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OPTIMAL STOPPING PROBLEMS FOR THE MAXIMUM

PROCESS WITH UPPER AND LOWER CAPS

By Curdin Ott

University of Bath

This paper concerns optimal stopping problems driven by a spec-
trally negative Lévy process X. More precisely, we are interested in
modifications of the Shepp-Shiryaev optimal stopping problem [2, 10,
11]. First, we consider a capped version of the latter and provide the
solution explicitly in terms of scale function. In particular, the op-
timal stopping boundary is characterised by an ordinary differential
equation involving scale function and changes according to the path
variation of X. Secondly, in the spirit of [12], we consider a modifi-
cation of the capped version of the Shepp-Shiryaev optimal stopping
problem in the sense that the decision to stop has to be made before
the process X falls below a given level.

1. Introduction. Let X = {Xt : t ≥ 0} be a spectrally negative Lévy
process defined on a filtered probability space (Ω,F ,F = {Ft},P) satisfying
the usual conditions. For x ∈ R , denote by Px the probability measure under
which X starts at x and for simplicity write P0 = P. We associate with X
the maximum process X = {X t : t ≥ 0} given by X t := s∨ sup0≤u≤tXu for

t ≥ 0, s ≥ x. The law under which (X,X) starts at (x, s) is denoted by Px,s.
In this paper we are mainly interested in the following optimal stopping

problem:

(1) V ∗
ǫ (x, s) = sup

τ∈M
Ex,s

[

e−qτ+Xτ∧ǫ
]

,

where ǫ ∈ R, q > 0, (x, s) ∈ E := {(x, s) ∈ R
2 |x ≤ s} and M is the set of

all finite F-stopping times. Since the constant ǫ bounds the process X from
above, we refer to it as the upper cap. Due to the fact that the pair (X,X) is
a strong Markov process, (1) has also a Markovian structure and hence the
general theory of optimal stopping suggests that the optimal stopping time
is the first entry time of the process (X,X) into some subset of E. Indeed,
it turns out that the solution of (1) is given by

τ∗ǫ := inf{t ≥ 0 : Xt −Xt ≥ g(X)}
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2 CURDIN OTT

for some function g which is characterised as solution to a certain ordinary
differential equation involving scale functions. The function s 7→ s− g(s) is
sometimes referred to as the optimal stopping boundary. We will show that
the shape of the optimal boundary changes according to the path variation
of X. The solution of problem (1) is closely related to the solution of the
Shepp-Shiryaev optimal stopping problem

(2) V ∗(x, s) = sup
τ∈M

Ex,s

[

e−qτ+Xτ
]

,

which was first studied by Shepp and Shiryaev [10–12] for the case when
X is a linear Brownian motion and later by Avram, Kyprianou and Pisto-
rius [2] for the case when X is a spectrally negative Lévy process. Shepp and
Shiryaev [10] introduced the problem as a means to pricing Russian options,
a topic we do not concern ourselves with in this paper. Our method for solv-
ing (1) consists of a verification technique, that is, we heuristically derive a
candidate solution and then verify that it is indeed a solution. In particular,
we will make use of the principle of smooth and continuous fit [1, 8] in a
similar way to [8, 10].

It is also natural to ask for a modification of (1) with a lower cap. Whilst
this is already included in the starting point of the maximum process X ,
there is a stopping problem that captures this idea of lower cap in the sense
that the decision to exercise has to be made before X drops below a certain
level. Specifically, consider

(3) V ∗
ǫ1,ǫ2

(x, s) = sup
τ∈Mǫ1

Ex,s

[

e−qτ+Xτ∧ǫ2
]

,

where ǫ1, ǫ2 ∈ R such that ǫ1 < ǫ2, q > 0,Mǫ1 := {τ ∈ M| τ ≤ Tǫ1} and
Tǫ1 := inf{t ≥ 0 : Xt ≤ ǫ1}. In the special case with no cap (ǫ2 = ∞),
this problem was considered by Shepp, Shiryaev and Sulem [12] for the case
where X is a linear Brownian motion. Inspired by their result we expect the
optimal stopping time to be of the form Tǫ1 ∧ τ

∗
ǫ2
, where τ∗ǫ2 is the optimal

stopping time in (1). Our main contribution here is that we find a closed
form expression for the value function associated with the strategy Tǫ1 ∧ τ

∗
ǫ2
,

thereby allowing us to verify that it is indeed an optimal strategy.

2. Notation and auxiliary results. The purpose of this section is to
introduce some notation and collect some known results about spectrally
negative Lévy processes. Moreover, we state the solution of the Shepp-
Shiryaev optimal stopping problem (2) which will play an important role
throughout this paper.
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2.1. Spectrally negative Lévy processes. It is well known that a spec-
trally negative Lévy process X is characterised by its Lévy triplet (γ, σ,Π),
where σ ≥ 0, γ ∈ R and Π is a measure on (−∞, 0) satisfying the condition
∫

(−∞,0) 1 ∧ x2 Π(dx) < ∞. By the Lévy-Itô decomposition, the latter may
be represented in the form

(4) Xt = σBt − γt+X
(1)
t +X

(2)
t

where {Bt : t ≥ 0} is a standard Brownian motion, {X
(1)
t : t ≥ 0} is

a compound Poisson process with discontinuities of magnitude bigger or

equal to one and {X
(2)
t : t ≥ 0} is a square integrable martingale with

discontinuities of magnitude strictly smaller than one and the three processes
are mutually independent. In particular, if X is of bounded variation, the
decomposition reduces to

(5) Xt = dt+ St

where d > 0 and {−St : t ≥ 0} is a driftless subordianator. Furthermore,
the spectral negativity of X ensures existence of the Laplace exponent ψ of
X, that is, E[eθX1 ] = eψ(θ) for θ ≥ 0, which is known to take the form

ψ(θ) = −γθ +
1

2
σ2θ2 +

∫

(−∞,0)
eθx − 1− θx1{x>−1}Π(dx).

Its right inverse is defined by

Φ(q) := inf{λ ≥ 0 : ψ(λ) = q}

for q ≥ 0.
For any spectrally negative Lévy process having X0 = 0 we introduce the

family of martingales
exp(cXt − ψ(c)t),

defined for any c for which ψ(c) = logE[exp(cX1)] < ∞, and further the
corresponding family of measures {Pc} with Radon-Nikodym derivatives

(6)
dPc

dP

∣

∣

∣

∣

Ft

= exp(cXt − ψ(c)t).

For all such c the measure P
c
x will denote the translation of Pc under which

X0 = x.
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2.2. Scale functions. A special family of functions associated with spec-
trally negative Lévy processes is that of scale functions (cf. [6]) which are
defined as follows. For q ≥ 0, the q-scale function W (q) : R −→ [0,∞) is the
unique function whose restriction to (0,∞) is continuous and has Laplace
transform

∫ ∞

0
e−θxW (q)(x) dx =

1

ψ(θ)− q
, θ > Φ(q),

and is defined to be identically zero for x ≤ 0. Equally important is the scale
function Z(q) : R −→ [1,∞) defined by

Z(q)(x) = 1 + q

∫ x

0
W (q)(z) dz.

The passage times of X above and below k ∈ R are denoted by

τ−k = inf{t > 0 : Xt ≤ k} and τ+k = inf{t > 0 : Xt ≥ k}.

We will make use of the following four identities. For q ≥ 0 and x ∈ (a, b) it
holds that

Ex

[

e−qτ
+
b I{τ+

b
<τ−a }

]

=
W (q)(x− a)

W (q)(b− a)
,(7)

Ex

[

e−qτ
−

a I{τ+
b
>τ−a }

]

= Z(q)(x− a)−W (q)(x− a)
Z(q)(b− a)

W (q)(b− a)
,(8)

for q > 0 and x ∈ R it holds that

(9) Ex

[

e−qτ
−

0 1{τ−0 <∞}

]

= Z(q)(x)−
q

Φ(q)
W (q)(x),

and finally for q > 0 we have

(10) lim
x→∞

Z(q)(x)

W (q)(x)
=

q

Φ(q)
.

The proofs of (7),(8) and (10) can be found in [2] and (9) is taken from [6].

For each c ≥ 0 we denote by W
(q)
c the q-scale function with respect to

the measure P
c. A useful formula (cf. [6]) linking the scale function under

different measures is given by

(11) W (q)(x) = eΦ(q)xWΦ(q)(x)

for x ≥ 0.
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We conclude this subsection by stating some known regularity properties
of scale functions [5].
Smoothness: For all q ≥ 0,

W (q)|(0,∞) ∈











C1(0,∞), if X is of bounded variation and Π has no atoms,

C1(0,∞), if X is of unbounded variation and σ = 0,

C2(0,∞), σ > 0.

Continuity at the origin: For all q ≥ 0,

(12) W (q)(0+) =

{

d
−1, if X is of bounded variation,

0, if X is of unbounded variation.

Derivative at the origin: For all q ≥ 0,

W (q)′(0+) =

{

q+Π(−∞,0)
d2

, if σ = 0 and Π(−∞, 0) <∞,
2
σ2
, if σ > 0 or Π(−∞, 0) = ∞,

where we understand the second case to be +∞ when σ = 0.

2.3. Solution to the Shepp-Shiryaev optimal stopping problem. In order
to state the solution to the Shepp-Shiryaev optimal stopping problem, we
give a reformulation of Lemma 2 in Section 6 of [2].

Proposition 2.1. Suppose that W (q)(0+) < q−1 and q > ψ(1). Addi-
tionally assume that Π is atomless whenever X has paths of bounded varia-
tion. Then the function h(s) := Z(q)(s)− qW (q)(s) is strictly decreasing on
(0,∞) and satisfies lims↓0 h(s) > 0 and lims→∞ h(s) = −∞. In particular,
there exists a unique root k∗ ∈ (0,∞) of the equation h(s) = 0.

Remark 2.2. Note that the previous result is proved in [2] under the
assumption that Π is absolutely continuous with respect to Lebesgue measure.
An inspection of the proof shows that this is merely a technical assumption
to ensure that W (q) is C1(0,∞) which is known to be the case if X is of
unbounded variation or if X is of bounded variation and Π is atomless.

Proposition 2.3.

(a) Suppose that W (q)(0+) < q−1 and q > ψ(1). Assume additionally that
Π is atomless whenever X has paths of bounded variation. Then the
solution of (2) is given by

V ∗(x, s) = esZ(q)(k∗ − s+ x)
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with optimal strategy

τ∗ := inf{t ≥ 0 : X t −Xt ≥ k∗},

where k∗ ∈ (0,∞) is given in Proposition 2.1.
(b) If W (q)(0+) < q−1 and q ≤ ψ(1), then V ∗(x, s) = ∞.
(c) If W (q)(0+) ≥ q−1, then the solution of (2) is given by V ∗(x, s) = es

with associated optimal strategy τ∗ = 0.

Proof. Bearing in mind what was said in Remark 2.2, the first part can
be extracted from Section 6 of [2].

As for the second part, first suppose that q < ψ(1). By the martingale
property of {exp(Xt − ψ(1)t) : t ≥ 0}, we obtain the estimate

Ex,s

[

e−qt+Xt
]

≥ Ex,s

[

e−qt+Xt
]

= et(ψ(1)−q)

which implies the assertion. If q = ψ(1), define τk := inf{t ≥ 0 : X t−Xt ≥ k}
for some k > 0 and write

Ex,s

[

e−q(t∧τk)+Xt∧τk

]

≥ ekEx,s
[

e−qτk+Xτk 1{τk≤t}
]

= ekP1
x,s[τk ≤ t].

Since τk is P1
x,s-a.s. finite, the result follows.

As for the third part, note that W (q)(0+) ≥ q−1 necessarily means that
X is of bounded variation and in particular we have d = W (q)(0+)−1 ≤ q.
Integration by parts leads to

e−qt+Xt = es +

∫ t

0
e−qt+Xu(−q + d1{Xu=Xu}

) du ≤ es Px,s-a.s.

This in conjunction with the Markov property shows that for u ≤ t we have

Ex,s

[

e−qt+Xt
∣

∣Fu
]

= e−quEXu,Xu

[

e−q(t−u)+Xt−u
]

≤ e−qu+Xu Px,s-a.s.

which shows that the process
{

exp(−qt+Xt) : t ≥ 0
}

is a right-continuous
Px,s-supermartingale for all (x, s) ∈ E. This together with Fatou’s Lemma
and Doob’s stopping Theorem gives for any τ ∈ M,

Ex,s

[

e−qτ+Xτ
]

≤ lim inf
t→∞

Ex,s

[

e−q(t∧τ)+Xt∧τ
]

≤ es,

with equality for τ = 0. This completes the proof.
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3. Main results.

3.1. Maximum process with upper cap. Define

k∗ := inf{z ∈ R : Z(q)(z) ≤ qW (q)(z)},

where we set inf ∅ = ∞. The next result ensures existence of a function g
which will describe the optimal stopping boundary of problem (1).

Lemma 3.1. Let ǫ ∈ R be given and suppose that W (q)(0+) < q−1.
Additionally assume that Π is atomless whenever X has paths of bounded
variation.

a) If q > ψ(1), then k∗ ∈ (0,∞), otherwise k∗ = ∞.
b) There exists a unique solution g : (−∞, ǫ) → (0, k∗) of the ordinary

differential equation

(13) g′(s) = 1−
Z(q)(g(s))

qW (q)(g(s))
on (−∞, ǫ)

satisfying the conditions lims↑ǫ g(s) = 0 and lims→−∞ g(s) = k∗.

Next, extend g to the whole real line by setting g(s) = 0 for s ≥ ǫ. We
now present the solution of (1).

Theorem 3.2. Let ǫ ∈ R be given.

a) Suppose that W (q)(0+) < q−1. Additionally assume that Π is atomless
whenever X has paths of bounded variation. Then the solution of (2)
is given by

V ∗
ǫ (x, s) = es∧ǫZ(q)(x− s+ g(s))

with corresponding optimal strategy

τ∗ǫ := inf{t ≥ 0 : X t −Xt ≥ g(X t)},

where g is given in Lemma 3.1.
b) If W (q)(0+) ≥ q−1, then the solution of (2) is given by V ∗

ǫ (x, s) = es∧ǫ

with corresponding optimal strategy τ∗ǫ = 0.

Define the continuation region C∗ := {(x, s) ∈ E | s < ǫ, s− g(s) < x ≤ s}
and the stopping region D∗ := E \C∗. The shape of the boundary separat-
ing them, that is, the optimal stopping boundary, is of particular interest.
Assuming that W (q)(0+) < q−1, Theorem 3.2 and (12) show that

lim
s↑ǫ

g′(s) =

{

−∞, if X is of unbounded variation,

1− d/q, if X is of bounded variation.
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Also, using (10) we see that

lim
s→−∞

g′(s) =

{

0, if q > ψ(1),

1− Φ(q)−1, if q ≤ ψ(1).

This (qualitative) behaviour of g and the resulting shape of the continuation
and stopping region are illustrated in Figure 1. Note in particular that the
shape of g at ǫ (and consequently the optimal boundary) changes according
to the path variation of X.

sǫ

k∗

sǫ

x

s

ǫ

k∗

D∗

C∗

x

s

ǫ

D∗

C∗

Fig 1. For the two pictures on the left it is assumed that W (q)(0+) = 0 and q > ψ(1)
whereas on the right it is assumed that W (q)(0+) ∈ (0, q−1) and q ≤ ψ(1).

The horizontal and vertical lines are meant to indicate a realisation of
the trace of the process (X,X) in the (x, s)-plane. Each horizontal line cor-
responds to the trace of an excursion away from the maximum. In other
words, the optimal strategy consists of continuing if the height of the excur-
sion away from the running supremum s does not exceed g(s), otherwise we
stop.

Finally, in the case d
−1 = W (q)(0+) ≥ q−1 Theorem 3.2 asserts that

the optimal strategy is to stop immediately. This is intuitively clear since
d ≤ q means that even when the process X is increasing, the process
exp(−qt+X t ∧ ǫ) is decreasing, i.e., it is best to stop immediately.



OPTIMAL STOPPING FOR THE MAXIMUM PROCESS 9

3.2. Maximum process with upper and lower cap. Inspired by the result
in [12], we expect the strategy Tǫ1 ∧ τ

∗
ǫ2

to be optimal, where τ∗ǫ2 is given in
Theorem 3.2 and Tǫ1 := inf{t ≥ 0 : Xt ≤ ǫ1}. This means that the optimal
boundary is expected to be a vertical line at ǫ1 combined with the curve
described by g = gǫ2 characterised in Lemma 3.1. If we define Aǫ1,ǫ2 = A ∈ R

to be the unique solution to the equation A− g(A) = ǫ1, then our candidate
optimal strategy splits the state space into the stopping regions

D∗
I,ǫ1,ǫ2

= D∗
I := {(x, s) ∈ E : x = ǫ1, ǫ1 ≤ s ≤ A},

D∗
II,ǫ1,ǫ2

= D∗
II := {(x, s) ∈ E : ǫ1 ≤ x ≤ s− g(s), s > A},

and the continuation regions

C∗
I,ǫ1,ǫ2

= C∗
I := {(x, s) ∈ E : ǫ1 < x ≤ s, ǫ1 < s < A},

C∗
II,ǫ1,ǫ2

= C∗
II := {(x, s) ∈ E : s− g(s) < x ≤ s,A ≤ s < ǫ2}.

Also let Eǫ1 := {(x, s) ∈ E |x ≥ ǫ1}.

x

s

k∗ C∗

I

C∗

II

D∗

I

D∗

II

ǫ1 ǫ2

A

Fig 2. A qualitative picture of the continuation and stopping region under the assumption
that W (q)(0+) = 0 and q > ψ(1) (cf. Theorem 3.4).

Clearly, if (x, s) ∈ E \ Eǫ1 , then the only stopping time in Mǫ1 is τ = 0
and hence the optimal value function is given by es∧ǫ2 . Furthermore, when
(x, s) ∈ C∗

II ∪ D∗
II we have τ∗ǫ2 ≤ Tǫ1 , so that the optimality of τ∗ǫ2 in (1)

implies V ∗
ǫ1,ǫ2

(x, s) = V ∗
ǫ2
(x, s). Consequently, the interesting case is really

(x, s) ∈ C∗
I ∪D

∗
I . The key to verifying that Tǫ1 ∧ τ

∗
ǫ2

is optimal, is to find the
value function associated with it.

Lemma 3.3. Let ǫ1 < ǫ2 be given and suppose that W (q)(0+) < q−1.
Additionally assume that Π is atomless whenever X has paths of bounded
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variation. We then have

Ex,s

[

e
−q(Tǫ1∧τ

∗

ǫ2
)+XTǫ1∧τ∗ǫ2

∧ǫ2
]

= Vǫ1,ǫ2(x, s)

:=











V ∗
ǫ2
(x, s), (x, s) ∈ C∗

II ∪D
∗
II ,

Uǫ1,ǫ2(x, s), (x, s) ∈ C∗
I ∪D

∗
I ,

es∧ǫ2 , otherwise,

where V ∗
ǫ2

is given in Theorem 3.2 and

Uǫ1,ǫ2(x, s) = esZ(q)(x− ǫ1) + eǫ1W (q)(x− ǫ1)

∫ g(A)

s−ǫ1

et
Z(q)(t)

W (q)(t)
dt.

Our main contribution here is the closed form expression for Uǫ1,ǫ2 , thereby
allowing us to verify that the strategy Tǫ1 ∧ τ

∗
ǫ2

is still optimal.

Theorem 3.4. Let ǫ1 < ǫ2 be given.

a) Suppose that W (q)(0+) < q−1. Additionally assume that Π is atomless
whenever X has paths of bounded variation. Then the solution to (3)
is given by V ∗

ǫ1,ǫ2
= Vǫ1,ǫ2 with corresponding optimal strategy τ∗ǫ1,ǫ2 =

Tǫ1 ∧ τ
∗
ǫ2
, where τ∗ǫ2 is given in Theorem 3.2.

b) IfW (q)(0+) ≥ q−1, then the solution to (3) is given by V ∗
ǫ1,ǫ2

(x, s) = es∧ǫ2

with corresponding optimal strategy τ∗ǫ1,ǫ2 = 0.

Moreover, going through the proof of Theorem 3.4 with g ≡ k∗ ∈ (0,∞]
and A = ǫ1 + k∗, one obtains the solution to (3) with lower cap only.

Corollary 3.5. Suppose that ǫ2 = ∞, that is, there is no upper cap.

a) Let ǫ1 ∈ R and suppose that W (q)(0+) < q−1 and q > ψ(1). Addi-
tionally assume that Π is atomless whenever X has paths of bounded
variation. Then the solution to (3) is given by

V ∗
ǫ1,∞(x, s) =











V ∗(x, s), (x, s) ∈ C∗
II ∪D

∗
II ,

Uǫ1,∞(x, s), (x, s) ∈ C∗
I ∪D

∗
I ,

es, otherwise,

where V ∗ is given in Proposition 2.3 and

Uǫ1,∞(x, s) = esZ(q)(x− ǫ1) + eǫ1W (q)(x− ǫ1)

∫ k∗

s−ǫ1

et
Z(q)(t)

W (q)(t)
dt.

The corresponding optimal strategy is given by τ∗ǫ1,∞ = Tǫ1 ∧ τ
∗, where

τ∗ is given in Proposition 2.3.
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b) If W (q)(0+) < q−1 and q ≤ ψ(1), then

V ∗
ǫ1,∞(x, s) =

{

es, if x ≤ ǫ1,

∞, otherwise.

c) IfW (q)(0+) ≥ q−1, then the solution of (3) is given by V ∗
ǫ1,∞(x, s) = es

with associated optimal strategy τ∗ǫ1,∞ = 0.

In particular, if Xt = (µ− 1
2σ

2)t+ σWt, where µ ∈ R, σ > 0 and (Wt)t≥0

is a standard Brownian motion, then Corollary 3.5 is nothing else than
Theorem 3.1 of [12]. However, this is not immediately clear an requires a
simple, but lengthy computation which is provided in Section 6.

4. Guess and verify via principle of smooth or continuous fit.

Let us consider the solution to (1) from an intuitive point of view. We shall
restrict ourselves to the case where W (q)(0+) < q−1 and q > ψ(1). By
Proposition 2.3, it follows in particular that k∗ ∈ (0,∞).

It is clear that if (x, s) ∈ E such that x ≥ ǫ, then it is optimal to stop
immediately since one cannot obtain a higher payoff than ǫ and waiting is
penalised by exponential discounting. If x is much smaller than ǫ, then the
cap ǫ should not have too much influence and one expects that the optimal
value function V ∗

ǫ and the corresponding optimal strategy τ∗ǫ look similar
to the optimal value function V ∗ and optimal strategy τ∗ of problem (2).
However, if x is close to the cap (or the process gets close to the cap and
has not yet been stopped), then the process X should be stopped “before”
it is a distance k∗ away from its running maximum. This can be explained
as follows: The constant k∗ in the solution to problem (2) quantifies the
acceptable “waiting time” for a much higher running supremum at a later
point in time. But if we impose a cap, there is no hope for a much higher
supremum and therefore “waiting the acceptable time” for problem (2) does
not pay off in the situation with cap. With exponential discounting we would
therefore expect to exercise earlier. In other words, we expect an optimal
strategy of the form

τg = inf{t ≥ 0 : Xt −Xt ≥ g(X)}

for some function g satisfying lims→−∞ g(s) = k∗ and lims→ǫ g(s) = 0.
This qualitative guess can be turned into a quantitative guess by appealing

to the general theory of optimal stopping (cf. [8]). To this end, assume that
X is of unbounded variation (W (q)(0+) = 0). We will deal with the bounded
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variation case later. From the general theory we informally expect the value

function Vg(x, s) = Ex,s

[

e−qτg+Xτg
]

to satisfy the system

ΓVg(x, s) = qVg(x, s) for s− g(s) < x < s with s fixed,
∂Vg
∂s

(x, s)
∣

∣

x=s−
= 0 (normal reflection),(14)

Vg(x, s)|x=(s−g(s))+ = es (instantaneous stopping),

where Γ is the infinitesimal generator of the process X under P0. Moreover,
the principle of smooth (cf. [1, 8]) fit suggests that this system should be
complemented by

(15)
∂Vg
∂x

(x, s)
∣

∣

x=(s−g(s))+
= 0 (smooth fit).

Note that the smooth fit condition is not necessarily part of the general
theory, it is imposed since we believe that it should hold in this setting.
This belief will be vindicated when we show that system (14) with (15)
leads to the solution of problem (1). Applying the strong Markov property
at τ+s and using (7) and (8) shows that

Vg(x, s) = esEx,s
[

e
−qτ−

s−g(s)1{τ−
s−g(s)

<τ+s }

]

+Ex,s

[

e−qτ
+
s 1{τ−

s−g(s)
>τ+s }

]

Es,s

[

e−qτg+Xτg
]

= es
(

Z(q)(x− s+ g(s)) −W (q)(x− s+ g(s))
Z(q)(g(s))

W (q)(g(s))

)

+
W (q)(x− s+ g(s))

W (q)(g(s))
Vg(s, s).

Furthermore, the condition of smooth fit implies

0 = lim
x↓s−g(s)

∂Vg
∂x

(x, s) =
W (q)′(0+)

W (q)(g(s))

(

− esZ(q)(g(s)) + Vg(s, s)

)

.

Since the first factor is strictly positive, this shows that Vg(s, s) equals
esZ(q)(g(s)). This would mean that for (x, s) ∈ E such that s−g(s) < x < s
we have

(16) Vg(x, s) = esZ(q)(x− s+ g(s)).

Having derived the form of a candidate optimal value function Vg, we still
need to do the same for g. Using the normal reflection condition shows that
our candidate function g should satisfy the ordinary differential equation

Z(q)(g(s)) + qW (q)(g(s))(g′(s)− 1) = 0.
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If X is of bounded variation (W (q)(0+) ∈ (0, q−1)) and q > ψ(1), we
informally expect from the general theory that Vg satisfies the first two
equations of (14). Additionally, the principle of continuous fit suggests that
the system should be complemented by

Vg(x, s)|x=(s−g(s))+ = es (continuous fit).

A very similar argument as above produces the same candidate value func-
tion and the same ordinary differential equation for g. One also sees that
exactly the same argument leads to the same conclusion if W (0+)(q) < q−1

and q ≤ ψ(1).

5. Proofs of main results.

Proof of Lemma 3.1. The idea is to define a suitable bijection H from
(0, k∗) to (−∞, ǫ) whose inverse satisfies the differential equation and the
boundary conditions.

First consider the case q > ψ(1). It follows from Proposition 2.1 that

k∗ ∈ (0,∞) and that the function s 7→ f(s) := 1 − Z(q)(s)

qW (q)(s)
is negative

on (0, k∗) and satisfies lims↓0 f(s) ∈ [−∞, 0) and lims↑k∗ f(s) = 0. These
properties imply that the function H : (0, k∗) → (−∞, ǫ) defined by

(17) H(s) := ǫ+

∫ s

0

(

1−
Z(q)(η)

qW (q)(η)

)−1

dη = ǫ+

∫ s

0

qW (q)(η)

qW (q)(η)− Z(q)(η)
dη

is strictly decreasing. If we can also show that the integral tends to −∞ as s
approaches k∗ we could deduce that H is a bijection from (0, k∗) to (−∞, ǫ).
Indeed, appealing to de l’Hospital’s rule and using (9) we obtain

lim
z↑k∗

qW (q)(z)− Z(q)(z)

k∗ − z
= lim

z↑k∗
qW (q)(z)− qW (q)′(z)

= lim
z↑k∗

qeΦ(q)z
(

(1− Φ(q))WΦ(q)(z)−W ′
Φ(q)(z)

)

= qeΦ(q)k∗
(

(1− Φ(q))WΦ(q)(k
∗)−W ′

Φ(q)(k
∗)
)

.

Denote the term on the right-hand side by c and note that c < 0 due to
the fact that WΦ(q) is strictly positive and increasing on (0,∞) and since
Φ(q) > 1 for q > ψ(1). Hence, there exists a δ > 0 and 0 < z0 < k∗ such

that c− δ < qW (q)(z)−Z(q)(z)
k∗−z for all z0 < z < k∗. Thus,

1

qW (q)(z)− Z(q)(z)
<

1

(c− δ)(k∗ − z)
< 0 for z0 < z < k∗.
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This shows that

lim
s↑k∗

H(s) ≤ ǫ+ lim
s↑k∗

∫ s

z0

qW (q)(η)

(c− δ)(k∗ − η)
dη = −∞.

The discussion above permits us to define g := H−1 ∈ C1((−∞, ǫ); (0, k∗)).
In particular, differentiating g gives

g′(s) =
1

H ′(g(s))
= 1−

Z(q)(g(s))

qW (q)(g(s))

for s ∈ (−∞, ǫ) and g also satisfies lims→−∞ g(s) = k∗ and lims↑ǫ g(s) = 0
by construction.

As for the case q ≤ ψ(1), note that by (9) and (10) we have

(18) Z(q)(x)− qW (q)(x) ≥ Z(q)(x)−
q

Φ(q)
W (q)(x) > 0

for x ≥ 0 which shows that k∗ = ∞. Moreover, (18) together with (10) im-
plies that the map s 7→ f(s) is negative on (0,∞) and satisfies lims↓0 f(s) ∈
[−∞, 0) and lims→∞ f(s) = 1−Φ(q)−1 ≤ 0. Defining H : (0,∞) → (−∞, ǫ)
as in (17), one deduces similarly as above that H is a continuously differen-
tiable bijection whose inverse satisfies the requirements.

We finish the proof by addressing the question of uniqueness. To this end,
assume that there is another solution g̃. In particular, g̃′(s) = f(g̃(s)) for
s ∈ (s1, ǫ) ⊂ (−∞, ǫ) and

s1 = ǫ−

∫

(s1,ǫ)
dη = ǫ+

∫

(s1,ǫ)

|g̃′(s)|

f(g̃(s))
ds = ǫ+

∫ g̃(s1)

0

1

f(s)
ds = H(g̃(s1))

which implies that g̃ = H−1 = g.

Proof of Theorem 3.2 when W (q)(0+) < q−1. Define the function

Vǫ(x, s) := es∧ǫZ(q)(x− s+ g(s))

for (x, s) ∈ E and let τg := inf{t ≥ 0 : X t −Xt ≥ g(X t)}, where g is as in
Lemma 3.1. Because of the infinite horizon and Markovian claim structure
of problem (1) it is enough to check the following conditions:

(i) Vǫ(x, s) ≥ es∧ǫ for all (x, s) ∈ E,
(ii) {e−qtVǫ(Xt,X t)} is a right-continuous Px,s-supermartingale for (x, s) ∈ E,

(iii) Vǫ(x, s) = Ex,s

[

e−qτg+Xτg∧ǫ
]

for all (x, s) ∈ E.
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To see why these are sufficient conditions, note that (i) and (ii) together
with Fatou’s Lemma in the second inequality and Doob’s stopping theorem
in the third inequality show that for τ ∈ M,

Ex,s

[

e−qτ+Xτ∧ǫ
]

≤ Ex,s

[

e−qτVǫ(Xτ ,Xτ )
]

≤ lim inf
t→∞

Ex,s

[

e−q(t∧τ)Vǫ(Xt∧τ ,Xt∧τ )
]

≤ Vǫ(x, s),

which in view of (iii) implies V ∗
ǫ = Vǫ and τ

∗
ǫ = τg.

The remainder of this proof is devoted to checking conditions (i)-(iii).
Clearly, condition (i) is satisfied since Z(q)(x, s) ≥ 1 by definition of Z(q).

Supermartingale property (ii). Given the inequality

(19) Ex,s

[

e−qtVǫ(Xt,X t)
]

≤ Vǫ(x, s), (x, s) ∈ E,

the supermartingale property is a consequence of the Markov property of
the process (X,X). Indeed, for u ≤ t we have

Ex,s

[

e−qtVǫ(Xt,X t)
∣

∣Fu
]

= e−quEXu,Xu

[

e−q(t−u)Vǫ(Xt−u,X t−u)
]

≤ e−quVǫ(Xu,Xu).

We now prove (19), first under the assumption that W (q)(0+) = 0, that
is, X is of unbounded variation. Let Γ be the infinitesimal generator of X
and formally define the function

ΓZ(q)(x) := −γZ(q)′(x) +
σ2

2
Z(q)′′(x)

+

∫

(−∞,0)
Z(q)(x+ y)− Z(q)(x)− yZ(q)′(x)1{y≥−1} Π(dy)

It is shown in Lemma A.1 and A.2 in the Appendix that the function
x 7→ ΓZ(q)(x) is well-defined on (0,∞) and satisfies

ΓZ(q)(x) = qZ(q)(x) x ∈ (0,∞).

For x < 0 it is also well-defined and obviously ΓZ(q)(x) = 0. At zero the
second derivative of Z(q) does not exist. In this case we understand the
second derivative as the left derivative and hence ΓZ(q)(0) = 0.
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Now fix (x, s) ∈ E and define the semimartingale Yt := Xt −Xt + g(X t).
Applying an appropriate version of the Itô-Meyer formula (cf. Theorem
71, Ch. IV of [9]) to Z(q)(Yt) yields Px,s-a.s.

Z(q)(Yt) = Z(q)(x− s+ g(s)) +mt +

∫ t

0
ΓZ(q)(Yu) du

+

∫ t

0
Z(q)′(Yu)(g

′(Xu)− 1) dXu,

where

mt =

∫ t

0+
σZ(q)′(Yu−)dBu +

∫ t

0+
Z(q)′(Yu−)dX

(2)
u

+
∑

0<u≤t

∆Z(q)(Yu)−∆XuZ
(q)′(Yu−)1{∆Xu≥−1}

−

∫ t

0

∫

(−∞,0)
Z(q)(Yu− + y)− Z(q)(Yu−)− yZ(q)′(Yu−)1{y≥−1} Π(dy)du

and ∆Xu = Xu−Xu−, ∆Z
(q)(Yu) = Z(q)(Yu)−Z

(q)(Yu−). By the bounded-
ness of Z(q) on (−∞, g(s)] the first two stochastic integrals on the right are
zero-mean martingales and by the compensation formula (cf. Corollary 4.6
of [6]) the third and fourth term constitute a zero-mean martingale. Next,
recall that Vǫ(x, s) = es∧ǫZ(q)(x − s + g(s)) and use stochastic integration
by parts for semimartingales (cf. Corollary 2 of Theorem 22, Ch. II of [9])
to deduce that

e−qtVǫ(Xt,X t) = Vǫ(x, s) +Mt +

∫ t

0
e−qu+Xu∧ǫ(Γ− q)Z(q)(Yu) du

+

∫ t

0
e−qu+Xt∧ǫ

(

Z(q)(Yu)1{Xu≤ǫ}
+ Z(q)′(Yu)(g

′(Xu)− 1)
)

dXu

whereMt =
∫ t

0+ e
−qu+Xu∧ǫdmu is a zero-mean martingale. The first integral

is nonpositive since (Γ−q)Z(q)(y) ≤ 0 for all y ∈ R. The last integral vanishes
since the process Xu only increments when Xu = Xu and by definition of
g. Thus, taking expectations on both sides yields

Ex,s

[

e−qtVǫ(Xt,Xt)
]

≤ Vǫ(x, s).

If W (q)(0+) ∈ (0, q−1) (X has bounded variation), then the Itô-Meyer
formula is nothing more than an appropriate version of the change of variable
formula for Stieltjes’ integrals and the rest of the proof follows the same
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line of reasoning as above. The only change worth mentioning is that the
generator of X takes a different form. Specifically, one has to work with

ΓZ(q)(x) = dZ(q)′(x) +

∫

(−∞,0)

∣

∣Z(q)(x+ y)− Z(q)(x)
∣

∣Π(dy)

which satisfies all the required properties by Lemma A.1 and A.2 in the
Appendix.

This completes the proof of the supermartingale property.

Verification of condition (iii). The assertion is clear for (x, s) ∈ D∗.
Hence, suppose that (x, s) ∈ C∗. The assertion now follows from the proof
of the supermartingale property (ii). More precisely, replacing t by t ∧ τg
in (20) and recalling that (Γ− q)Z(q)(y) = 0 for y > 0 shows that

Ex,s

[

e−q(t∧τg)+Xt∧τg∧ǫ
]

= Vǫ(x, s).

Using that τg <∞ a.s. and dominated convergence one obtains the desired
equality.

Proof of Theorem 3.2 when W (q)(0+) ≥ q−1. Recall that the con-
dition W (q)(0+) ≥ q−1 necessarily means that X is of bounded variation
and d ≤ q which after integrating by parts shows that Px,s-a.s.

e−qt+Xt∧ǫ = es∧ǫ +

∫ t

0
e−qu+Xu∧ǫ

(

− q + d1{Xu=Xu,Xu≤ǫ}

)

du ≤ es∧ǫ.

The result now follows similarly to the proof of the second part of Proposi-
tion 2.3.

Proof of Lemma 3.3. For (x, s) ∈ D∗
I we obviously have

Ex,s

[

e
−q(Tǫ1∧τ

∗

ǫ2
)+XTǫ1∧τ∗ǫ2

∧ǫ2]
= es = Uǫ1,ǫ2(x, s).

As for the case (x, s) ∈ C∗
I , write

Ex,s

[

e
−q(Tǫ1∧τ

∗

ǫ2
)+XTǫ1∧τ∗ǫ2

∧ǫ2]
= Ex,s

[

e
−q(Tǫ1∧τ

∗

ǫ2
)+XTǫ1∧τ∗ǫ2 1{Tǫ1>τ

+
A
}

]

+ Ex,s

[

e
−q(Tǫ1∧τ

∗

ǫ2
)+XTǫ1∧τ∗ǫ2 1{Tǫ1<τ

+
A
}

]

and denote the first expectation on the right by I1 and the second expec-
tation by I2. An application of the strong Markov property at τ+A and the
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definition of V ∗
ǫ2

(see Theorem 3.2) give

I1 = Ex,s

[

e−qτ
+
A 1{Tǫ1>τ

+
A
}

]

EA,A

[

e
−qτ∗ǫ2+Xτ∗ǫ2

]

=
W (q)(x− ǫ1)

W (q)(A− ǫ1)
eAZ(q)(g(A)).

Recalling that s < g(A) and using the strong Markov property at τ+s yields

I2 = esEx,s

[

e−qTǫ11{Tǫ1<τ
+
s }

]

+Ex,s

[

e−qτ
+
s 1{Tǫ1>τ

+
s }

]

Es,s

[

e−qTǫ1+XTǫ1 1{Tǫ1<τ
+
A
}

]

= es
(

Z(q)(x− ǫ1)−W (q)(x− ǫ1)
Z(q)(s− ǫ1)

W (q)(s− ǫ1)

)

+
W (q)(x− ǫ1)

W (q)(s− ǫ1)
Es,s

[

e−qTǫ1+XTǫ1 1{Tǫ1<τ
+
A
}

]

= es
(

Z(q)(x− ǫ1)−W (q)(x− ǫ1)
Z(q)(s− ǫ1)

W (q)(s− ǫ1)

)

+
W (q)(x− ǫ1)

W (q)(s− ǫ1)
esE0,0

[

e
−qτ−ǫ1−s+Lτ

−

ǫ1−s1{τ−ǫ1−s<τ
+
A−s

}

]

.(20)

Next, we compute the expectation on the right-hand side of (20) by ex-
cursion theory. To be more precise, we are going to make use of the com-
pensation formula of excursion theory and hence we shall spend a moment
setting up some necessary notation. We refer the reader to [3], Chapters 6
and 7 for background reading. The process Lt := X serves as local time at
0 for the Markov process X −X under P0,0. Write L−1 := {L−1

t : t ≥ 0} for
the right-continuous inverse of L. The Poisson point process of excursions
indexed by local time shall be denoted by {(t, εt) : t ≥ 0}, where

εt = {εt(s) := XL−1
t

−XL−1
t +s : 0 < s ≤ L−1

t − L−1
t− }

whenever L−1
t − L−1

t− > 0. Accordingly, we refer to a generic excursion as
ε(·) (or just ε for short as appropriate) belonging to the space E of canonical
excursions. The intensity measure of the process {(t, εt) : t ≥ 0} is given
by dt× dn, where n is a measure on the space of excursions (the excursion
measure). A functional of the canonical excursion which will be of interest
is ε = sups≥0 ε(s). A useful formula for this functional that we shall make
use of is the following (cf. [6], Equation (8.18)):

(21) n(ε > x) =
W ′(x)

W (x)



OPTIMAL STOPPING FOR THE MAXIMUM PROCESS 19

provided that x is not a discontinuity point in the derivative of W (which is
only a concern when X is of bounded variation, but we have assumed that in
this case Π is atomless and henceW is continuously differentiable on (0,∞)).
Another functional that we will also use is ρa := inf{s > 0 : ε(s) > a}, the
first passage time above a of the canonical excursion ε. We now proceed
with the promised calculation involving excursion theory. Specifically, an
application of the compensation formula gives

E

[

e
−qτ−ǫ1−s+Lτ

−

ǫ1−s1{τ−ǫ1−s<τ
+
A−s

}

]

= E

[

∑

0<t<∞

e−qL
−1
t−+t1{εu≤u−ǫ1+s ∀u<t

t<A−s

}1{εt>t−ǫ1+s}e
−qρt−ǫ1+s(εt)

]

= E

[
∫ A−s

0
dt e−qL

−1
t +t1{εu≤u−ǫ1+s∀u<t}

∫

E
1{ε>t−ǫ1+s}e

−qρt−ǫ1+s(ε)n(dε)

]

=

∫ A−s

0
et−Φ(q)t

E

[

e−qL
−1
t +Φ(q)t1{εu≤u−ǫ1+s ∀u<t}

]

f(t− ǫ1 + s) dt,

where f(u) = Z(q)(u)W (q)′ (u)

W (q)(u)
− qW (q)(u). The expression f is taken from

Theorem 1 in [2]. Next, note that L−1
t is a stopping time and hence a change

of measure according to (6) shows that the expectation inside the integral
can be written as

P
Φ(q)

[

εu ≤ u− ǫ1 + s for all u < t
]

.

Using the properties of the Poisson point process of excursions (indexed by
local time) and with the help of (21) and (9) we may deduce

P
Φ(q)

[

εu ≤ u− ǫ1 + s for all u < t
]

= exp

(

−

∫ t

0
nΦ(q)(ε > u− ǫ1 + s) du

)

= eφ(q)t
W (q)(s− ǫ1)

W (q)(t− ǫ1 + s)
,

where nΦ(q) denotes the excursion measure associated with X under PΦ(q).
By a change of variables and the fact that A− ǫ1 = g(A) we further obtain

E0,0

[

e
−qτ−ǫ1−s+Lτ

−

ǫ1−s1{τ−ǫ1−s<τ
+
A−s

}

]

=W (q)(s− ǫ1)e
ǫ1−s

∫ g(A)

s−ǫ1

et
f(t)

W (q)(t)
dt

= −W (q)(s− ǫ1)e
ǫ1−s

∫ g(A)

s−ǫ1

et
(

Z(q)

W (q)

)′

(t)dt.
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Integrating by parts on the right-hand side, plugging the resulting expression
into (20) and finally adding I1 and I2 gives the result.

Proof of Theorem 3.4. We only prove the first part, the second fol-
lows by a very similar argument as in the proof of Theorem 3.2 when
W (q)(0+) ≥ q−1. Recall that Tǫ1 := inf{t ≥ 0 : Xt ≤ ǫ1} and from Lemma 3.3
that

Ex,s

[

e
−q(Tǫ1∧τ

∗

ǫ2
)+XTǫ1∧τ∗ǫ2

∧ǫ2]
= Vǫ1(x, s)

:=











V ∗
ǫ2
(x, s), (x, s) ∈ C∗

II ∪D
∗
II ,

Uǫ1,ǫ2(x, s), (x, s) ∈ C∗
I ∪D

∗
I ,

es∧ǫ2 , (x, s) ∈ E \ Eǫ1 ,

(22)

where V ∗
ǫ2

and τ∗ǫ2 are given in Theorem 3.2. It is enough to prove

(i) Vǫ1,ǫ2(x, s) ≥ es∧ǫ2 for all (x, s) ∈ Eǫ1 ,
(ii) {e−q(t∧Tǫ1 )Vǫ1,ǫ2(Xt∧Tǫ1

,X t∧Tǫ1
)} is a right-continuous Px,s-supermar-

tingale for all (x, s) ∈ Eǫ1 .

To see why this suffices, use (i) and (ii) together with Fatou’s Lemma in
the second inequality and Doob’s optional stopping theorem in the third
inequality to show that for τ ∈ Mǫ1 ,

Ex,s

[

e−qτ+Xτ∧ǫ2
]

≤ Ex,s

[

e−qτVǫ1,ǫ2(Xτ ,Xτ )
]

≤ lim inf
t→∞

Ex,s

[

e−q(t∧τ)Vǫ1,ǫ2(Xt∧τ ,Xt∧τ )
]

≤ Vǫ1,ǫ2(x, s),

which in view of (22) implies optimality of Vǫ1,ǫ2 and Tǫ1 ∧ τ
∗
ǫ2
. Since con-

dition (i) is obviously satisfied, we devote the remainder of this proof to
checking condition (ii).

Supermartingale property (ii). Let Yt := e−qtVǫ1,ǫ2(Xt,X t) and suppose
that for all (x, s) ∈ Eǫ1 we have the inequality

(23) Ex,s

[

Yt∧Tǫ1
]

≤ Vǫ1,ǫ2(x, s).

The supermartingale property is then a consequence of the strong Markov
property of (X,X). Indeed, for u ≤ t we have

Ex,s

[

Yt∧Tǫ1

∣

∣Fu
]

= YTǫ11{Tǫ1≤u} + Ex,s

[

Yt∧Tǫ1

∣

∣Fu
]

1{Tǫ1>u}

= YTǫ11{Tǫ1≤u} + e−quEXu,Xu

[

Y(t−u)∧Tǫ1

]

1{Tǫ1>u}

≤ YTǫ11{Tǫ1≤u} + e−quVǫ1,ǫ2(Xu,Xu)1{Tǫ1>u}

= Yu∧Tǫ1 .
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Consequently, it boils down to proving (23). This is clear for (x, s) ∈ D∗
I .

If (x, s) ∈ C∗
II ∪D

∗
II it can be extracted from the proof of Theorem 3.2

where it is shown that
(

e−qtV ∗
ǫ2
(Xt,X t)

)

t≥0
is a Px,s-supermartinagle for all

(x, s) ∈ E. In particular, the process (Yt)t≥0 is a Px,s-supermartingale for
(x, s) ∈ C∗

II ∪D
∗
II . The supermartingale property is preserved when stop-

ping at Tǫ1 and therefore we obtain, for (x, s) ∈ C∗
II ∪D

∗
II ,

(24) Ex,s

[

Yt∧Tǫ1
]

≤ Vǫ1,ǫ2(x, s).

Thus, it remains to establish (23) for (x, s) ∈ C∗
I . To this end, we first prove

that the process
(

Yt∧Tǫ1∧τ∗ǫ2

)

t≥0
is a Px,s-martingale. The strong Markov

property gives

Ex,s

[

YTǫ1∧τ∗ǫ2

∣

∣Ft
]

= YTǫ1∧τ∗ǫ2
1{Tǫ1∧τ∗ǫ2≤t}

(25)

+e−qtEXt,Xt

[

YTǫ1∧τ∗ǫ2

]

1{Tǫ1∧τ∗ǫ2>t}
.

By definition of Vǫ1,ǫ2 we see that

YTǫ1∧τ∗ǫ2
=

{

exp
(

− qTǫ1 +XTǫ1

)

, on {Tǫ1 ≤ τ∗ǫ2},

exp(−qτ∗ǫ2 +Xτ∗ǫ2
), on {Tǫ1 > τ∗ǫ2},

which shows that the second term on the right-hand side of (25) equals

e−qtEXt,Xt

[

e
−q(Tǫ1∧τ

∗

ǫ2
)+XTǫ1∧τ∗ǫ2

]

(1{t≤τ+
A
} + 1{t>τ+

A
})1{Tǫ1∧τ∗ǫ2>t}

=
(

e−qtUǫ1,ǫ2(Xt,X t)1{t≤τ+
A
} + e−qtV ∗

ǫ2
(Xt,X t)1{t>τ+

A
}

)

1{Tǫ1∧τ∗ǫ2>t}

= e−qtVǫ1,ǫ2(Xt,X t)1{Tǫ1∧τ∗ǫ2>t}

= Yt1{Tǫ1∧τ∗ǫ2>t}
.

Thus,
Ex,s

[

YTǫ1∧τ∗ǫ2

∣

∣Ft
]

= Yt∧Tǫ1∧τ∗ǫ2
which implies the martingale property.

Again using the strong Markov property we obtain for (x, s) ∈ C∗
I ,

Ex,s

[

Yt∧Tǫ1

∣

∣Fτ∗ǫ2

]

= Yt∧Tǫ11{t∧Tǫ1≤τ∗ǫ2}

+e−qτ
∗

ǫ2EXτ∗ǫ2
,Xτ∗ǫ2

[

Y(t−u)∧Tǫ1

]

∣

∣

∣

u=τ∗ǫ2

1{t∧Tǫ1>τ∗ǫ2}

≤ Yt∧Tǫ11{t∧Tǫ1≤τ∗ǫ2}
+ e−qτ

∗

ǫ2Vǫ1,ǫ2(Xτ∗ǫ2
,Xτ∗ǫ2

)1{t∧Tǫ1>τ∗ǫ2}

= Yt∧Tǫ1∧τ∗ǫ2 ,

where the inequality follows from (24) and the fact that (Xτ∗ǫ2
Xτ∗ǫ2

) ∈ D∗
II on

{t∧Tǫ1 > τ∗ǫ2}. Thus, Ex,s
[

Yt∧Tǫ1
]

≤ Uǫ1,ǫ2(x, s) = Vǫ1,ǫ2(x, s) for (x, s) ∈ C∗
I .

This completes the proof.
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6. Examples. Suppose that Xt = (µ− 1
2σ

2)t+σWt, where µ ∈ R, σ > 0
and (Wt)t≥0 is a standard Brownian motion. It is well-known that in this
case the scale functions are given by

W (q)(x) =
2

σ2δ
eγx sinh(δx) and Z(q)(x) = eγx cosh(δx)−

γ

δ
eγx sinh(δx),

on x ≥ 0, where δ(q) = δ =
√

( µ
σ2

− 1
2)

2 + 2q
σ2

and γ = 1
2 −

µ
σ2
. Additionally,

let γ1 = γ − δ and γ2 = γ + δ and note that γ1 and γ2 are the roots of the
quadratic equation σ2

2 θ
2 + (µ − σ2

2 )θ − q = 0.

6.1. Maximum process with upper cap. Choose a cap ǫ ∈ R. Since X is
of unbounded variation, we have W (q)(0+) = 0. If q > ψ(1) or, equivalently,

q > µ, solving Z(q)(z)−qW (q)(z) = 0 yields k∗ = 1
γ2−γ1

log
(

1−γ−1
1

1−γ−1
2

)

∈ (0,∞).

Otherwise, we have k∗ = ∞. The function g is then uniquely determined by
the ordinary differential equation

g′(s) = 1−
σ2δ

2
eγg(s) coth(δg(s)) −

σ2γ

2
eγg(s) on (−∞, ǫ)

with boundary conditions lims→ǫ g(s) = 0 and lims→−∞ g(s) = k∗.

6.2. Maximum process with lower cap.

Lemma 6.1. Let ǫ1 ∈ R. In the setting above, the V ∗ and Uǫ1,∞ part of
the optimal value function V ∗

ǫ1,∞ are given by

V ∗(x, s) =
1

γ2 − γ1

(

γ2

(

ex

es−k∗

)γ1

− γ1

(

ex

es−k∗

)γ2
)

and

Uǫ1,∞(x, s) =

(

ex

eǫ1

)γ1
[

−
eǫ1

β

(
∫ βk∗

β(s−ǫ1)

eu(1+y)

eu − 1
du− ek

∗γ2

)]

+

(

ex

eǫ1

)γ2
[

eǫ1

β

(
∫ βk∗

β(s−ǫ1)

euy

eu − 1
du− ek

∗γ1

)]

,

where β = γ2 − γ1 = 2δ and y = β−1.

In particular, if we set ǫ1 = ǫ, µ = r for some r ≥ 0 and q = λ + r for
some λ > 0 we recover Theorem 3.1 of [12].
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Proof. The first part is a short calculation using the definition of γ, δ, γ1,
γ2 and the fact that cosh(z) = ez+e−z

2 and sinh(z) = ez−e−z

2 . As for the
second part, recall that

Uǫ1,∞(x, s) = esZ(q)(x− ǫ1) + eǫ1W (q)(x− ǫ1)

∫ k∗

s−ǫ1

et
Z(q)(t)

W (q)(t)
dt.

It is easy to see that

et
Z(q)(t)

W (q)(t)
= et

δσ2

2

(

1

1− e−2δt
+

1

e2δt − 1

)

− et
γσ2

2

which, after a change of variables, gives
∫ k∗

s−ǫ1

et
Z(q)(t)

W (q)(t)
dt =

σ2

4

(
∫ βk∗

β(s−ǫ1)

eu(1+y)

eu − 1
du+

∫ βk∗

β(s−ǫ1)

euy

eu − 1
du

)

−
γσ2

2
(es−ǫ1 − ek

∗

).

Denote the first integral on the right-hand side I1 and the second integral
I2. After some algebra one sees that

Uǫ1,∞(x, s) =

es

2

(

eγ2(x−ǫ1) + eγ1(x−ǫ1)
)

+
eǫ1

2β

(

eγ2(x−ǫ1) − eγ1(x−ǫ1)
)(

− 2γek∗ + I1 + I2
)

es

2

(

eγ2(x−ǫ1) + eγ1(x−ǫ1)
)

−
eǫ1+k

∗

γ

β

(

eγ2(x−ǫ1) + eγ1(x−ǫ1)
)

+
eǫ1

2β
eγ2(x−ǫ1)I1

−
eǫ1

2β
eγ1(x−ǫ1)I1 +

eǫ1

2β
eγ2(x−ǫ1)I2 −

eǫ1

2β
eγ1(x−ǫ1)I2.

Next, note that

eǫ1

2β
eγ2(x−ǫ1)I1 +

eǫ1

2β
eγ1(x−ǫ1)I2

=
eǫ1

2β

(

eγ2(x−ǫ1) + eγ1(x−ǫ1)
)

(I1 − I2)−
eǫ1

2β
eγ1(x−ǫ1)I1 +

eǫ1

2β
eγ2(x−ǫ1)I2

=
eǫ1

2

(

eγ2(x−ǫ1) + eγ1(x−ǫ1)
)

(ek
∗

− es−ǫ1)−
eǫ1

2β
eγ1(x−ǫ1)I1 +

eǫ1

2β
eγ2(x−ǫ1)I2

where the second equality follows from evaluating I1− I2. Plugging this into
the expression for Uǫ1,∞ and simplifying yields

Uǫ1,∞(x, s) = −eγ1(x−ǫ1)eǫ1β−1I1 + eγ2(x−ǫ1)eǫ1β−1I2

−eǫ1+γ2(x−ǫ1)ek
∗

β−1γ1 + eǫ1+γ1(x−ǫ1)ek
∗

β−1γ2.

Rearranging the terms completes the proof.
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APPENDIX A: COMPLEMENTARY RESULTS ON THE
INFINITESIMAL GENERATOR OF X

In this section we provide some results concerning the infinitesimal gen-
erator of X when applied to the scale function Z(q).

First assume that X is of unbounded variation and define an operator
(Γ,D(Γ)) as follows. D(Γ) stands for the family of functions f ∈ C2(0,∞)
such that the integral

∫

(−∞,0)
f(x− y)− f(x)− yf ′(x)1{y≥−1} Π(dy)

is absolutely convergent for all x > 0. For any f ∈ D(Γ), we define

Γf(x) = −γf ′(x)+
σ2

2
f ′′(x)+

∫

(−∞,0)

(

f(x+y)−f(x)−yf ′(x)1{y≥−1}

)

Π(dy).

Similarly, if X is of bounded variation, then D(Γ) stands for the family of
f ∈ C1(0,∞) such that the integral

∫

(−∞,0)
f(x+ y)− f(x)Π(dy)

is absolutely convergent for all x > 0 and, for f ∈ D(Γ), we define

Γf(x) = df ′(x) +

∫

(−∞,0)
(f(x+ y)− f(x))Π(dy).

In the sequel it should always be clear from the context in which of the two
cases we are and therefore there should be no ambiguity when writing D(Γ)
and Γ.

Lemma A.1. We have that Z(q) ∈ D(Γ) and the function x 7→ ΓZ(q)(x)
is continuous on (0,∞).

Proof. We prove the unbounded and bounded variation case separately.

Unbounded variation: To show that Z(q) ∈ D(Γ) it is enough the check
that the integral part of ΓZ(q) is absolutely convergent since Z(q) ∈ C2(0,∞).
Fix x > 0 and write the integral part of ΓZ(q) as

∫

(−∞,−δ)

∣

∣Z(q)(x+ y)− Z(q)(x)− yZ(q)′(x)1{y≥−1}

∣

∣Π(dy)

+

∫

(−δ,0)

∣

∣Z(q)(x+ y)− Z(q)(x)− yZ(q)′(x)1{y≥−1}

∣

∣Π(dy)
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where the value δ = δ(x) ∈ (0, 1) is chosen such that x − δ > 0. For
y ∈ (−∞,−δ) the monotonicity of Z(q) implies

(26)
∣

∣Z(q)(x+ y)− Z(q)(x)− yZ(q)′(x)1{y≥−1}

∣

∣ ≤ 2Z(q)(x) + Z(q)′(x)

and for y ∈ (−δ, 0), using the mean value theorem, we have

|Z(q)(x+ y)− Z(q)(x)− yZ(q)′(x)|

= q|y||W (q)(ξ(y))−W (q)(x)| where ξ(y) ∈ (x+ y, x)

= q|y|

∣

∣

∣

∣

∫ x

ξ(y)
W (q)′(z) dz

∣

∣

∣

∣

≤ qy2 sup
z∈[x−δ,x]

W (q)′(z).(27)

Using these two estimates and defining C(δ) =
∫

(−δ,0) y
2Π(dy) <∞, we see

that
∫

(−∞,0)

∣

∣Z(q)(x+ y)− Z(q)(x)− yZ(q)′(x)1{y≥−1}

∣

∣Π(dy)

≤
(

2Z(q)(x) + Z(q)′(x)
)

Π(−∞,−δ) + qC(δ) sup
z∈[x−δ,x]

W (q)′(z) <∞.

For continuity, let x > 0 and choose δ = δ(x) ∈ (0, 1) such that x−2δ > 0
as well as a sequence (xn)n∈N converging to x. Moreover, let n0 ∈ N such
that for all n ≥ n0 we have |xn−x| < δ. In particular, it holds that xn−δ > 0
for n ≥ n0 and hence, using the estimates in (26) and (27), we have for all
n ≥ n0

|Z(q)(xn + y)− Z(q)(xn)− yZ(q)′(xn)1{y≥−1}|

≤ qy2 sup
z∈[xn−δ,xn]

W (q)′(z)1{y≥−δ} +
(

2Z(q)(xn) + Z(q)′(xn)
)

1{y<−δ}

≤ qy2 sup
z∈[x−2δ,x+δ]

W (q)′(z)1{y≥−δ} +
(

2Z(q)(x+ δ) + Z(q)′(x+ δ)
)

1{y<−δ}.

Since the last term is Π-integrable, the continuity assertion follows by dom-
inated convergence and the fact that Z(q) ∈ C2(0,∞).

Bounded variation: To show that Z(q) ∈ D(Γ) it is enough to show that
the integral part of ΓZ(q) is absolutely convergent since Z(q) ∈ C1(0,∞).
Using the monotonicity and the definition of Z(q), it is easy to see that for
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fixed x > 0,

∫

(−∞,0)
|Z(q)(x+ y)− Z(q)(x)|Π(dy)

≤ 2Z(q)(x)Π(−∞,−1) + qW (q)(x)

∫

(−1,0)
|y|Π(dy) <∞.

The continuity assertion follows in a straightforward manner from dominated
convergence and the fact that Z(q) ∈ C1(0,∞).

Lemma A.2. It holds that

(Γ− q)Z(q)(x) = 0, x ∈ (0,∞).

Proof. The idea behind behind this proof is very similar to the idea
behind the proof of Lemma 4.2 of [7]. Recall that for all x ∈ (a, b) the process

e−q(t∧τ
−

a ∧τ+
b
)Z(q)(Xt∧τ−a ∧τ+

b
) is a Px-martingale (cf. Remark 5 of [2]).

First assume that X is of unbounded variation. Let x ∈ (a, b) ⊂ (0,∞)
and define τ := τ−a ∧ τ+b . Applying the appropriate version of the Itô-Meyer
formula (cf. Theorem 71, Ch. IV of [9]) to Z(q)(Xt∧τ ) yields

Z(q)(Xt∧τ ) = Z(q)(x) +mt +

∫ t∧τ

0
ΓZ(q)(Xu) du Px,s-a.s.

where

mt =

∫ t∧τ

0+
Z(q)′(Xu−)dBu +

∫ t∧τ

0+
Z(q)(Xu−)dX

(2)
u

+
∑

0<u≤t∧τ

∆Z(q)(Xu)−∆XuZ
(q)′(Xu−)1{∆Xu≥−1}

−

∫ t∧τ

0

∫

(−∞,0)
Z(q)(Xu− + y)− Z(q)(Xu−)− yZ(q)′(Xu−)1{y≥−1}Π(dy)du

and ∆Xu = Xu−Xu−, ∆Z
(q)(Xu) = Z(q)(Xu)−Z(q)(Xu−). By the bound-

edness of Z(q) on [a, b] the first two stochastic integrals on the right are
zero-mean martingales and by the compensation formula (cf. Corollary 4.6
of [6]) the third and fourth term constitute a zero-mean martingale. Next,
use stochastic integration by parts for semimartingales (cf. Corollary 2 of
Theorem 22, Ch. II of [9]) to deduce that Px,s-a.s.

e−q(t∧τ)Z(q)(Xt∧τ )− Z(q)(x) = λt +

∫ t∧τ

0
e−qu(Γ− q)Z(q)(Xu) du,
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where λt =
∫ t∧τ
0+ e−qudmu is a zero-mean martingale. The claim now follows

by exactly the same argument presented in the last part of the proof of
Lemma 4.2 of [7].

The bounded variation case is very similar and is based on an application
of the change of variable formula for Stiltjes’ integrals.
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