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Abstract— In a recent work, Nazer and Gastpar proposed
the Compute-and-Forward strategy as a physical-layer network
coding scheme. They described a code structure based on nested
lattices whose algebraic structure makes the scheme reliable and
efficient. In this work, we consider the implementation of their
scheme for real Gaussian channels and one dimensional lattices.
We relate the maximization of the transmission rate to the lattice
shortest vector problem. We explicit, in this case, the maximum
likelihood criterion and show that it can be implemented by using
an Inhomogeneous Diophantine Approximation algorithm.

I. I NTRODUCTION

In [1], Zhanget al. introduced the physical-layer network
coding concept (PNC) in order to turn the broadcast property
of the wireless channel into a capacity boosting advantage.In-
stead of considering the interference as a nuisance, each relay
converts an interfering signal into a combination of simulta-
neously transmitted codewords. PNC concept has received a
particular interest in the last years because it provides means
of embracing interference and improving network capacity.

In a recent work [2], Nazer and Gastpar proposed a new
physical-layer network coding scheme. Their strategy, called
compute-and-forward (CF), exploits interference to obtain
higher end-to-end transmission rates between users in a net-
work. The relays are required to decode noiseless linear
equations of the transmitted messages using the noisy linear
combination provided by the channel. The destination, given
enough linear combinations, can solve the linear system for
its desired messages. This strategy is based on the use of
structured codes, particularly nested lattice codes to ensure
that integer combinations of codewords are themselves code-
words. The authors demonstrated its asymptotic gain using
information-theoretic tools.

The authors in [3] followed the framework of Nazer and
Gastpar and showed the potential of the compute-and-forward
protocol using an algebraic approach. They related the Nazer-
Gastaper’s approach to the theorem of finitely generated
modules over a principle ideal domain (PID). They gave
sufficient condition for lattice partitions to have a vector
space structure which is a desirable property to make them
well suited for physical-layer network coding. Then, they
generalized the code construction and developed encoding and
decoding methods.

In [4], the authors proved that the lattice implementation
of compute-and-forward as proposed by Nazer and Gastpar
suffers from a loss in number of achieved degrees of freedom.
They proposed a different implementation consisting of a

Relayx2

xR

x1SourceS1

SourceS2

Fig. 1. System model: 2 sources and one relay.

modulation scheme and an outer code and showed that it
achieves full degrees of freedom as if full cooperation among
transmitters and among relays was permitted. In their scheme,
the channel coefficients are known throughout the network. In
[5], the authors designed a modulation/coding scheme inspired
by the compute-and-forward protocol for the wireless two-way
relaying channel.

In this work, we consider the practical aspects of the
compute-and-forward protocol. We implement the protocol
described by Nazer and Gastpar. We explain how to obtain the
integer coefficients that maximize the rate. We also propose
a decoding technique based on maximum likelihood. Finally,
we show some simulation results. All the practical aspects are
demonstrated here for one-dimensional real constellations.

II. SYSTEM MODEL AND ASSUMPTIONS

In our model, we consider one relay receiving messages
from two sourcesS1 andS2 and transmitting a linear combi-
nation of these two messages, as described in Figure 1. The
relay observes a noisy linear combination of the transmitted
signals through the channel. Received signal at the relay is
expressed as,

y = h1x1 + h2x2 + z. (1)

The relay searches for the integer coefficient vectora =
[a1 a2]

T that maximizes the transmission rate. It then decodes
a noiseless linear combination of the transmitted signals,

xR = a1x1 + a2x2, (2)

and retransmits it to the destination or another relay. We con-
sider a real-valued channel model with real inputs and outputs.
The channel coefficientsh1 and h2 are real, i.i.d. Gaussian,
hi ∼ N (0, 1). z is Gaussian, zero mean, with varianceσ2 = 1
(z ∼ N (0, 1)). Let h = [h1 h2]

T denotes the vector of
channel coefficients. Source symbolsxi are integers and verify
|xi| ≤ sm, i.e., xi ∈ S = {−sm,−sm + 1, . . . , sm}. S1 and
S2 transmit x1 and x2, respectively. Both sources have no
channel side information (CSI). CSI is only available at the
relay.

http://arxiv.org/abs/1107.0300v1
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III. C OMPUTE-AND-FORWARD

In what follows, we use the expression of the computation
rateRcomp given by Nazer and Gastpar [2] in order to find
a vectora maximizing it. We show that the maximization
of Rcomp is equivalent to the search of a shortest vector in
a lattice. Then, based on the likelihood expression, we show
that decoding is equivalent to an Inhomogeneous Diophantine
Approximation.

A. Achievable Computation Rate

The primary goal of the decode-and-forward is to enable
higher achievable rates across the network. Nazer and Gastpar
showed that the relays can recover any set of linear equations
with coefficient vectora as long as the message rates are less
than the computation rate

Rcomp(h,a) = log





(

‖a‖2 −
SNR|h†

a|2

1 + SNR‖h‖2

)−1


 (3)

where this rate is achievable by scaling the received signal
by the MMSE coefficient [2]. We are interested in finding the
coefficient vector with the highest computation rate. This is
given in the following theorem. The result is obtained for a
relay combiningN symbols and for complex-valued channels.

Theorem 1: For a givenh ∈ CN (resp.RN ), Rcomp(h,a)
is maximized by choosinga ∈ Z[i]N (resp.ZN ) as

a = argmin
a 6=0

(

a
†
Ga
)

(4)

where
G = I −

SNR

1 + SNR‖h‖2
H. (5)

H = [Hij ], Hij = hih
⋆
j , 1 ≤ i, j ≤ N and † is for the

Hermitian transpose (resp. the regular transpose).
Proof: Maximizing Rcomp(h,a) is equivalent to the

following minimization

min
a 6=0

{

‖a‖2 + SNR‖h‖2‖a‖2 − SNR|h†
a|2
}

. (6)

We can write
|h†

a|2 =
∑

i,j

hih
⋆
ja

⋆
i aj (7)

As H = [Hij ], Hij = hih
⋆
j , 1 ≤ i, j ≤ N , it follows that

∑

i,j

hih
⋆
ja

⋆
i aj = a

†
Ha. Using these notations, we can write

(6) as

(1 + SNR‖h‖2)min
a 6=0

a
†

[

I −
SNR

1 + SNR‖h‖2
H

]

a. (8)

I −
SNR

1 + SNR‖h‖2
H hasN strictly positive eigenvalues. It

is then positive definite. Now, the problem is reduced to the
minimization ofa†

Ga.
Proposition 1: Searching for the vectora that minimizes

Equation (4) of theorem 1 is equivalent to a “Shortest Vector”
problem for the latticeΛ whose Gram matrix isG.

Proof: As G is a definite positive hermitian (resp.
symmetric) matrix, it is the Gram matrix of a latticeΛ. This

lattice is either aZ[i]− lattice in the complex case, or aZ−
lattice in the real case. Then, the minimization problem in
theorem 1 is equivalent to find a non zero vector inΛ with
shortest length.

Algorithms for solving this problem are given in [6]. The
best known one is the Fincke-Pohst algorithm [7].

B. Recovering Linear Equations

The relay aims to decode a linear equation of the transmitted
messages and passes it to the destination or another relay. After
calculating the vectora as in (4), the relay recovers a linear
combination of the transmitted signalx1 andx2. We rewrite
the received signal at the relay in the following form

y = λ+ ξ1x1 + ξ2x2 + z (9)

where λ is an integer,ξi = hi − ai and z is the additive
white noise. The recovered linear equationλ = a1x1 + a2x2

is a linear Diophantine equation. This equation admits the
following solutions.

C. Solution of the Linear Diophantine Equation

If λ is a multiple of the greatest common divisor (gcd) ofa1
anda2, then the Diophantine equation has an infinite number
of solutions. TheExtended Euclid Algorithm allows to exhibit
a particular solution(u1, u2) to a1x1 + a2x2 = g [9]. The set
of all solutions is obtained as follows

{

x1 = u1

g
λ+ a2

g
k

x2 = u2

g
λ− a1

g
k

(10)

g = a1 ∧ a2 is the gcd ofa1 anda2, k ∈ Z.

D. Decoding Metric

The Maximum Likelihood decoder maximizesp(y/λ) over
all possible values ofλ. The conditional probabilityp(y/λ)
can be expressed as,

p(y/λ) =
∑

(x1,x2)
a1x1+a2x2=λ

p(y/x1, x2)p(x1, x2) (11)

where

p(y/x1, x2) ∝ exp

[

−
(y − h1x1 − h2x2)

2

2σ2

]

(12)

andx1, x2 are (a priori) equiprobable and given by (10). The
decoding rule is now to find,

λ̂ = argmax
λ

̺(λ) :=

+∞
∑

k=−∞

exp

[

−
(y − βλ+ kα)2

2σ2

]

(13)

whereβ = 1
g
(h1u1 + h2u2), α = 1

g
(h2a1 − h1a2).

In [8], it has been proved that, forλ ∈ R, ̺(λ) achieves its
maximum for

λ ∈
α

β
Z+

y

β
,

i.e. for all values ofλ such thaty − βλ + kα = 0. Since
we want to maximize̺ (λ) for λ ∈ Z, the solution is given
by the integer-valued couple(λ, k) minimizing |y − βλ+ kα|.
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Thus, sincex1, x2 ∈ S which is a finite subset ofZ and verify
Equation (10), we state a new minimization problem which is
equivalent to (13),

λ̂ = argλ min
(λ,k)

x1,x2∈S

|y − βλ+ kα| . (14)

The problem is therefore equivalent to the minimization of

F (k, λ) = |kα′ − λ+ y′| (15)

α′ = α/β andy′ = y/β. The minimization is calledInhomo-
geneous Diophantine Approximation in the absolute sense. It
consists of finding the best approximation of a real numberα′

by a rational numberλ/k, k ∈ N, given an additional real shift
y′, while keeping the denominatork as small as possible. In
the general settings for such problems, an error approximation
functionF (k, λ) is set and it is stated that a rational number
λ/k is the Best Diophantine Approximation if, for all other
rational numbersλ′/k′

k′ ≤ k ⇒ F (k′, λ′) ≥ F (k, λ). (16)

In our case, in addition to the error approximation function,
limits are imposed by the finite constellationS to which
the transmitted symbols belong. The algorithms used to find
the best Diophantine approximations of real numbers are in
general simple and easy to implement. The best known one is
the Cassel’s algorithm [10]. In [11], the authors develop and
compare several ones.

IV. N UMERICAL RESULTS

In the simulations, the set of symbols is of the formS =
{−sm, . . . , sm}. We consider two sources transmittingx1 and
x2, and one relay recovering a linear equation ofx1 andx2

with integer coefficients.
At first, based on its CSI, the relay finds the vectora as

the shortest vector described in theorem 1. Then, the relay
finds a particular solution of the linear Diophantine equation
a1x1+a2x2 = g using theExtended Euclid algorithm. Finally,
the relay searches for the couple(k, λ) which gives the best
inhomogeneous Diophantine approximation by minimizing the
functionF defined in (15).
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Fig. 2. p(y/λ) for h = [−1.274 0.602]T , a = [2 − 1]T , SNR = 40dB,
x1 = −2 andx2 = 3. p(y/λ) is maximized for one value,λ = −7 in the
left subfigure while it is maximized for several values ofλ in the right one.

In Figure 3, we show the error probability of our system
for three different constellationsS, defined bysm = 5, 7, 10,
respectively. Forsm = 5 or less, the diversity order of the
system is 1 for real entries (which would correspond to a
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Fig. 3. Error Probability using the Inhomogeneous Diophantine Approxima-
tion versus decoding both symbolsx1 andx2.

diversity order equal to 2 with complex symbols). Forsm > 6,
the diversity order collapses to1/2. This is due to the fact that
p(y/λ) is constant, as a function ofλ, on a bigger interval
giving rise to ambiguities as shown in Figure 2. Still in Figure
3, we plotted the error probability for when the relay decodes
both symbolsx1 andx2. The diversity order in this case is1/2
for all values ofsm. For the case of complex-valued channels
and symbols, we expect a doubled value of all the diversity
orders.

V. CONCLUSION

In this paper, we considered the Compute-and-Forward
scheme with real-valued channels. We provided a method for
maximizing the transmission rate and developed a decoding
strategy. Numerical results showed the performance of our
decoding method. We believe that it is a first step towards
a rich and fruitful multidimensional approach.
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