes the P -values, implying that the equilibrium distribution, p0(X), is

in fact a marginal p.d.f. If, instead of the equilibrium state, the current takes the system

to a different attractor where the intensive variable is distributed about P0, we will have

a stationary (a quasi- or meta-equilibrium) state whose P -p.d.f., ρ(P ), must be used to

marginalize the P -values. In such quasi-equilibrium states, the intensive variable fluctuates

about the mean equilibrium value so that in these states only the mean current is zero. This

suggests that a fluctuating current (due to the underlying noise generating mechanisms)

drives the system to such quasi-equilibrium states, where it attains zero mean value. For

simplicity we shall consider systems with a constant density of states so that p0(X) =

P0e
−P0X and 〈X〉0 = X̃ = 1/P0. (The formulation can be easily extended to the more

general case of w(X) ∝ Xα−1 (α > 0), where our central result in the last section, equation

(10), is similarly shown to follow just the same). The (marginal) quasi-equilibrium X-p.d.f.

would then be given by the Bayes rule according to

p(X) =
∫ ∞

0
Pe−PXρ(P )dP =

∫ ∞

0
e−PXρ(ln

P

P0
)dP (2)

which reduces to the equilibrium X-p.d.f. p0(X) if ρ(P ) = ρ0(P ) = δ(P − P0), as it should.

Generalized distributions of the form (2), which have been called superstatistics [10,

13], have found many applications in diverse physical problems [6, 11, 14–16]. From our

perspective, therefore, a superstatistics is the most natural extension of the equilibrium

Gibbs-Boltzmann statistics to (stationary) quasi-equilibrium sates, where only the mean

current vanishes because of fluctuations. In complex systems, we can assume that these

fluctuations arise from the interaction of a very large number of independent microscopic

degrees of freedom with identical stochastic properties. The central limit theorem then

implies that the fluctuations are Gaussian distributed. Naturally assuming that they are

temporally uncorrelated too, we have a Gaussian white noise that contains all frequencies.

In the sequel we show that adding a Gaussian white noise to the current changes the

attractor and yields a new attractor state with ρ(P ) as the Γ-distribution, resulting in

the Tsallis escort q-distributions as the superstatistics. In these states, the affinity and
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the current are Gaussian distributed with zero mean. In other words, we show that a

current with Gaussian white noise fluctuations takes the system to a unique class of quasi-

equilibrium states, where it attains the ubiquitous Gaussian distribution with zero mean

and the superstatistics coincides with the Tsallis escort q-distributions. This explains the

ubiquity and the physical significance of escort distributions and, hence, of the q-averages

as quasi-equilibrium mean values.

The noise maybe generated, in externally driven complex systems for example, by the

variation of a control parameter. The resulting change in the attractor and the appearance

of a new quasi-equilibrium behavior associated with the superstatistics is then an instance of

bifurcation. Regarding turbulent flow as such, the control parameter is the Reynolds number

and/or the boundary roughness [17, 18], the relevant extensive variable is the kinetic energy

(per unit mass) associated with a given spatial scale, and the current is its rate of change

per unit time due to dissipation. The current, being scale-dependent, fluctuates in a scale-

dependent manner (intermittency) as the value of the control parameter is increased, driving

the system to a quasi-equilibrium state where the mean dissipation vanishes at intermediate

scales. The new behavior associated with this quasi-equilibrium state, which is identified

with the fully developed turbulence state, is the power-law behavior of the velocity structure

functions. We shall analytically deduce the power-law spectrum, yielding a correction to the

log-normal model which removes its shortcomings with regard to the decreasing higher order

moments and the Novikov inequality [19], and obtain exponents that agree well with the

available data.

FLUCTUATING CURRENT: RELAXATION TO QUASI-EQUILIBRIUM STATE

Introducing the response function C0 = −∂PX|P0
> 0, we write equation (1) as

Ḟ = −
1

τ
F (3)

where τ = C0/ℓ is the relaxation time of the system. The unique stationary solution of this

equation is F = 0, which corresponds to the equilibrium state at t ≫ τ . Equation (3) can

be cast as an equation for P instead. Writing P
P0

= 1 + F
P0
, we have

d

dt
ln

P

P0
= −

1

τ

F

P0

[

1−
F

P0
+ (

F

P0
)2 − · · ·

]

= −
1

τ
(
P

P0
− 1) (4)
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to first order in the (small) affinity. Adding the Gaussian white noise, ξ(t), with the prop-

erties

〈ξ(t)〉 = 0, 〈ξ(t) ξ(t′)〉 = 2Dδ(t− t′) (5)

(D > 0) to the current Ẋ = ℓF is equivalent to adding it to F (with D in (5) redefined),

which, in turn, is equivalent to adding it to the right hand side of equation (4) (with D

redefined again). We, thus, arrive at the following stochastic differential equation for P :

d

dt
ln

P

P0

= −
1

τ
(
P

P0

− 1) + ξ(t). (6)

This equation yield a new attractor (stationary) state, as we now show. To this end, it is

more convenient to cast (6) in the form of a standard Langevin equation by introducing

v = ln P
P0
. We have v̇ = f(v) + ξ(t) where f(v) = − 1

τ
(ev − 1). The corresponding Fokker-

Plank equation is [20] ∂tρ(v, t) + ∂vj(v, t) = 0 where j(v, t) = f(v)ρ(v, t)−D∂vρ(v, t). The

stationary solution, ρ(v), at t ≫ τ satisfies j = 0, yielding

ρ(ln
P

P0

) = [Γ(
1

q − 1
)]−1 (

1

q − 1

P

P0

)
1

q−1 exp(−
1

q − 1

P

P0

) (7)

where, q − 1 = Dτ > 0. The P-p.d.f. ρ(P ) = 1
P
ρ(ln P

P0

) is, therefore, the well known

Γ-distribution. Its mean is P0 and its variance, (q − 1)P 2
0 , vanishes as D → 0 (q → 1),

i.e. as the fluctuations disappear, recovering the p.d.f. δ(P − P0) of the equilibrium state.

This identifies the noise as the sole agent of driving the system toward the quasi-equilibrium

state. Note also, by similarly writing the standard Langevin equation (3) (with the noise

added, of course) as a Fokker-Plank equation, that the quasi-equilibrium affinity, and hence

the current, are Gaussian distributed about zero, approaching the delta function as the

fluctuations disappear. Substituting (7) in (2), after a simple integration we obtain the

quasi-equilibrium superstatistics as p(X) = P0 [1 + (q − 1)P0X ]−
q

q−1 , which coincides with

the Tsallis escort q-distribution, p(q)(X). Of course, q = 1 + Dτ ≥ 1, where for q = 1

the distribution reduces to the equilibrium exponential distribution. Note that the escort

distribution itself has emerged as the physically relevant p.d.f. and is not postulated via

the direct Tsallis q-distribution. Consequently, the quasi-equilibrium mean value 〈X〉 =
∫∞
0 Xp(X)dX = 1

(2−q)P0
, which exists provided q < 2 (thus, 1 ≤ q < 2), is inherently a

q-average. Finally, introducing the normalized variable x = X/〈X〉, we write

p(x) =
1

2− q

[

1 +

(

q − 1

2− q

)

x

]− q

q−1

(8)
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and note that X may be taken to denote an extensive quantity per unit mass, when appro-

priate. (We may note, in passing, that the physical significance of the extensivity parameter,

q, coincides with interpretation given in reference [9]. There, the authors obtain the direct

q-distributions by considering fluctuations of the parameters of the usual exponential distri-

bution. Their postulated Langevin equation (11), which yields the Γ-distribution, coincides

with our equation (6), provided we make the identification χ = 1/P and φ = 1/τP0. How-

ever, the integrand of their integral expression (4) slightly differs from ours in equation

(2).)

FULLY DEVELOPED TURBULENCE AS A QUASI-EQUILIBRIUM STATE

In a turbulent flow, the current responsible for relaxation is the rate of change of the

kinetic energy per unit mass associated with a given spatial scale. This is because of dissi-

pation, which causes a difference between the in-flux from the larger scales and the out-flux

to the smaller ones. For sufficiently high values of the control parameter (Reynolds number

and/or boundary roughness), the system relaxes to a stationary state where the mean in-

and out-fluxes are equal at finite intermediate scales and dissipation occurs at a mean rate

ε only at the smallest (Kolmogorov) scale. This state, which is the state of vanishing mean

current, corresponds to the quasi-equilibrium state of fully developed turbulence.

Let u(r) denote the longitudinal velocity difference in a turbulent flow as measured on

an intermediate length scale r. In the simplest model, we can take 1
2
u2 as a measure of

the kinetic energy (per unit mass) of the flow associated with scale r. We, therefore, take

X(r) = 1
2
u2(r) as the relevant (scale-dependent) extensive quantity (per unit mass) with its

rate of change, Ẋ(r), as the (scale-dependent) current. Were intermittent fluctuations not

present in the current, the turbulent system would relax to the equilibrium state with mean

energy X̃(r) = 1
2
〈u2(r)〉0, and the fully developed turbulent state would be an equilibrium

state. The normalized variable is, thus, x(r) = u2/〈u2〉0 and the equilibrium p.d.f. p0(x) =

e−x determines the distribution of |u| (−∞ < u < ∞) according to p0(|u|) =
2|u|
〈u2〉0

e−|u|2/〈u2〉0 .

This is the p.d.f for u irrespective of its sign, i.e. p0(|u|) = p0(u) + p0(−u), and so the

even part of the u-p.d.f., p0(u), is only obtained; the odd part (which must satisfy the exact

constraint imposed by the Kolmogorov’s four-fifths law [21] for the third moment) remains

undetermined. This implies that we can obtain only the even moments of the velocity
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differences. However, the moments are sometimes defined in terms of |u| instead of u, in

which case the even moments coincide. Although there has been no theoretical justification

for the spectrum of the odd moments thus obtained, experimental and numerical evidence

suggest that the spectrum does not change significantly [22–25]. In particular, the third

moment of |u| has a scaling exponent that is close to unity, which is curious since the four-

fifths law pertains to u and not |u|. This has motivated the very useful notion of extended

self-similarity (ESS) [22, 24], according to which moments are conveniently plotted against

the third moment as a log-log plot. As shall see, using the absolute velocity differences,

our theory drives an exponent very close to unity for the third moment, thus providing an

explanation for the ESS. Hence (m = 1, 2, . . .)

〈|u|m〉0 =
∫ ∞

0
|u|mp0(|u|)d|u| = Γ(

m

2
+ 1) 〈u2〉

m/2
0 . (9)

Since current fluctuations are ignored, the free parameter of the p.d.f. can be determined

à la Kolmogorov [26] as 〈u2〉0 ∼ (εr)2/3, to leading order. Then 〈|u|m〉0 ∼ (εr)m/3, which is

the expected Kolmogorov power-law spectrum. Therefore, the Kolmogorov spectrum would

apply if the fully developed turbulent flow were an equilibrium phenomenon.

Let us now consider adding a Gaussian white noise, which is anticipated at sufficiently

high values of the control parameter, to the current Ẋ(r). Since the current is scale depen-

dent, we consider scale-dependent fluctuations by taking D = D(r) so that q(r) = 1+D(r)τ

now depends on the scale. In the presence of such intermittent fluctuations, the system

relaxes in the quasi-equilibrium state of fully developed turbulence where the mean dissi-

pation vanishes (at intermediate scales) yielding zero mean current. The quasi-equilibrium

p.d.f. is the (scale-dependent) escort distribution (8), which similarly implies

p(|u|) =
2|u|

(2− q)〈u2〉

[

1 +

(

q − 1

2− q

)

u2

〈u2〉

]− q

q−1

.

It has two free parameters, namely, q and 〈u2〉. The moments are, hence, given by

〈|u|m〉 =
∫ ∞

0
|u|mp(|u|)d|u| =

(2− q)m/2〈u2〉m/2

(q − 1)
m

2
+1

∫ 1

0
dt t

1

q−1
−m

2
−1(1− t)m/2.

The integral exists provided m < 2(q − 1)−1, which includes sufficiently large m’s when q is

close to unity. We assume this is the case (see shortly). Then

1

Γ(m
2
+ 1)

〈|u|m〉

〈u2〉m/2
=

Γ( 1
q−1

− m
2
)

Γ( 1
q−1

)

(

2− q

q − 1

)m/2

(10)
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which reduces to (9) for q = 1, of course. This will give the velocity statistics in the fully

developed turbulence state. Our aim is to drive the structure functions in the form

〈|u|m〉 ∼ (εr)m/3(
r

L
)ηm (11)

to leading order, where L(≫ r) is the integral length scale and the proportionality constants

are non-universal, depending on the detailed geometry of the turbulent production.

The free parameter, 〈u2〉, is to be determined by (11) with m = 2, so that

〈u2〉 ∼ (εr)2/3(
r

L
)η2 . (12)

From (10) we have

〈|u|m〉

〈|u|m′〉
=

Γ(m
2
+ 1)

Γ(m
′

2
+ 1)

〈u2〉
m−m

′

2

(

2− q

q − 1

)
m−m

′

2 Γ( 1
q−1

− m
2
)

Γ( 1
q−1

− m′

2
)

which, for m > m′ both odd/even, becomes

〈|u|m〉

〈|u|m′〉
=

Γ(m
2
+ 1)

Γ(m
′

2
+ 1)

〈u2〉
m−m

′

2 (2− q)
m−m

′

2

m−m
′

2
∏

l=1

[1− (l +
m′

2
)(q − 1)]−1. (13)

Since (2− q)−1 = q +O((q − 1)2) = q to leading order, and the product is

exp





−

m−m
′

2
∑

l=1

ln[1− (l +
m′

2
)(q − 1)]





 =

exp

(

[(
m2

2
+m)− (

m′2

2
+m′)]

q − 1

4
+O((q − 1)2)

)

= q[(
m

2

2
+m)−(m

′2

2
+m′)]/4

having used ln q = (q − 1) +O((q − 1)2), (13) yields

〈|u|m〉 = Γ(
m

2
+ 1)〈u2〉

m

2 qm(m−2)/8 (14)

which checks for m = 2 and reduces to (9) for q = 1, as it should. For m = 4, we have

〈u4〉/〈u2〉2 = 2q, so that the (scale dependent) value of the kurtosis (flatness) determines

the other free parameter, q(r). Using (11), we find

q(r) ∼ (
r

L
)−(2η2−η4). (15)

Since 2η2−η4 ≪ 1, q(r) is a slowly varying function of r in the intermediate scales and, hence,

so is the upper bound mmax(r) = 2(q − 1)−1 on m. Although the reliability of experimental
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data rapidly decreases for moments of order higher than m = 10, a scale-dependent upper

bound on the order is at variance with the general supposition that moments of all orders

exist. However, as we shall see below, it will serve to remove the shortcomings of the log-

normal model with regard to its decreasing higher order moments and the Novikov inequality

[19]. Substituting in (14) our expressions for 〈u2〉 and q from (12) and (15), we finally obtain

the spectrum (11) with the intermittency exponents

ηm = −
1

2
m(m− 3)η2 +

1

8
m(m− 2)(2η2 + η4). (16)

The first term coincides with the prediction of the log-normal (LN) model [27] (with

η2 ≡ µ/9 as the free parameter), which is known to yield good agreement with experimental

data for moments up to order m = 10. Indeed, if we substitute the LN value η4 = −2η2

in (16), then the second term vanishes. Thus, the second term represents deviation from

log-normality and yields corrections to the LN predictions. Denoting the relative deviation

of η4 from its LN value by δ (|δ| < 1), (16) can be written as

ηm = ηLNm −
1

4
m(m− 2)η2δ. (17)

Writing (11) as 〈|u|m〉 ∼ rζm, the scaling exponents ζm = m/3 + ηm of our ‘corrected’ LN

model are, therefore,

ζm = ζLNm −
1

4
m(m− 2)η2δ. (18)

Since the LN exponents for higher moments generally fall below experimentally measured

values, we anticipate a negative δ (for example, δ ≈ −0.08, as given by the She-Leveque

model [28]). For m > mLN
0 = 3

2
+ 1

3η2
(≈ 16.5) (for numerical estimates we use the LN

value, η2 ≈ 0.2/9), the scaling exponents ζLNm monotonically decrease with m, implying the

breakdown of the incompressibility approximation in the fully developed turbulent state

[29]. From (18), ζm is a monotonically increasing function of m provided m < m0 =
2mLN

0
+δ

2+δ
,

and for δ < 0 we have m0 > mLN
0 . Therefore, the exponents ζm increase with m if the slowly

varying upper bound mmax(r) remains sufficiently close to mLN
0 . That is, if q − 1 remains

close to 2/mLN
0 (≈ 0.12), which is consistent with our assumption that q − 1 ≪ 1. In other

words, for |q(r) − 1 − 2
mLN

0

| ≪ 1, the corrected model (with δ < 0) rids the LN model of

its decreasing higher order moments, yielding structure functions only up to order [mLN
0 ] ([ ]

stands for the integer part). Then, it will also satisfy the Novikov inequality ηm +m > 0,

9



TABLE I: Comparison of ζm as given by our theory, the LN model, and experiment.

m Theory LN Model Ref. [24] Ref.a[30]

1 0.36 0.36 0.37 -

2 0.69 0.69 0.70 0.71

3 1.00 1 1.00 1

4 1.29 1.29 1.28 1.33

5 1.56 1.56 1.54 1.54

6 1.81 1.8 1.78 1.8

7 2.04 2.02 2.00 2.06

8 2.24 2.22 2.23 2.28

9 2.43 2.4 - 2.41

10 2.59 2.56 - 2.60

aMoments pertain to u and so ζ3 = 1 by assumption.

which is violated by the LN model. This can be readily checked using (17) and noting that

6−δ
10−δ

<
mLN

0

2
<

6mLN

0
+δ−6

2+δ
.

Using the tentative values η2 = 0.2/9 and δ = −0.08, Table I compares ζm up to order

m = 10, as given by our theory (equation (18)), the LN model and the references [24, 30].

The agreement is quite good considering the uncertainties involved. In particular, we notice

the value of ζ3, which is only slightly larger than the exact value 1 (implied by the four-fifths

law for 〈u3〉) in conformance with 〈|u|3〉 > |〈u3〉| and the data of [24], theoretically justifying

ESS.
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