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Many collinear k-tuples with no k + 1 collinear points
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Abstract

For every k > 3, we give a construction of planar point sets with many
collinear k-tuples and no collinear (k + 1)-tuples.

1 Introduction

In the early 60’s Paul Erdős asked the following question about point-line inci-
dences in the plane: Is it possible that a planar point set contains many collinear
four-tuples, but it contains no five points on a line? There are various construc-
tions for n-element point sets with n2/6 − O(n) collinear triples with no four
on a line (see [3] or [10]). However, no similar construction is known for larger
numbers.

Let us formulate Erdős’ problem more precisely. For a finite set P of points
in the plane and k ≥ 2, let tk(P ) be the number of lines meeting P in exactly
k points, and let Tk(P ) :=

∑

k′≥k tk′(P ) be the number of lines meeting P in
at least k points. For r > k and n, we define

t
(r)
k (n) := max

|P |=n
Tr(P )=0

tk(P ).

In plain words, t
(r)
k (n) is the number of lines containing exactly k points

from P , maximized over all n point sets P that do not contain r collinear

points. In this paper we are concerned about bounding t
(k+1)
k (n) from below

for k > 3. Erdős conjectured that t
(k+1)
k (n) = o(n2) for k > 3 and offered

$100 for a proof or disproof [8] (the conjecture is listed as Conjecture 12 in the
problem collection of Brass, Moser, and Pach [2]).

∗Department of Mathematics, University of British Columbia, Vancouver, Canada, email:

solymosi@math.ubc.ca
†Department of Mathematics and Informatics, University of Novi Sad, Serbia, email: mi-

los.stojakovic@dmi.uns.ac.rs. Partly supported by Ministry of Science and Technological De-

velopment, Republic of Serbia, and Provincial Secretariat for Science, Province of Vojvodina.

1

http://arxiv.org/abs/1107.0327v1


1.1 Earlier Results

This problem was one of Erdős’ favorite geometric problems, he frequently
talked about it and listed it among the open problems in geometry, see [8, 7, 5,
6, 9]. It is not just a simple puzzle which might be hard to solve, it is related
to some deep and difficult problems in other fields. It seems that the key to
attack this question would be to understand the group structure behind point
sets with many collinear triples. We will not investigate this direction in the
present paper, our goal is to give a construction showing that Erdős conjecture,
if true, is sharp – for k > 3, one can not replace the exponent 2 by 2 − c, for
any c > 0.

The first result was due to Kárteszi [13] who proved that t
(k+1)
k (n) ≥

ckn log n for all k > 3. In 1976 Grünbaum [11] showed that t
(k+1)
k (n) ≥

ckn
1+1/(k−2). For some 30 years this was the best bound when Ismailescu [12],

Brass [1], and Elkies [4] consecutively improved Grünbaum’s bound for k ≥ 5.
However, similarly to Grünbaum’s bound, the exponent was going to 1 as k
went to infinity.

In what follows we are going to give a construction to show that for any
k > 3 and δ > 0 there is a threshold n0 = n0(k, δ) such that if n ≥ n0 then

t
(k+1)
k (n) ≥ n2−δ. On top of that, we note that each of the collinear k-tuples
that we count in our construction has an additional property – the distance
between every two consecutive points is the same.

1.2 Notation

For r > 0, a positive integer d and x ∈ R
d, by Bd(x, r) we denote the closed

ball in R
d of radius r centered at x, and by Sd(x, r) we denote the sphere in R

d

of radius r centered at x. When x = 0, we will occasionally write just Bd(r)
and Sd(r).

For a set S ⊆ R
d, let N(S) denote the number of points from the integer

lattice Z
d that belong to S, i.e., N(S) := Z

d ∩ S.

2 A lower bound for t
(k+1)
k (n)

We will prove bounds for even and odd value of k separately, as the odd case
needs a bit more attention.

2.1 k is even

Theorem 1 For k ≥ 4 even and ε > 0, there is a positive integer n0 such that

for n > n0 we have t
(k+1)
k (n) > n2−ε.
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Proof. We will give a construction of a point set P containing no k + 1
collinear points, with a high value of tk(P ).

Let d be a positive integer, and let r0 > 0. It is known, see, e.g., [14], that
for large enough r0 we have

N(Bd(r0)) = (1 + o(1))V (Bd(r0))

= (1 + o(1))Cdr
d
0

≥ c1r
d
0 ,

where Cd = πd/2

Γ((n+2)/2) , and c1 = c1(d) is a constant depending only on d.

For each integer point from Bd(r0), the square of its distance to the origin is
at most r20. As the square of that distance is an integer, we can apply pigeonhole
principle to conclude that there exists r, with 0 < r ≤ r0, such that the sphere
Sd(r) contains at least 1/r

2
0 fraction of points from Bd(r0), i.e.,

N(Sd(r)) ≥
1

r20
N(Bd(r0)) ≥

1

r20
c1r

d
0 = c1r

d−2
0 .

We now look at unordered pairs of different points from Z
d ∩ Sd(r). The

total number of such pairs is at least

(

N(Sd(r))

2

)

≥

(

c1r
d−2
0

2

)

≥ c2r
2d−4
0 ,

for some constant c2 = c2(d). On the other hand, for every p, q ∈ Z
d ∩ Sd(r)

we know that the Euclidean distance d(p, q) between p and q is at most 2r, and
that the square of that distance is an integer. Hence, there are at most 4r2

different possible values for d(p, q). Applying pigeonhole principle again, we get
that there are at least

c2r
2d−4
0

4r2
≥

c2
4
r2d−6
0

pairs of points from Z
d∩Sd(r) that all have the same distance. We denote that

distance by ℓ.

Let p1, q1 ∈ Z
d∩Sd(r) with d(p1, q1) = ℓ, and let s be the line going through

p1 and q1. We define k − 2 points p2, . . . , pk/2, q2, . . . , qk/2 on the line s such
that d(pi, pi+1) = ℓ and d(qi, qi+1) = ℓ, for all 1 ≤ i < k/2, and such that all k
points p1, . . . , pk/2, q1, . . . , qk/2 are different, see Figure 1.

Figure 1: Line s with k points, for k even.

Knowing that p1 and q1 are points from Z
d, the way we defined points

p2, . . . , pk/2, q2, . . . , qk/2 implies that they have to be in Z
d as well. If we set
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ri :=
√

r2 + i(i− 1)ℓ2, for all i = 1, . . . , k/2, then the points pi and qi belong
to the sphere Sd(ri), and hence, pi, qi ∈ Z

d ∩ Sd(ri), for all i = 1, . . . , k/2, see
Figure 2.

Figure 2: The position of the k points related to the origin, for k even.

We define the point set P to be the set of all integer points on spheres Sd(ri),
for all i = 1, . . . , k/2, i.e.,

P := Z
d ∩

(

∪
k/2
i=1Sd(ri)

)

.

Let n := |P |. Obviously, P ⊆ Bd(rk/2), so we have

n ≤ N
(

Bd(rk/2)
)

= (1 + o(1))V (Bd(rk/2)) = c1r
d
k/2.

Plugging in the value of rk/2 and having in mind that ℓ < 2r, we obtain

n ≤ c1

(

√

r2 + k/2(k/2 − 1)4r2
)d

≤ c1
√

k2 + 1
d
rd ≤ c3r

d ≤ c3r
d
0 ,

where c3 = c3(d, k) is a constant depending only on d and k.

As the point set P is contained in the union of k/2 spheres, there are
obviously no k + 1 collinear points in P . On the other hand, every pair of
points p1, q1 ∈ Z

d ∩ Sd(r) with d(p1, q1) = ℓ defines one line that contains k
points from P . Hence, the number of lines containing exactly k points from P
is

tk(P ) ≥
c2
4
r2d−6
0 ≥

c2
4

1

c
2d−6

d
3

n
2d−6

d ≥ c4n
2d−6

d ,

where c4 = c4(d, k) is a constant depending only on d and k.

To obtain a point set in two dimensions, we can project our d dimensional
point set to an arbitrary (two dimensional) plane in R

d. The vector v along
which we project should be chosen so that every two points from our point set
are mapped to different points, and every three points that are not collinear
are mapped to points that are still not collinear. Obviously, such vector can be
found.

For ε given, we can pick d such that 2d−6
d > 2 − ε. As we increase r0, we

obtain constructions with n growing to infinity. When n is large enough, the
statement of the theorem will hold. �
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2.2 k is odd

Theorem 2 For k ≥ 4 odd and ε > 0, there is a positive integer n0 such that

for n > n0 we have t
(k+1)
k (n) > n2−ε.

Proof. We will give a construction of a point set P containing no k + 1
collinear points, with a high value of tk(P ).

Let d be a positive integer, and let r0 > 0. In the same way as in the
proof of Theorem 1, we can find r with 0 < r ≤ r0, such that the sphere Sd(r)
contains at least a 1/r20 fraction of the integer points from Bd(r0), and hence,
N(Sd(r)) ≥ c1r

d−2
0 , for some constant c1 = c1(d) and r0 large enough.

Now, for every point p ∈ Z
d∩Sd(r) there is a corresponding point p′ on the

sphere Sd(2r) that belongs to the half-line from the origin to p. It is not hard
to see that all coordinates of p′ are even integers, so p′ ∈ (2Z)d∩Sd(2r). Hence,
the number of points in (2Z)d ∩ Sd(2r) is at least c1r

d−2
0 .

We look at unordered pairs of different points from (2Z)d∩Sd(2r). The total

number of such pairs is at least
(c1r

d−2
0
2

)

. If we just look at such pairs of points

that have different first coordinate, we have at least c2r
2d−4
0 of those, for some

constant c2 = c2(d). To see that, observe that for every point p ∈ (2Z)d∩Sd(2r),
a point obtained from p by changing the sign of any number of coordinates of
p and/or permuting the coordinates is still in (2Z)d ∩ Sd(2r).

On the other hand, for every p, q ∈ (2Z)d ∩ Sd(2r) we know that the Eu-
clidean distance d(p, q) between p and q is at most 4r, and that the square of
that distance is an integer. Hence, there are at most 16r2 different possible
values for d(p, q). Applying pigeonhole principle again, we get that there are at
least

c2r
2d−4
0

16r2
≥

c2
16

r2d−6
0

pairs of points with different first coordinate, from (2Z)d ∩ Sd(2r), that have
the same distance. We denote that distance by 2ℓ. Note that since both p and
q are contained in (2Z)d, we have that the middle point m of the segment pq
belongs to Z

d, and d(p,m) = d(q,m) = ℓ.

Let p1, q1 ∈ (2Z)d∩Sd(2r) with d(p1, q1) = 2ℓ, let m0 be the middle point of
the segment p1q1, and let s be the line going through p1 and q1. We define k−3
points p2, . . . , p(k−1)/2, q2, . . . , q(k−1)/2 on the line s such that d(pi, pi+1) = ℓ and
d(qi, qi+1) = ℓ, for all 1 ≤ i < (k − 1)/2, and all k points m0, p1, . . . , p(k−1)/2,
q1, . . . , q(k−1)/2 are different, see Figure 3.

Figure 3: Line s with k points, for k odd.
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Knowing that p1 and q1 are points from (2Z)d, the way we defined points
m0, p2, . . . , p(k−1)/2, q2, . . . , q(k−1)/2 implies that they have to be in Z

d. If we

set ri :=
√

4r2 + (i+ 1)(i − 1)ℓ2, for all i = 0, . . . , (k − 1)/2, the points pi and
qi belong to the sphere Sd(ri), and the point m0 belongs to Sd(r0). Hence,
pi, qi ∈ Z

d ∩ Sd(ri), for all i = 1, . . . , (k − 1)/2, and m0 ∈ Z
d ∩ Sd(r0), see

Figure 4.

Figure 4: The position of the k points related to the origin, for k odd.

By αx we denote the hyperplane containing all points in R
d with first coordi-

nate equal to x. Let M be the multiset of points m such that there exist points
p, q ∈ (2Z)d∩Sd(2r) having different first coordinate, with d(p, q) = 2ℓ, and with
m being the middle point of segment pq. In this multiset, we include the point
m once for every such p and q. From our previous calculations it follows that
|M | = c2

16r
2d−6
0 and M ⊆ Z

d ∩ Sd(r0). Each point from Z
d ∩Sd(r0) is contained

in αx for some −r0 ≤ x ≤ r0, and hence, by the pigeonhole principle, there
exists −r0 ≤ x0 ≤ r0 such that αx0 ∩M contains at least |M |/(2r0) ≥

c2
32r

2d−7
0

points.

We define the point set P to be the set of all integer points on spheres Sd(ri),
for all i = 1, . . . , (k− 3)/2, all integer points on Sd(r(k−1)/2) that do not belong
to αx0 , and all integer points on Sd(r0) that belong to αx0 . I.e., we have

P := Z
d ∩

((

∪
(k−3)/2
i=1 Sd(ri)

)

∪
(

Sd(r(k−1)/2) \ αx0

)

∪ (Sd(r0) ∩ αx0)
)

.

Let n := |P |. Obviously, P ⊆ Bd(r(k−1)/2), so, as before, we have

n ≤ N
(

Bd(rk/2)
)

= (1 + o(1))V (Bd(r(k−1)/2)) = c1r
d
(k−1)/2.

Plugging in the value of r(k−1)/2 and having in mind that ℓ < r, we obtain

n ≤ c1

(

√

4r2 + (k/2 + 1)(k/2 − 1)r2
)d

≤ c3r
d ≤ c3r

d
0 ,

where c3 = c3(d, k) is a constant depending only on d and k.

Let us first prove that the point set P does not contain k + 1 collinear
points. As P is contained in the union of (k − 1)/2 spheres and a hyperplane,
any line that is not contained in that hyperplane cannot contain more than k
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points from P . But the point set P restricted to the hyperplane αx0 belongs to
the union of (k − 1)/2 spheres Sd(ri), for i = 0, . . . , (k − 3)/2, so we can also
conclude that there are no k + 1 collinear points in P ∩ αx0 .

On the other hand, every pair of points p1, q1 ∈ Z
d ∩ Sd(r) with different

first coordinate, with d(p1, q1) = 2ℓ, and with the middle point that belongs
to αx0 ∩ M , defines one line that contains k points from P . Note that such
line cannot belong to αx0 , as the first coordinates of p1 and q1 cannot be x0
simultaneously.

Hence, the number of lines containing exactly k points from P is

tk(P ) ≥
c2
32

r2d−7
0 ≥

c2
32

1

c
2d−7

d
3

n
2d−7

d ≥ c4n
2d−7

d ,

where c4 = c4(d, k) is a constant depending only on d and k.

To obtain a point set in two dimensions, we will project our d dimensional
point set to a generic (two dimensional) plane in R

d. The vector v along which
we project should be chosen so that every two points from our point set are
mapped to different points, and every three points that are not collinear are
mapped to points that are still not collinear. Obviously, such vector can be
found.

For ε given, we can pick d such that 2d−7
d > 2 − ε. By increasing r0, one

can obtain constructions for arbitrary large n. �
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[6] Pál Erdős. Néhány elemi geometriai problémáról (on some problems in ele-
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