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A SIMPLE PROOF OF SÁRKÖZY’S THEOREM

NEIL LYALL

Abstract. It is a striking and elegant fact (proved independently by Furstenberg and Sárközy) that in any
subset of the natural numbers of positive upper density there necessarily exist two distinct elements whose
difference is given by a perfect square. In this article we present a new and simple proof of this result by
adapting an argument originally developed by Croot and Sisask to give a new proof of Roth’s theorem.

Dedicated to Steve Wainger on the occasion of his retirement

1. Introduction

Let D(N) denote the maximum size of a subset of {1, . . . , N} that contains no perfect (non-zero) square
differences. In this note we shall be concerned with the behavior of this quantity for large values of N and at
the outset we encourage the reader to convince herself of the essentially trivial upper and lower bounds for
D(N) of approximate quality N/3 and

√
N respectively, and if possible to try and improve on these bounds,

particularly the upper bound. In Appendix A we give full justification for the following specific bounds

(1)
√
N − 1 ≤ D(N) ≤ (N + 34)/3.

It was conjecture by Lovász that D(N) ≤ δN for any δ > 0, provided that N is sufficiently large, or
equivalently that in any subset of the natural numbers of positive upper density1 there necessarily exist two
distinct elements (and hence infinitely many pairs of distinct elements) whose difference is given by a perfect
square. This conjecture was subsequently proven to be correct, independently, by Sárközy and Furstenberg.

Theorem 1 (Sárközy [16]/Furstenberg [3]).

lim
N→∞

D(N)

N
= 0

The purpose of this note is to give a new and simple proof of this result by adapting an argument that was
originally developed by Croot and Sisask [2] to give a new proof of Roth’s theorem on three term arithmetic
progressions. In particular we will establish the following result, which clearly implies Theorem 1.

Theorem 2. Let M,N ∈ N, then
D(N)

N
≤ 3

4

D(M)

M

provided N ≥ eCM7

, for some absolute constant C > 0, and M is sufficiently large.

Remark on quantitative bounds. Although its proof is simple, Theorem 2 patently leads to quantitative upper
bounds of the quality N/ log∗ N for D(N) that are extremely weak in comparison to the current best known
upper bound, namely

(2) D(N) ≤ CN/(logN)
1

12
log log log logN

for some absolute constant C > 0, which was established by Pintz, Steiger and Szemerédi in [14] using an
ingenious and intricate Fourier analytic argument. For extremely readable accounts of easier arguments
leading to intermediate bounds of the quality N/(log logN)1/11 and N log logN/ logN , see Green [4] and
Lyall and Magyar [11], respectively.

2000 Mathematics Subject Classification. 11B30.
1 Recall that A ⊆ N is said to have positive upper density whenever lim supN→∞

|A ∩ {1, . . . , N}|/N > 0.
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We further note that it is conjectured that D(N) ≥ N1−ε for any ε > 0, provided N is sufficiently large
(with respect to ε), and that Ruzsa [15] has demonstrated this conjecture to be true for all ε ≥ 0.267.

Remark on other polynomial differences. At this point the reader is presumably curious to know what is so
special about square differences. The following Theorem gives a complete answer to this question.

Theorem 3 (Kamae and Mendès France [7]). Let P ∈ Z[n] and D(P,N) denote the maximum size of a

subset of {1, . . . , N} that contains no two distinct elements whose difference is given by P (n) for some n ∈ Z.

Then,

(3) lim
N→∞

D(P,N)

N
= 0

if and only if P has a root modulo m for every m ≥ 2.

The methods used to prove Theorem 2 can in fact be extended to establish a result almost as general as
Theorem 3, namely that (3) holds whenever P is a polynomial in Z[n] with at least one integer root. This
is less general than Theorem 3, since while it is clear that any polynomial P in Z[n] with an integer root
plainly has a solution to the congruence P (n) ≡ 0 (mod m) for every intreger m ≥ 2, there do in fact exist
polynomials without an integer root that also have this property, for example (n3 − 19)(n2 + n+ 1).

However, it is not the objective of this note to try and prove the most general possible theorem, and as
such we shall focus our attention almost exclusively on the case of square differences and proving Theorem
2, relegating further discussion of more general polynomial differences, including best known quantitative
bounds and a brief outline of how to extend the proof of Theorem 2 in the direction alluded to above, to
Appendix B.

2. Proof of Theorem 2

Let A ⊆ {1, . . . , N} with no square differences and |A| = D(N). Key to the argument we present is to
construct, from this extremal set A, a new set B ⊆ {1, . . . , N} with the following properties:

(i) |B| ≥ 5

3
|A|

(ii) # of square differences in B ≤ C0√
logN

N3/2, for some absolute constant C0 > 0.

This construction, which will amount to defining B to be A∪ (A+ t2) for some appropriate (large) value
of t, will be carried out in Section 2.2 below. Having constructed a set with such properties we will then
establish Theorem 2 by combining this with the following lower bound on the number of square differences
contained in any given set B ⊆ {1, . . . , N}.
Lemma 1. Given any B ⊆ {1, . . . , N} and 1 ≤ M ≤ N

# of square differences in B ≥
( |B|/N − (D(M) + 2)/M

M5/2

)
N3/2.

The proof of this result is a straightforward exercise using ideas that where first exploited by Varnavides
[17] in the context of counting three term arithmetic progressions. While, in our context of counting square
differences, this quantitative result can easily be deduced by adapting the proof of Theorem 3.1 in [6] (for
example) we will, for the sake of completeness, include a proof of Lemma 1 in Section 3.1 below.

We should also note at this point that the standard application Varnavides’ argument is to show that
Theorem 1 is equivalent to the statement that for any δ > 0 and B ⊆ {1, . . . , N} with |B| ≥ δN

# of square differences in B ≥ ⌊c(δ)N3/2⌋,
for some c(δ) > 0. In other words, provided N is sufficiently large, B will contain not only one square
difference, but a positive proportion of all the square differences in {1, . . . , N}. This result clearly follows
easily from Lemma 1.



A SIMPLE PROOF OF SÁRKÖZY’S THEOREM 3

2.1. Proof of Theorem 2. It follows immediately from the upper bound on the number of square differences
in B given by property (ii) and the lower bound given by Lemma 1, that

|B|
N

≤ D(M)

M
+

2

M
+

C0M
5/2

√
logN

.

Assuming that N satisfies C0M
7/2 ≤ √

logN , it follows that

|B|
N

≤ D(M)

M
+

3

M

and hence, using the trivial lower bound D(M) ≥
√
M − 1 (see Section A.2), that

|B|
N

≤ 5

4

D(M)

M

provided that M is sufficiently large. Combining this observation with the inequality

|B|
N

≥ 5

3

|A|
N

=
5

3

D(N)

N

which follows immediately from property (i) of our constructed set B, gives the desired inequality. �

2.2. Construction of the set B. Given any set B ⊆ {1, . . . , N}, it is easy to see that

(4) # of square differences in B =

√
N∑

n=1

∑

x∈Z

B(x)B(x − n2)

where B(x) = 1B(x) denotes the indicator function of the set B. Using the familiar orthogonality relation

∫ 1

0

e2πixαdα =

{
1 if x = 0

0 if x ∈ Z \ {0}

we can, as is standard, express our count (4) on the “transform side” as

(5) # of square differences in B =

∫ 1

0

|B̂(α)|2Ŝ(α) dα

where

B̂(α) =
∑

x∈Z

B(x)e−2πixα

denotes the Fourier transform (on Z) of the set B and

(6) Ŝ(α) =

√
N∑

n=1

e−2πin2α

is the Fourier transform of the set of perfect squares contained in {1, . . . , N}.
Key to our proof (and essentially the only true “machinary” used in the proof) is the following well-

known estimate for the Weyl sum Ŝ(α), which states that the only possible obstruction to cancellation in
this exponential sum arises if α is “close” to a rational with “small” denominator.

Proposition 1. Let ε > 0 and

Ma/q(ε) =

{
α ∈ [0, 1] :

∣∣∣α− a

q

∣∣∣ ≤ 1

ε2N

}
.

If α /∈ Ma/q(ε) for any (a, q) = 1 with 1 ≤ q ≤ ε−2, then

|Ŝ(α)| ≤ 6εN1/2

provided N is sufficiently large.
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We are now ready to define our set B. Recalling that A ⊆ {1, . . . , N} is an extremal set with no square
differences, we define (for a value of ε > 0 to de determined)

(7) B := A′ ∪ (A′ + q2ε )

where qε = lcm{1 ≤ q ≤ ε−2} and A′ = A ∩ {1, . . . , N − q2ε}.
Using the fact that |A| = D(N) ≥

√
N − 1 it follows that |A′| ≥ 5|A|/6, and consequently also that

property (i) for our set B will hold, provided ε > 0 is chosen large enough for

(8) q2ε ≪
√
N.

In order to see what actual restriction this places on our choice of ε > 0, we recall, as one can verify using
only elementary properties of the prime numbers, that qε = exp(Cε−2) and hence that inequality (8) will
hold whenever

ε−2 ≪ logN.

Remark (on “≪ notation”). Whenever we write E ≪ F for any two quantities E and F we shall mean that
E ≤ cF , for some some sufficiently small constant c > 0.

We therefore now fix

(9) ε := C1(logN)−1/2

with C1 > 0 a sufficiently large (but absolute) constant. In order to to establish that our set B also satisfies
property (ii) it will suffice to show, for this choice of ε > 0, that

(10) # of square differences in B ≤ 24 εN3/2

for all sufficiently large N .

To establish (10) we first note that since A′ ⊆ A contains no square differences, it follows that

B(x) = A′(x) +A(x− q2ε )

and hence, using the familiar and easily verified property that Fourier transformation takes translations to
modulations, that

B̂(α) = Â′(α)(1 + e−2πiq2εα).

Multiplying this expression for B̂(α) by its complex conjugate, we see that
∫ 1

0

|B̂(α)|2Ŝ(α) dα = 2

∫ 1

0

|Â′(α)|2(cos(2πq2εα) + 1)Ŝ(α) dα.

In light of (5), and the fact that A′ contains no square differences, it follows that
∫ 1

0

|Â′(α)|2Ŝ(α) dα = 0

and hence that

# of square differences in B = 2

∫ 1

0

|Â′(α)|2(cos(2πq2εα)− 1)Ŝ(α) dα

≤ 2

∫ 1

0

|Â′(α)|2 | cos(2πq2εα)− 1||Ŝ(α)|︸ ︷︷ ︸
(⋆)

dα.

A crucial observation at this point, which completes the proof of inequality (10), is the fact that

(11) (⋆) ≤ 12 ε
√
N

uniformly in α, and hence

# of square differences in B ≤ 24 ε
√
N

∫ 1

0

|Â′(α)|2 dα ≤ 24 εN3/2
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where to establish the final inequality we have invoked the Plancherel identity, namely
∫ 1

0

|Â′(α)|2 dα =
∑

x∈Z

|A′(x)|2

whose validity in this setting can be easily verified (using orthogonality), together with the simple observation
that ∑

x∈Z

|A′(x)|2 = |A′| ≤ N.

It remains to verify the uniform estimate (11). Since | cos(2πq2εα)− 1| ≤ 2 for all α ∈ [0, 1], it follows from
Proposition 1 that (11) will hold whenever α /∈ Ma/q(ε) for any (a, q) = 1 with 1 ≤ q ≤ ε−2, provided N is

sufficiently large. While if α ∈ Ma/q(ε) for some (a, q) = 1 with 1 ≤ q ≤ ε−2, then by definition we know

that |α− a/q| ≤ ε−2N−1. Moreover, since q|q2ε (by the definition of qε) it follows that

cos
(
2πq2εα

)
= cos

(
2πq2ε (α− a/q)

)

and hence, by the Mean Value Theorem, we see that

| cos(2πq2εα)− 1| = | cos(2πq2ε (α− a/q))− 1|
≤ 2πq2ε |α− a/q|
≤ 2πq2εε

−2N−1.

The result then follows, provided the constant C1 in our choice of fixed ε > 0 is chosen sufficiently large,
since

2πq2εε
−2N−1 ≤ ε

whenever ε−2 ≪ logN (again) and we trivially know that |Ŝ(α)| ≤
√
N for all α ∈ [0, 1]. �

This completes the proof of Theorem 2 modulo Lemma 1 and Proposition 1. The proof of these two
results are given in Section 3 below.

3. Proof of Lemma 1 and Proposition 1

3.1. Proof of Lemma 1. Let B ⊆ {1, . . . , N} and 1 ≤ M ≤ N . We proceed by covering {1,. . . ,N} by the
collection of all square-difference progressions of length M of the form

Pa,r = {a+ r2, . . . , a+Mr2}
with 1 ≤ r ≤ R :=

√
N/M and 1 ≤ a ≤ N −MR2. We will say that such a progression Pa,r is good if

|B ∩ Pa,r| ≥ D(M) + 1

since, by virtue of the fact that square differences are preserved under translations and dilations by a perfect
square, each such progression clearly contributes at least one square difference in B.

A simple counting argument, which we give below, shows that

(12) # of good progressions Pa,r ≥
( |B|

N
− D(M) + 2

M

)
RN.

Now while, as noted above, each of these good progressions contributes at least one square difference in B,
it is of course also the case that some of these square differences could be getting over counted. However, as
we shall also see below, each square difference in B is being over counted at most M3/2 times, from which
it follows that

# of square differences in B ≥
( |B|/N − (D(M) + 2)/M

M5/2

)
N3/2

as required. We are thus left with the straightforward tasks of verifying (12) and the claim that the each
square difference in B is being over counted in this argument at most M3/2 times.

We will address the over counting argument first. Suppose we are given a pair {b, b + n2} in B. If this
pair is contained in Pa,r, then r must be a divisor of n and moreover n2 ≤ Mr2. It therefore follows that
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there are at most
√
M choices for r and it is easy to see that each choice of r fixes a in at most M ways,

thus each square difference is indeed over counted at most M3/2 times.

Finally, we verify (12). By combining the upper bound

R∑

r=1

N−MR2∑

a=1

|B ∩ Pa,r| ≤
∑

a,r
good Pa,r

M +
∑

a,r
not good Pa,r

D(M) ≤ (# of good progressions Pa,r)M +D(M)RN

with the lower bound

R∑

r=1

N−MR2∑

a=1

|B ∩ Pa,r| ≥ M

R∑

r=1

|B ∩ {Mr2, . . . , N −Mr2}| ≥ MR
(
|B| − 2MR2

)

it follows that

# of good progressions Pa,r ≥
( |B|

N
− 2MR2

N
− D(M)

M

)
RN

from which (12) follows. �

3.2. Proof of Proposition 1. We first recall Dirichlet’s (pigeonhole) principle:

Given any α ∈ R and Q ∈ N, there exist (a, q) = 1 with 1 ≤ q ≤ Q such that
∣∣∣α− a

q

∣∣∣ ≤ 1

qQ
≤ min

{ 1

q2
,
1

Q

}
.

The proof of the following key result is completely standard, see for example [13] or [5].

Proposition 2 (The Weyl inequality). If |α− a/q| ≤ q−2 and (a, q) = 1, then

|Ŝ(α)| ≤ 40
√
N logN(1/q + 1/

√
N + q/N)1/2.

We note (by Dirichlet’s principle) that for any given α ∈ R and Q ∈ N, there always exist (a, q) = 1 with
1 ≤ q ≤ Q that satisfies the hypothesis of the Weyl inequality. Moreover, it is easy to see that this inequality
gives a non-trivial conclusion whenever Nµ ≤ q ≤ N1−µ for some 0 < µ < 1/2. For the purposes of this
exposition we shall take Q = N1−µ with µ = 1/20 and define

M′
a/q =

{
α ∈ [0, 1] :

∣∣∣α− a

q

∣∣∣ ≤ 1

N19/20

}
.

It is customary to say that α is in a major arc if α ∈ M′
a/q for some (a, q) = 1 with 1 ≤ q ≤ N1/20, and

call the complement of these major arcs, the minor arcs. If α is in one of these minor arcs, then it follows
from Dirichlet’s principle that there must exist a reduced fraction a/q with N1/20 ≤ q ≤ N19/20 such that
|α− a/q| ≤ q−2, and hence, by the Weyl inequality, that

|Ŝ(α)| ≤ 80N19/40 logN ≤ ε
√
N

for any ε > 0, provided N is sufficiently large. This accounts for one of the ε
√
N terms in Proposition 1.

In order to obtain the full conclusion of Proposition 1, which is valid on a subset of [0, 1] which is strictly
larger than the collection of classical minor arcs defined above, we must perform a careful analysis of the

behavior our exponential sum Ŝ(α) on the major arcs. In particular, we will invoke the following.

Lemma 2 (Major arc estimate). If α ∈ M′
a/q for some (a, q) = 1 with 1 ≤ q ≤ N1/20, then

|Ŝ(α)| ≤ 5
√
N q−1/2(1 +N |α− a/q|)−1/2.

It now follows immediately from this Lemma that for any given ε > 0 and α ∈ M′
a/q, our exponential

sum will satisfy

|Ŝ(α)| ≤ 5ε
√
N

provided (a, q) = 1 and either ε−2 ≤ q ≤ N1/20 or ε−2N−1 ≤ |α− a/q| ≤ N−19/20, as required. �
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The proof of Lemma 2 is standard, but for the sake of completeness we have chosen to included a proof
in Appendix C below. Before doing this, we first present our justification of the trivial bounds for D(N)
that were purported at the beginning of the introduction and conclude our brief discussion of more general
polynomial differences that was initiated at the end of the introduction.

Appendix A. Justification of inequality (1): the purported trivial bounds for D(N)

A.1. Upper bound. Let A ⊆ {1, . . . , N} with no square differences.

It clearly follows that A ∩ (A+ t2) = ∅ for all t ∈ N and in particular that

|A| ≤ (N + 1)/2

since |(A+ 1) ∩ {1, . . . , N}| ≥ |A| − 1 and hence

2|A| − 1 ≤ |(A ∪ (A+ 1)) ∩ {1, . . . , N}| ≤ N.

In order to obtain the superior bound (at least when N ≥ 65) of

|A| ≤ (N + 34)/3

claimed in the introduction, one can use the further observation that if (r, s, t) form a Pythagorean triple
with r2 + s2 = t2, then

A ∩ (A+ s2) = A ∩ (A+ t2) = (A+ s2) ∩ (A+ t2) = ∅.

In particular, taking s = 3 and t = 5, it follows that

3|A| − 34 ≤ | (A ∪ (A+ 9) ∪ (A+ 25)) ∩ {1, . . . , N}| ≤ N,

as required, since clearly |(A + 9) ∩ {1, . . . , N}| ≥ |A| − 9 and |(A+ 25) ∩ {1, . . . , N}| ≥ |A| − 25.

A.2. Lower bound. We now show that given any subset H of the natural numbers and any N ∈ N, there
always exists a set A ⊆ {1, . . . , N} such that (A−A) ∩H = ∅ and

(13) |A| ≥ N − 1

|H ∩ {1, . . . , N}|+ 1
.

Taking H to be the set of square numbers, this corresponds to the desired lower bound

D(N) ≥
√
N − 1.

We construct the set A recursively as follows: Select a1 = 1 to be the first element in A. Having selected
a1, . . . , ak, with k ≥ 1, we defineXk = {a1, . . . , ak}+H∩{1, . . . , N} and select ak+1 to be the smallest element
in {1, . . . , N}\{a1, . . . , ak, Xk}. In order to guarantee the existence of such an element ak+1, we clearly must
have |{a1, . . . , ak, Xk}| ≤ N − 1, and since it is possible that |{a1, . . . , ak, Xk}| = k (|H ∩ {1, . . . , N}|+ 1),
this corresponds to the restriction that

k ≤
⌊

N − 1

|H ∩ {1, . . . , N}|+ 1

⌋

from which (13) immediately follows.

Appendix B. Other Polynomial Differences

Recall that for a given P ∈ Z[n], we define D(P,N) to denote the maximum size of a subset of {1, . . . , N}
that contains no two distinct elements whose difference is given by P (n) for some n ∈ Z. The purpose of
this section is to outline how one may extend the proof of Theorem 2 to give a new proof of the following
special case of Theorem 3.

Theorem 4 (Kamae and Mendès France [7]). If P ∈ Z[n] with at least one integer root, then

lim
N→∞

D(P,N)

N
= 0.
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In order to do this we will make use of the observation, which originates (in a more general form) from [9]
(see also [12]), that it suffices to consider the analogous problem, for monomial curves, in higher dimensions.

Before stating this observation more precisely (Lemma 3 below) we introduce some new notation. Let

QN = {1, N2/(k+1)} × {1, N4/(k+1)} × · · · × {1, N2k/(k+1)} ⊆ Z
k

noting that |QN | = Nk, and Dk(N) denote the maximum size of a subset of QN that contains no monomial
difference, that is no distinct elements whose difference is given by γ(n) = (n, n2, . . . , nk) for some n ∈ Z.

Lemma 3 (Lyall and Magyar [9]). If P ∈ Z[n] with degree k ≥ 2 and at least one integer root, then

D(P,N)

N
≤ CP

Dk(N)

Nk
.

In light of Lemma 3, whose proof we include in Section B.1 below, Theorem 4 will be an immediate
consequence of the following higher dimensional analogue of Sárközy’s theorem (Theorem 1).

Theorem 5 (Lyall and Magyar [9]).

lim
N→∞

Dk(N)

Nk
= 0.

The methodology developed to prove Theorem 2 extends in a natural way to give a proof, which we choose
to only sketch in Section B.2 below, of the following result (the analogue of Theorem 2 in this context) and
hence a new proof of Theorems 5 and 4 (albeit with weak quantitative bounds).

Theorem 6. Let M,N ∈ N, then
Dk(N)

Nk
≤ 3

4

Dk(M)

Mk

provided N ≥ exp(CM3k+4/(k+1))k, for some constant C > 0, and M is sufficiently large.

Remark on quantitative bounds. While the methods of Pintz, Steiger and Szemerédi were extended by Balog,
Pelikán, Pintz and Szemerédi [1] to show that

D(nk, N) ≤ CkN/(logN)c log log log logN ,

the current best known upper bounds for general polynomials in Z[n] are due to Lucier [8], who showed that

(14) D(P,N) ≤ CPN

(
(log logN)µ

logN

)1/(k−1)

whenever P has a root modulo m for every m ≥ 2, where k = deg(P ) and µ = 3 if k = 2 and µ = 2 if k ≥ 3.

In [10] the author and Magyar show that in the special case of polynomials in Z[n] of degree k with at
least one integer root, one can in fact take µ = 1 in (14) for all k ≥ 2. This was achieved by first establishing

(15) Dk(N) ≤ CkN
k

(
log logN

logN

)1/(k−1)

for some absolute constant Ck > 0, and then invoking Lemma 3.

B.1. Proof of Lemma 3. Let P ∈ Z[n] of degree k ≥ 2 with at least one integer root and A ⊆ {1, . . . , N}
with no two distinct elements whose difference is given by P (n) for some n ∈ Z. By relabeling, we may
assume, without loss in generality, that our polynomial has a root at zero and that P (n) = ckn

k + · · ·+ c1n.

Let P : Zk → Z denote the mapping given by

P(b) = c1b1 + · · ·+ ckbk.

It follows from the pigeonhole principle that∣∣P(Zk) ∩ (A−m)
∣∣ ≥ |A|/ gcd(c1, . . . , ck)

for some 1 ≤ m ≤ gcd(c1, . . . , ck). Thus, if we choose N ′ to be a sufficiently large multiple of N2k/(k+1) and
define

B′ =
{
b ∈ {−N ′, . . . , N ′}k : P(b) ∈ A−m

}
,
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it follows that
|B′|

(2N ′ + 1)k
≥ c

|A|
N

for some small, but absolute constant c > 0 depending only on the polynomial P . By partitioning
{−N ′, . . . , N ′}k using translates of QN , it then follows, again by the pigeonhole principle, that there must
exist B ⊆ QN , a translate of some subset of B′, with the property that

|B|
Nk

≥ c
|A|
N

.

The key observation now is that since P(B′) ⊆ A−m and (A−A)∩P (Z) = ∅ (by assumption), it follows
that (B′ −B′) ∩ γ(n) = ∅, and hence also that (B −B) ∩ γ(n) = ∅, for all n ∈ Z. It therefore follows that

D(P,N)

N
≤ 1

c

Dk(N)

Nk

as required. �

B.2. Sketch proof of Theorem 6. As with the proof of Theorem 2 we begin with an extremal set A ⊆ QN

that contains no monomial differences and proceed to define, for a value ε > 0 fixed to be a sufficiently large
multiple of (logN)−1/k, a new set

B = A′ ∪ (A′ + γ(qε))

where qε = lcm{1 ≤ q ≤ ε−k} ≪ N1/(k+1) and A′ = A ∩ {1, N2/(k+1) − qε} × · · · × {1, N2k/(k+1) − qkε }.
It is easy to then see that this set B has the property that |B| ≥ 5|A|/3 and, by mimicking the arguments

in Section 2.2, but using Fourier analysis on Z
k and invoking Lemma 5 from [9] (the analogue of Proposition

1 in this context), one can also show that

# of monomial differences in B ≤ C0

(logN)1/k
Nk+2/(k+1)

for some absolute constant C0 > 0.

Theorem 6 then follows, as in the proof of Theorem 2, by combining these two properties of set B with
the following lower bound on the number of monomial differences in any given set B ⊆ QN (the analogue of
Lemma 1 in this context), whose proof we leave as an exercise.

Lemma 4. There exists a constant Ck > 0 such that for any given B ⊆ QN and 1 ≤ M ≤ N

# of monomial differences in B ≥
( |B|/Nk − (Dk(M) + Ck)/M

k

(Mk+2/(k+1))2

)
Nk+2/(k+1).

Appendix C. Proof of Lemma 2 (Major arc estimate)

The proof of Lemma 2 hinges on the key observation that for each α in a major arc corresponding to a

rational a/q, our exponential sum Ŝ(α) breaks naturally into an arithmetic part S(a, q) and a continuous
part IN (α− a/q), up to a manageable error term. In particular we have

Lemma 5. If α ∈ M′
a/q with 1 ≤ q ≤ N1/20, then

(16) Ŝ(α) =
√
N q−1S(a, q)IN (α− a/q) +O(N1/10)

where

S(a, q) =

q−1∑

r=0

e−2πiar2/q and IN (β) =

∫ 1

0

e−2πiNβx2

dx.

Remark (on “big O notation”). Whenever we write E = O(F ) for any two quantities E and F we shall mean
that |E| ≤ CF , for some constant C > 0.
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Proof. We can write α = a/q + β where |β| ≤ 1/N19/20 and 1 ≤ q ≤ N1/20. We can also write each

1 ≤ d ≤
√
N uniquely as d = mq + r with 1 ≤ r ≤ q and 0 ≤ m ≤

√
N/q. It then follows that

Ŝ(α) =

q∑

r=1

√
N/q∑

m=0

e−2πi(a/q+β)(mq+r)2 +O(q)

=

q∑

r=1

e−2πiar2/q

√
N/q∑

m=0

e−2πiβ(mq+r)2 +O(q).

Since ∣∣∣e−2πi(mq+r)2β − e−2πim2q2β
∣∣∣ ≤

∣∣∣e−2πi(2mqr+r2)β − 1
∣∣∣ ≤ Cdr|β| ≤ CqN−9/20

and

∣∣∣

√
N/q∑

m=0

e−2πim2q2β −
∫ √

N/q

0

e−2πix2q2βdx
∣∣∣ ≤

√
N/q∑

m=0

∫ m+1

m

∣∣∣e−2πim2q2β − e−2πix2q2β
∣∣∣ dx

≤
√
N/q∑

m=0

2π(2m+ 1)q2|β|

≤ 20N1/20

it follows that ∣∣∣Ŝ(α)−
√
N q−1S(a, q)IN (β)

∣∣∣ ≤ CN1/10. �

Lemma 2 follows almost immediately from this and the two basic lemmas below.

Lemma 6 (Gauss sum estimate). If (a, q) = 1, then |S(a, q)| ≤ √
2q. More precisely,

|S(a, q)| =





√
q if q odd√
2q if q ≡ 0 mod 4

0 if q ≡ 2 mod 4

.

Lemma 7 (Oscillatory integral estimate). For any λ ≥ 0
∣∣∣
∫ 1

0

e2πiλx
2

dx
∣∣∣ ≤ min{1, 2λ−1/2} ≤ 2

√
2(1 + λ)−1/2.

Proof of Lemma 2. Lemmas 6 and 7 imply that the main term in (16)
√
N q−1S(a, q)IN (α− a/q) ≤ 4

√
Nq−1/2(1 +N |α− a/q|)−1/2

and since q−1/2 ≥ N−1/40 and N |α− a/q| ≤ N1/20, it follows that

N1/10 ≪
√
N q−1/2(1 +N |α− a/q|)−1/2. �

Proof of Lemma 6. Squaring-out S(a, q) we obtain

|S(a, q)|2 =

q−1∑

s=0

q−1∑

r=0

e2πia(r
2−s2)/q.

Letting r = s+ t and using the fact that (a, q) = 1 and

q−1∑

s=0

e2πia(2st)/q =

{
q if 2at ≡ 0 mod q

0 otherwise

it follows that

|S(a, q)|2 =

q−1∑

t=0

e2πiat
2/q

q−1∑

s=0

e2πia(2st)/q =

{
q if q odd

q
(
e2πia(q/4) + 1

)
if q even

. �
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Proof of Lemma 7. We need only consider the case when λ ≥ 1. We write
∫ 1

0

e2πiλx
2

dx =

∫ λ−1/2

0

e2πiλx
2

dx+

∫ 1

λ−1/2

e2πiλx
2

dx =: I1 + I2.

It is easy to then see that |I1| ≤ λ−1/2, while integration by parts gives that

|I2| =
∣∣∣∣
∫ 1

λ−1/2

1

4πiλx

( d

dx
e2πiλx

2
)
dx

∣∣∣∣

≤ 1

4πλ

∣∣∣∣∣

[
1

x
e2πiλx

2

]1

λ−1/2

+

∫ 1

λ−1/2

1

x2
e2πiλx

2

dx

∣∣∣∣∣

≤ λ−1/2. �
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