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Abstract

In [D. de Caen, E.R. van Dam. Fissioned triangular scheneethe cross-ratio, Europ. J. Com-
bin., 22 (2001) 297-301], de Caen and van Dam constructediariischeme FT(+ 1) of the
triangular scheme on PG({). This fission scheme comes from the naturally induced aaifo
PGL(2 q) on the 2-element subsets of PGfL The group PGL(29) is one of two infinite fam-
ilies of finite sharply 3-transitive groups. The other suamily M(q) is a “twisted” version of
PGL(2 q), whereq is an even power of an odd prime. The group PSt)ds the intersection
of PGL(2 g) and M(@). In this paper, we investigate the association schemesngofrom the
actions of PSL(2q9), M(q) and A'L(2, g), respectively. Through the conic model introduced in
[H.D.L. Hollmann, Q. Xiang. Association schemes from theats of PGL(2q) fixing a nonsin-
gular conic, J. Algebraic Combin., 24 (2006) 157-193], wieaduce an embedding of B(2, q)
into PI'L(3, g). For each of the three groups mentioned above, this emiggdoduces two more
isomorphic association schemes: one on hyperbolic lindgtanother on hyperbolic points (via
a null parity) in a 3-dimensional orthogonal geometry. Ténsbedding enables us to treat these
three isomorphic association schemes simultaneously.

Keywords: triangular scheme, fusion scheme, fission scheme, ortlabgpace, orthogonal
groups
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1. Introduction

Let X be a finite set with cardinality > 2 andR = {Ry, Ry, ..., Ry} be a set of binary relations
onX. X = (X,R) is called arassociation scheme with d clasgasl-class association schen
simply, aschemgif the following axioms are satisfied:

() Ris a partition ofX x X andRy = {(X, X) | X € X} is the diagonal relation;

(i) Fori = 0,1,...,d, the inverséR = {(y, X)I(x,y) € R} of R is also among the relations:
'R =R, forsomei’ (0 < i’ < d);
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(ii) For any triple ofi, j,k=0,1,...,d, there exists an integeﬁ‘j such that for all X, y) € R,
lize X| (%2 €R,(2Y) € R}l = pf.

The integersrpg‘j are called théntersection numbersThe integek = p?, is called thevalencyof
R. Infact, foranyx e X, ki = |[{y € X| (x,¥) € R}|.

If p!‘j = p'j‘i for all i, j,k, X is calledcommutative A relation R is said to besymmetric
if R = 'R. The schemeX is calledsymmetricif all relations R, are symmetric. A partition
Ao, A1, ..., Ae Of the index sef0,1,...,d} is caIIedadmissibIe[lE] if Ag = {0}, A; # 0 and
Al = Ajforsomej (1<i,j <€), whereA’ = {a'la € A}. LetRy, = Upea R, If Y = (X {Ry 1)
IS an association scheme, it is callefliaion schemef X, andX is called &fission schemef 2).

We mention a typical example of association scheme @eeet:tic& 2.1] for details). If group
G acts transitively on a finite s&t, then the orbits of the induced diagonal actiorGodn X x X
form an association scheme, denotedd§, X). For anyx € X, the orbits oG, on X are in one-
to-one correspondence with those®bn X x X, whereG, is the stabilizer ok in G. The scheme
X(G, X) is commutative if and only if the permutation represewtatfG on X is multiplicity-freg
and it is symmetric if and only iG actsgenerously transitivelgn X.

By a theorem of Zassenha@[l?, Section 7.1], there are tivitenfamilies of finite sharply
3-transitive groups, and both are subgroups of the pregsemilinear groupIR.(2,q). If G is
a sharply 3-transitive group of permutations on a finiteX§ethen X can be identified with the
projective line PG(1q) for some prime poweq andG is one of the following:

(1) Gis the projective general linear group PGLgRin its natural action on PG(&));

(2) q = p? for some odd prime and a positive integef, and ifo is the unique involution in
Aut(FF,), thenG is the group M@) = SU T, where

al+hb
cl+d’

S = {/1 - ad — bcis a square qu}

al” +b . .
T={1- i ‘ ad — bcis a non-square |iﬁ‘*} .
cA’ +d a

In this paper, we shall investigate the association scheteesmined by the following sub-
groups of the symmetric group Sygq¥ 1):
Sym@+ 1)

|
PI'L(2, q)

/ ~__
M(a) PGL(Z q)
\ /

PSL(Zq)

These groups are permutation groups on P@(&and they acts transitively di, the collection of
2-element subsets of PG(f). Hence, each of these groups determines an associatiemsain
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Q: Sym( + 1) determines the triangular scheme 1), and PGL(2q) determines a symmetric
fission scheme of T(+ 1). De Caen and van Dar [5] describ®@PGL(2 q), Q) via the cross-
ratio. See Subsectign 2.3. The association schemes froattioes of the remaining three groups
are the main object of the present paper.

The isomorphism PGL(2)) ~ SO(3 g) introduces a conic model (see Subsecfion 2.1). The
action PGL(2qg) on Q is equivalent to that of SO(8) on the set of hyperbolic lineg, in a 3-
dimensional orthogonal geometry. This model has been ueadiliz in EB’] This conic
model allows us to use an embeddjmgf PI'L(2, q) into PI'L(3, g) and the image of this embed-
ding fixes this conic as a set. As a result, the image of P3j)@cts transitively on the hyperbolic
lines £, and so do the images of i{and H'L(2, q).

The conic above also introduces a (null) polaritysuch that the action of any subgroup of
PI'L(2, g) on the hyperbolic lineg, is equivalent to that of its embedded image on the hyperbolic
pointsL:; see Subsectidn 2.4. Therefore, we do not need to distingaisons on hyperbolic lines
and points in certain calculation. The advantage of thiscomodel allows us to treat (isomorphic)
association schemes on £, and £; all at once.

This paper is organized as follows. In Sectidn 2, we intredine conic model, the polarity
and the embedding oflR(2, q) into PI'L(3, ) mentioned above, and establish a few results on
transitivity. In Sectiof 3, we determine three fission sceewf the triangular schemed+ 1) via
their isomorphic association schemes.

We refer to [ﬂl] for undefined terms and the basic theory of@ason schemes and to ﬂﬂzo,

] for missing definitions and notation about various gimpthis paper.

2. The 3-dimensional orthogonal geometry and an embedding &@I'L(2, q)

In this section, we introduce the 3-dimensional orthoggeametry, a conic model, and vari-
ous groups related to this conic.

2.1. The 3-dimensional orthogonal geometry

Let Fq be a finite field withg elements. LeV = F; be a 3-dimensional vector space ofgr
equipped with a non-degenerate quadratic f@mThe general orthogonal grougO(V) is the
isometry group oV with respect taQ:

GO(V) = {A € GL(V) | Q(A(Xo, X1, %2)") = Q(Xo, X1, X2)}.

The special linear orthogonal grouO(V) is the intersection of GA) and SL¥). Itis also
standard to write GO(3)) for GO(V), and SO(3q) for SO{) when the underlying field B,

The projective plane PG(8) on V has as points the 1-dimensional subspace¥ ahd as
lines (hyperplanes) the 2-dimensional subspaces. Anyt pbia spanned by a nonzero vector
VvV = (Vo, V1, V2). Another vectou = (ug, U, Up) spansP if and only if v = £u for somet € [y Sowe
use (i : V1 : V) to denote the poir. A point (Vo : V1 : Vp) is calledsingularif Q(vo, vi, V2) = 0.

In the rest of this paper, we fix the quadratic fo@(xg, X1, Xo) = x% — XoXo. Let

O={:¢:1)E€Fqu{(1:0:0). (1)
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Thend is aconic Letoo = (1 : 0 : 0) We useP; andP,, to denote the pointsf : ¢ : 1) and
(2 : 0 : 0), respectively. No three distinct points @fcan be on a line. Therefore, any liie
intersectsy’ at most 2 points. Accordingly, is calledhyperbolicor secantf |£ N | = 2, tangent
if | N 0| =1, orelliptic or exteriorif | N O] = 0. We denote by,, Lo and £_ the set of all
hyperbolic, tangent and elliptic lines, respectively.

The following result is well known (e.g. see [20, Theorem6])l.from which Theoreni 2]2
follows immediately.

Theorem 2.1.1f V is an orthogonal geometry of dimension 3 and Witt indexvérd,, then
GO(V) =~ {1} x SOV), SOV) ~ PGL(2 g), and SO(V) acts triply transitively on the set of all
singular points.

Theorem 2.2. The groupSO() acts generously transitively afi, for € € {+, 0}.

We remark that SQ() also acts generously transitively dh; see ]. Therefore, the action
(SOWV), L.) determines a symmetric association scheme, denoté{®9(3 q), L), e = 0, +.

2.2. An embedding ¢i'L(2, q) into PI'L(3, Q)

In this subsection, we describe an embedding IBL(R, ) into PI'L(3, g), which gives an
isomorphism PGL(2)) ~ SO(3q) mentioned in Theorerm 2.1 (cf.|:| [4, Section 6.1] ahd [11,
Section 3]). While this is a folklore, a detailed account reyided here to prepare for later
sections.

We first describe the action of B(2, q) on the projective line PG(L)). Let

PG(1a) ={(£:1)1£€Fq}U{(1:0)

andF,'* = F, U {co}, the union ofFy and{co}. Now we may identify PG(g) with Fy* by the
map: € :1) < &, (1:0) e co. The groud'L(2, q) is the wreath product of GL(2)) and Aut(F),
and A'L(2, g) is the group induced on the the projective line P@jby I'L(2, q). Each element

of PI'L(2, g) is induced by a pairA, 7) with A = (i 3) € GL(2,g) andt € Aut(FFy), which acts
on PG(1q) as follows:

ry. %T+D
The expressions involving are evaluated by standard limit rules: e®’, = oo, A() = a/c if
¢ # 0 andA() = o if c=0.

Consider the vector spaWéof quadratic forms ofig: g(x, y) = ux*+vxy+wy?. So, dinW = 3.
The groupl'L(2, g) acts onW as follows: for eachA, 7) inT'L(2, ),

Ufoo}
forall £ € "™

a(x,y) — q(A(X, y)") for all g € W. (2)



b

For brevity, we writeg(A(X", y7)) = q(A(X",y)"). If A= (2 d) € GL(2,q), then

q(A(X, ¥7)) =u(ax + by)? + v(ax + by )(cX + dy’) + w(cxX + dy’)?
=x*"(ua® + vac+ wc?) + X'y (2uab+ v(ad + bc) + 2wed) + y*" (ul? + vbd + wd?)

a> 2ab P)\(u
=( xy y*)|ac ad+bc bd||v|.
2 2cd #Jlw
Let
a 2ab P
p(A) =|ac ad+bc bd|. (3)
2 2cd

Since dep(A) = det(d)3, it can be verified thal{2) induces a homomorphism fioing2, g) to
I'L(3,Qq). In particular, ifr is the identity automorphism, is a homomorphism of GL(2) into
GL(3,0). The kernel op is {+1}, wherel is the 2x 2 identity matrix . LetZ = {cl|c € F}. Since
PGL(2 q) = GL(2,0)/Z, p embeds PGL(&)) into PGL(3 g). By abuse of notation, we also use
to denote the homomorphism induced by (2). Thusmbeds PL(2, g) into PI'L(3, g).

Since

a 2ab P\ (&7 (a&™ + b)?
ac ad+bc bd|| ¢ |= ((agf + b)(ce™ + d)}, 4)
@ 2cd )1 (& + d)?

(0(A),7) maps £2 : £ : 1) to((gjg)z,igj—;ﬁ : 1) if cz"+d# 0andto(l:0:0)ifce +d = 0.

Similarly, (o(A), 7y maps (1:0:0)to(1:0:0)i€ =0, and to (&/c)?, a/c, 1) if c # 0. Therefore,
p(PI'L(2, q)) fixes the set.
Now we equip the spad& with the quadratic fornQ(u, v, w) = v — uw. By (@), GL(2 q) acts
onW. Note that
QA(A(x,Y)) = det@®)*Q(a(x.Y)),

i.e.Qis multiplied by a factor def)? by the action op(A). Hence, we find a subgroup of GO(3
which is isomorphic to St(2, q)/{=l}, where SE(2,q) is the group of matrices with determi-
nant+1. In general, PSL(2) ~ PQ(3,q) and they are simple iff > 3. As a matter of fact,
p(PSL(2 0)) = PQ(3,0).

Note that SE(2,q)/{xl} and PGL(2qg) have the same size. Fgreven, SE(2,q)/{xl} =
SL(2,q) = PGL(2 g). Forgodd, SL*(2,q)/{xl} and PGL(2q) are not isomorphic. In this case,
p(SL*(2,q)/{=1}) is a subgroup PGO(8) of index 2, but it is not isomorphic to PSQ(.

Define a map from PG(1 q) to & as follows:

f(c0) = co@andf(¢, 1) (£2:¢: 1) forallé € Fy,.
We have
f(AE) = p(AT©)". (5)
The action of PGL(29) on PG(1q) is equivalent to that of SO(§) on .
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2.3. FT(q+ 1) andX(SO(3Q), Lo)e-s

Thetriangular schemd& (n) comes from the action of Sym) on the collection of 2-element
subsets of am-set (i > 4): for any such subsetsy, (x,y) € R if their intersection has size
2—i. T(n) is a 2-class Johnson scheme. It is well known that PGd)(&cts sharply 3-transitively
on PG(1q). So PGL(2q) acts generously transitively on the collection of 2-elatreubsets of
PG(1 g) and thus this action determines a symmetric associatibanse. In the papeE|[5], de
Caen and van Dam described this scheme as a fission schenedrdtigular scheme on PG()
using the cross ratio, denoted by R 1).

We know from the previous subsection that the action PGd)(@2n PG(1q) is equivalent to
that of SO(3q) on &. So the schemes FG & 1) is isomorphic to the scheme coming from the
action of SO(3q) on the 2-element subsets 6f. By definition, the hyperbolic lineL, are in
one-to-one correspondence with the 2-element subsets ofience, FTq + 1) is isomorphic
to X(SO(3q), L,). In ], Hollmann and Xiang investigate¥(SO(3 q), L) for e = + using
the cross ratio. In fact, they studied the coherent conftgurdrom the action of PGL(&)) (=~
SO(3qg)) onL, U L_. For the case being a power of 4, they calculated the intersection numbers
for this coherent configuration and constructed anotheemstt configuration o, U £_ by
merging certain relations. In this new coherent configaratithe fiberL, supports a 4-class
scheme and’_ supports a 3-class scheme.

The 4-class scheme afi, has an interesting history. Its existence as a fusion scheme
FT(q + 1) was first conjectured by de Caen and van Dam [5]. Tar@ap[ﬂﬁded this conjecture
with character-theoretic method. Ebert et al. proved ihwaitgeometric interpretation in! [6] and
v[%h a direct calculation of intersection numberslih [7].aKg gave a summary of these work in

1.

The 3-class scheme is also very interesting. H. Tanaka wédeéhat this 3-class scheme on
L_ gives a family of primitive schemes having the same pararsete the first infinite family
of Q-polynomial but notP-polynomial association schemes by Penttila and WiIIif@]. (The
reference to Hollmann and Xiang is incorrectly cited.in [1&8}d it should béﬂl]. )

We conclude this subsection with a description ofd-¥ () following E]. It has as vertices all
2-element subsets of PG(}) as and its relations are as follows:

Ro ={U&rhi&v) &y eFe™)

R ={(&yhieB)1£y.peF™)

Ri ={(& i) &y, B e Ty e, yi e p) = -1

R = {({g, yhia,B) | €y, @B e Ty ™ cr¢, y;a,B) =1 or r‘l} .1 € Fg\ {0, +1}.

where cri.y; zw) = $=2%4 is the cross ratio.R; has valency 2{ - 1), andR ; has valency

(g-1)/2, which is half of that oR..

(6)

2.4. The case q odd
Throughout this subsectiog,will be an odd prime power. The quadratic fo@{Xo, X1, X2) =
X2 — XX polarizes to the symmetric bilinear form

B((X0, X1, X2), (Yo, Y1, ¥2)) = 2X1Y1 — XoY2 — X2Yo.
6



The formB (or the conic?’) defines the followingpolarity on PG(2Q):

L (X0 X1 1 %) = (Xo & X, X2)™ 1= {(Yo : Y1 : ¥2) | B((Xo, X1, X2), (Yo, Y1, ¥2)) = 0} (7)

Denote by, the hyperbolic line ta” through distinct point®, andP, for £,y € Fg*. Itis
not difficult to check the following:

&7 \(2¢,:1:0) if &€ € Fg,y = oo, (8)
2
Q) =(5)  and Qui)=1

ApointP = (Xg : X1 : %) is callednhyperbolic(respectivelelliptic) if (Xo, X1, X2)* IS is a hyperbolic
(respectively elliptic) line. Because ¢ (8), hyperbokditic) points are also referred to aguare
type(non-square typen the literature. Since there agég+ 1)/2 secant lines, there agéq+ 1)/2
hyperbolic points in total. Note thdt is a elliptic (respectively singular) point ifis an elliptic
(respectively tangent) line.

Denote byL the set of all hyperbolic, singular and elliptic points tot +, 0, and—, respec-
tively, Then the action of SO(8) on £ determines a symmetric association scheme, denoted by
X(SO(30), £LL). We have the following result.

. _{(7§i(f+7)/2 '1) iféyeFq é4y

Theorem 2.3. Let g be odd. Thef&(SO(3 q), L) is isomorphic taX(SO(3 q), L;).

To our best knowledge¥x(SO(3 q), L)) for e = + was first constructed by Sheln__t18]. In
fact, he studied association schemes coming from the acti8©{, ) on hyperbolic and elliptic
points in PGH-1, g)(also cf. |[32]). Kwok mS] calculated the character tabléx¢SO(3 ), L}).--.
We mention in passing th&i(SO(3 q), Lo) is a 2-class symmetric scheme.

3. Three fission schemes of T+ 1)

This section we are concerned with the three fission schefiggje 1) mentioned in Section
. The next theorem holds for PSL () regardless the parity af (e.g, @) Theorem 4.1)).

Theorem 3.1. The groupPSL(2 q) acts doubly transitively o®G(1 g). Hence,PQ(3,q) acts
doubly transitively orv.

Recall thatQ denotes the collection of 2-element subsets in P(1By the above theorem,
PSL(2 q) acts transitively o2, and thus the action determines an association schemegeddno
X(PSL(2q), Q). This is a fission scheme of HJ ¢ 1).

In the rest of this paper, we shall describe associationnsekdrom the actions of PSL(G),
M(qg) and F'L(2, g) onQ. In Sectior 2, we give a one-to-one correspondenc¢ewith £, (andL;
via polarity) and an embeddingof PI'L(2, ). As result, for any transitive subgroup dflg2, q)
on Q, we obtain three isomorphic association schemes, &@SL(2 q), ), X(PQ(3,9), L,)
andX(PQ(3,0), L) in the case . of PSL(2)). So we shall use the action ofy- in subsequent
calculation.
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3.1. The association scher®¢PQ(3,q), L,)

In this subsection, we consider the association scheme theraction of (3, q). Namely,
we shall prove the following result.

Theorem 3.2. The association schem&PQ(3, g), £.) is non-symmetric witi3q + 5)/4 classes
if g = 1 mod 4and(3q + 3)/4 classes if = 3 mod 4

Consider the stabilizer dfj in PQ(3, q), which is denoted by ®(3, d)o... We know from
Subsection 22 that(®3, q) is induced by elements of forml(3) witd - bc = 1. Sincel, , has
coordinates (0 : 1 : 0) by [8),

a2 2ab BP\(O0 2ab 0
ac ad+bc bdl] 1 =] ad+bc [=]| 2
¢ 2cd &)\ O 2cd 0

for somed in IF,. Sincead - bc= 1, we musthava=d*,b=c=0,ora=d=0,b=-c*. So
G = PQ(3, 0)o. Is induced by the following elements

a? b2
1 , -1
a—2 b2

For each relatioRin (@), let

, abeF, (9)

RO ={l, | (Low: Ley) € R}.

TheseR%*! are all orbits of SO(3) on £,. Since RX(3, q) is a subgroup of SO(8) of index 2.
So any orbit of SO()) either splits into a pair of orbits or remains to be an orb®Q(3, ).

In the rest of this paper, z is a fixed non-square elemekFit iis denotes a square element not in
{0, +1}, and t denotes a non-square elemerfin LetIF‘j;2 be the set of all nonzero square elements
in Fy. So ;2 consists of all non-square elementsFgf

By @B), the hyperbolic points come in with two forms:

(26:1:0)withé eFq, or (y&:(E+vy)/2:1)withé,y eFy, € # . (10)

First, we settle th&-orbits on (Z : 1 : 0). Itis trivial thatl'y = {Lo} iS a G-orbit. Now
assume # 0. Note that

I L EHEHS) o

where the last equality follows from that these two vectermesent the same (projective) point.
Recall that hyperbolic points are in one-to-one correspand with 2-element subsetsdn which
are again in one-to-correspondence with those of Pgj(Note that (2% : 1 : 0) is determined
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by {a%, oo}, and (0 : =% : 1) by {0, —(a%¢)™1}. For a fixed square (respectively non-square)

" 2a%¢
% 1 %2 2 2&\-1 %2 H %2
g, if =1 € Fy", then botha“¢é and—(a“¢) ™" range oveif'y” (respectivelyzF;°). On the other hand,
if —1 ¢ Fy*, thena? ranges oveF;” while —(a%¢)~* ranges overF;?. Hence R>* splits into two
orbits of lengthg — 1 each:

{ T} = {Log Lo | £ € F2?) 7 = {Log Lo | £ € ZF) if g =1 mod 4
T} ={Loe Loy | €€ F2 y e 2} Ty ={log Loy | €€ B2 yeF?) ifq=3 mod(4 |
12
The remaining hyperbolic points args(: (¢ +y)/2 : 1) with&y # 0. Note that
a2 ¥é Y161
1 ) £r |=| am if and only if  {a%y, @%¢} = {y1, &1 (13)
a 1 1
and
b-2\( ¥¢ Y161
1 ey || am | fandonyif {—= =l- 14
) _ ? = T if and only i W b = {y1. &1} (14)

If y/¢ = -1, R%™ remains to be &-orbit for g = 3 mod 4 and it splits into two orbits for
g= 1 mod 4:

I_y={leel€€Fy) if g = 3 mod 4 1)
I ={lecléelF?), T ={le1£€F;\F? ifq=1mod4
The orbit length is — 1)/2 in the first case andj(- 1)/4 in the second case.
Now suppose = y/& ¢ {0, +1}. We claim thalR{y ! becomes the following-orbit(s):
I, = {Lirf | &€ IB“;;} if —1/r is non-square (16)
T ={lee | €€ B2, T7 = {Lewe | €€ 257} if —1/r is square

The orbit length isq — 1) in the first case andj(- 1)/2 in the second case.
Now suppose thay = ré andy; = r&. If £ andé; are both squares (non-squares), set
a2 = &&= % By (03), Lgys andLy, o, are in the sam&-orbit. Suppose thatis a square and

. . -1 .
& is a non-square. £1/r is a non-square, séf = - 1henl. andLl ., arein the same

G-orbit. On the other hand, i1/r is a square, thef, ré;} = {b%l b;—rlf} if and only ifr = +1. As
r #+1, L andLlg, ¢, fall into different orbits. We prove the above claim.

Each orbitl” determines a relatioR of X(PQ(3, ), £,), and vice versa. So we may equRp
with the same subscrifsuperscript of’, e.g.,R;, Rf, etc. We will adopt this convention for the
other two fission schemes to follow.

Now we determine the non-symmetric relationsx§PQ(3, g), £,). As an example, we illus-
trate withR%. We shall use PSL(2)), instead of BX(3, q). Take (o, L1s) € R. Note the function
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X - %2 maps(1, s} to {0, co}. Now suppose that d% :i) = 1-sisanon-square, sa The

X-S

functionx — *=L is in PSL(2q). This function carrie$l, s} to {0, oo}, and{0, co} to {1, L}. The

Z(x-9) z’ sz
hyperbolic line corresponding 1{@, siz} isinTg and thusR = R;1. We can handle other relations
in a similar way.

Suppose thatj = 1 mod 4. ThertR'; = R, if 2 is a non-square iy, and'R} = R;* if
1 - sis a non-square. It is well known that 2 is a squar&jnf and only if the Legendre symbol
2_, 1M
(ﬁ) - [(—1)%] = 1, whereq = p™ for some odd prime (e.g., seel[12, Section 6.1]). Suppose

thatq = 3 mod 4. TherR; = R, and'R’ = Rt if 1 —tis a square.
By counting orbits in[(1R),[{15) and_(IL6), we see tBPI'L(q), £,) has the asserted class
number. The proof of Theorem3.2 is complete.

3.2. The association scher®¢M(q), L,)

In this subsection, we describe the association schefhKq), £,), which is a fusion scheme
of X(PQ(3,q), L,). Now we prove the following result.

Theorem 3.3. Let g be an even power of an odd prime. The following holds:
() Forq > 9, X(M(q), L,) is a non-symmetric association scheme W&+ 5)/8 classes ;

(i) xX(M(9), L) is a symmetric P-polynomial association scheme.

Now consider the stabilizer Mjp .. of Ly, in M(g). Under the embedding of PI'L(2,q)
into P'L(3, g) in Subsection 2]2p(S) = PQ(3,q). The stabilizer ol in M(q) is the union of
PQ(3, 0)0..o andp(T)g.co, Wherep(T)o. consists of elements j(T) that fix Lo... Theno(T)o. is
induced by all the semilinear transformations of the folloggumatrices and the unique involution

al b?
Z —Z s (17)
a2z b2z
wherea, b ranges overy,.

For typographical convenience, we wrke="x". Sincex = xfor anyx in the fixed field Fix{)
of o, we can check that, for any point9(21 : 0) and ¢ : (0 +y)/2 : 1),

2

az 20\ (2a26z! b2\ (26 0
_h2

z 1{=] 1 |, ~Z 1]=(3%] (18)
a2zJ\ o 0 b-222 0 1

We remark that Fixt) has /g elements.
Note a transformation i (18) map$ toI';, and vice versa. So M., combined’] andI’;:

A =T} UTy.
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The following equations shall be used in determining theai@mg orbits of M{])o..:

~ WL ~ b*
a2 50 F b2\ ( 70 52
Z @ =| 26+ |, -7 @ =\|_ (é;e?bZ ) (19)
-2 2z _2 z

We can deduce froni_(19) that ... combined™, andIl';:

Note thatA; andA_; have lengths 2(— 1) and ¢ — 1)/2, respectively.

Now we consider the orbits of My on the remaining points9f : (6 + y)/2 : 1) with
y+6 # 0. Letr = 6/y. These orbits depend on whetheis~in {r,r!} or not. Note ifr" = r
(respectivelyr—1) , thenr V&1 = 1 (respectivelyr V3*! = 1) and thug is a square iffg. In this
case, we obtain{/q - 3)/2 (respectively {/q— 1)/2) orbits of length§ - 1) each. Now change
to s. So we can deduce fromi{19) that ¢if... combined; andl; if $= sors™:

As=T{UTq.

If se IF;Z ands'¢ {s, s}, then we can deduce again froml(19) thapj( combined™{ and
I's (respectively; andI}):

A} =Ttuly, A =T;UTL
We obtainw orbits of lengthg — 1.
If tis a non-square ifiy, then M@)o, combined’; andI:

At:FtUFf.

In this case, we obtaimg(— 1)/8 orbits of length 2§ — 1) each.

Now we write the relations o¥(M(q), £,) according to thesa. If q # 9, X(M(q), L) is
non-symmetric!R, = R;. So we provelli) of Theorem 3.3(M(9), £,) is a symmetric scheme;
see Examplé_3l1 below. In fact, it isRxpolynomial scheme on 45 vertices from a generalized
octagon of order (21) E p. 419]. We complete the proof of Theorem|3.3.

Remark 1. Limited computation with GadIiO] shows th&{M(q), £,) is not commutative for
g > 25. itis not symmetric but commutative fqr= 25.

3.3. The association schersi¢PI'L(2, q), £.)

In this subsection, we consider an association schemestlaafiision scheme of both FJ ¢
1) andX(M(q), Q2). Since both PGL(Z)) and M() are subgroups ofIR.(2,q), the action of
PI'L(2, g) onQ determines this fusion scheme.

11



The stabilizer ofo(PI'L(2, 0))o. Of L, induced by all the semilinear transformation of the
following matrices associated with an automorphisof F:

a2
[ ad
d2

wherea, b, ¢, d range oveit, andr ranges over Aul{g) .

The groupo(PI'L(2, 0))o. acts onL+ similarly to that in [(I8) and_.(19) with ~ replaced with
7. By a similar argument employed in the previous subsech{f;L(2, g))o. has the following
orbits onL,:

b

b2
bc ] , (20)
c2

Ao ={low}, A1={losLuslé€Fgl, Aq={ls &€,
A ={Ley | E/y elrrT T e AutFol), (r € IF; \ {£1}).
No we can write down the corresponding relation&@PI'L(2, q), L.):
Ro = {(Leys Ley) [ {E, 7} CFQ™),
Ry = {(Ley, Lep) 1{E, 7,81 C IE‘U{m}}
Ro1 = {(Leys Log) 1€, 7, @, B} C Fy, Cr(f v a.p) =
R ={(Leys Log) | €.y, 0.8} CFy, Cr€.ys e p) € Ir7r ™ | T € Aut Fq}}, re ;)\ {£1).
Theorem 3.4. X(PI'L(2, q), L,) is a symmetric association scheme with the above relations.

Remark 2. Note that the relatioR; is an original relation in T+1). Forq = 9, X(PI'L(2,q), £.)

has 4 classes. It has tliepolynomial property given b¥R_; but not theQ-polynomial property.
Forq = 25 and 49X(PI'L(2,q), L,) has 9 and 16 classes, respectively. These schemes don't
have polynomial P or Q) property. For the general case, the class numba&{(BrFL(2,q), L,) is
reduced to counting the number of orbits of Aty on the collectior{{r*,r7} |r € Fy\ {1}, 7 €
Aut(FFy) }. However, we are unable to give an explicit formula for thismer.

(21)

Example 3.1. In this example, we illustrate the four fission schemes of0Yfbr g = 9. Let
g be a primitive element oFy. We haveX(PI'L(2,9), £,) = X(M(9), L,). The relations of
FT(10) X(PSL(29), £L,) andX(M(9), L) are shown in the following diagram:

Ry R4 Ry Ry Re
/ \ / \ / N | |
R, FQ Ry Ry
\ / \ / \ / ~N 7
Ry R, Ry Ry U Rgs
The top, middle and bottom rows are the relations of FT,(X(PSL(2 9), L,) andX(M(9), L,),
respectively.

Remark 3. Primitive representations of PSL@ were investigated by Sasha lvanov and Loius
Tchuda via the use of so-called Burnside marks [14]. A gdrmeethod was outlined |rﬁ8]
which allows one to obtain formulas for the rank and subdegfer a (transitive) permutation
representati0|JL_[_i4].
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