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Abstract

In [D. de Caen, E.R. van Dam. Fissioned triangular schemes via the cross-ratio, Europ. J. Com-
bin., 22 (2001) 297-301], de Caen and van Dam constructed a fission scheme FT(q + 1) of the
triangular scheme on PG(1, q). This fission scheme comes from the naturally induced action of
PGL(2, q) on the 2-element subsets of PG(1, q). The group PGL(2, q) is one of two infinite fam-
ilies of finite sharply 3-transitive groups. The other such family M(q) is a “twisted” version of
PGL(2, q), whereq is an even power of an odd prime. The group PSL(2, q) is the intersection
of PGL(2, q) and M(q). In this paper, we investigate the association schemes coming from the
actions of PSL(2, q), M(q) and PΓL(2, q), respectively. Through the conic model introduced in
[H.D.L. Hollmann, Q. Xiang. Association schemes from the actions of PGL(2, q) fixing a nonsin-
gular conic, J. Algebraic Combin., 24 (2006) 157-193], we introduce an embedding of PΓL(2, q)
into PΓL(3, q). For each of the three groups mentioned above, this embedding produces two more
isomorphic association schemes: one on hyperbolic lines and the other on hyperbolic points (via
a null parity) in a 3-dimensional orthogonal geometry. Thisembedding enables us to treat these
three isomorphic association schemes simultaneously.

Keywords: triangular scheme, fusion scheme, fission scheme, orthogonal space, orthogonal
groups
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1. Introduction

Let X be a finite set with cardinalityn ≥ 2 andR = {R0,R1, . . . ,Rd} be a set of binary relations
on X. X = (X,R) is called anassociation scheme with d classes(a d-class association scheme, or
simply, ascheme) if the following axioms are satisfied:

(i) R is a partition ofX × X andR0 = {(x, x) | x ∈ X} is the diagonal relation;

(ii) For i = 0, 1, . . . , d, the inversetRi = {(y, x)|(x, y) ∈ Ri} of Ri is also among the relations:
tRi = Ri′ for somei′ (0 ≤ i′ ≤ d);
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(iii) For any triple of i, j, k = 0, 1, . . . , d, there exists an integerpk
i j such that for all (x, y) ∈ Rk,

|{z ∈ X | (x, z) ∈ Ri, (z, y) ∈ Rj}| = pk
i j .

The integerspk
i j are called theintersection numbers. The integerki = p0

ii ′ is called thevalencyof
Ri. In fact, for anyx ∈ X, ki = |{y ∈ X| (x, y) ∈ Ri}|.

If pk
i j = pk

j i for all i, j, k, X is calledcommutative. A relation Ri is said to besymmetric
if Ri =

tRi. The schemeX is calledsymmetricif all relations Ri are symmetric. A partition
Λ0,Λ1, . . . ,Λe of the index set{0, 1, . . . , d} is calledadmissible[13] if Λ0 = {0}, Λi , ∅ and
Λ′i = Λ j for some j (1 ≤ i, j ≤ e), whereΛ′ = {α′|α ∈ Λ}. Let RΛi = ∪α∈Λi Rα. If Y = (X, {RΛi }ei=0)
is an association scheme, it is called afusion schemeof X, andX is called afission schemeof Y.

We mention a typical example of association scheme (see [1, Section 2.1] for details). If group
G acts transitively on a finite setX, then the orbits of the induced diagonal action ofG on X × X
form an association scheme, denoted byX(G,X). For anyx ∈ X, the orbits ofGx on X are in one-
to-one correspondence with those ofG on X×X, whereGx is the stabilizer ofx in G. The scheme
X(G,X) is commutative if and only if the permutation representation ofG onX is multiplicity-free,
and it is symmetric if and only ifG actsgenerously transitivelyon X.

By a theorem of Zassenhaus [17, Section 7.1], there are two infinite families of finite sharply
3-transitive groups, and both are subgroups of the projective semilinear group PΓL(2, q). If G is
a sharply 3-transitive group of permutations on a finite setX, thenX can be identified with the
projective line PG(1, q) for some prime powerq andG is one of the following:

(1) G is the projective general linear group PGL(2, q) in its natural action on PG(1, q);

(2) q = p2 f for some odd primep and a positive integerf , and ifσ is the unique involution in
Aut(Fq), thenG is the group M(q) = S ∪ T, where

S =

{

λ 7→ aλ + b
cλ + d

,

∣

∣

∣

∣

∣

ad− bc is a square inF∗q
}

,

T =

{

λ 7→ aλσ + b
cλσ + d

∣

∣

∣

∣

∣

ad− bc is a non-square inF∗q
}

.

In this paper, we shall investigate the association schemesdetermined by the following sub-
groups of the symmetric group Sym(q+ 1):

Sym(q+ 1)

PΓL(2, q)

M(q)

nnnnn

PGL(2, q)

SSSSSS

PSL(2, q)

PPPPP
llllll

These groups are permutation groups on PG(1, q) and they acts transitively onΩ, the collection of
2-element subsets of PG(1, q). Hence, each of these groups determines an association scheme on
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Ω: Sym(q+ 1) determines the triangular scheme T(q+ 1), and PGL(2, q) determines a symmetric
fission scheme of T(q + 1). De Caen and van Dam [5] describedX(PGL(2, q),Ω) via the cross-
ratio. See Subsection 2.3. The association schemes from theactions of the remaining three groups
are the main object of the present paper.

The isomorphism PGL(2, q) ≃ SO(3, q) introduces a conic model (see Subsection 2.1). The
action PGL(2, q) onΩ is equivalent to that of SO(3, q) on the set of hyperbolic linesL+ in a 3-
dimensional orthogonal geometry. This model has been used heavily in [6, 7, 22]. This conic
model allows us to use an embeddingρ of PΓL(2, q) into PΓL(3, q) and the image of this embed-
ding fixes this conic as a set. As a result, the image of PSL(2, q) acts transitively on the hyperbolic
linesL+ and so do the images of M(q) and PΓL(2, q).

The conic above also introduces a (null) polarity⊥ such that the action of any subgroup of
PΓL(2, q) on the hyperbolic linesL+ is equivalent to that of its embedded image on the hyperbolic
pointsL⊥+ ; see Subsection 2.4. Therefore, we do not need to distinguish actions on hyperbolic lines
and points in certain calculation. The advantage of this conic model allows us to treat (isomorphic)
association schemes onΩ,L+ andL⊥+ all at once.

This paper is organized as follows. In Section 2, we introduce the conic model, the polarity
and the embedding of PΓL(2, q) into PΓL(3, q) mentioned above, and establish a few results on
transitivity. In Section 3, we determine three fission schemes of the triangular scheme T(q+1) via
their isomorphic association schemes.

We refer to [1] for undefined terms and the basic theory of association schemes and to [4, 20,
21] for missing definitions and notation about various groups in this paper.

2. The 3-dimensional orthogonal geometry and an embedding of PΓL(2, q)

In this section, we introduce the 3-dimensional orthogonalgeometry, a conic model, and vari-
ous groups related to this conic.

2.1. The 3-dimensional orthogonal geometry

Let Fq be a finite field withq elements. LetV = F
3
q be a 3-dimensional vector space overFq

equipped with a non-degenerate quadratic formQ. The general orthogonal groupGO(V) is the
isometry group ofV with respect toQ:

GO(V) = {A ∈ GL(V) | Q(A(x0, x1, x2)
T) = Q(x0, x1, x2)}.

The special linear orthogonal groupSO(V) is the intersection of GO(V) and SL(V). It is also
standard to write GO(3, q) for GO(V), and SO(3, q) for SO(V) when the underlying field isFq.

The projective plane PG(2, q) on V has as points the 1-dimensional subspaces ofV and as
lines (hyperplanes) the 2-dimensional subspaces. Any point P is spanned by a nonzero vector
v = (v0, v1, v2). Another vectoru = (u0, u1, u2) spansP if and only if v = ξu for someξ ∈ F∗q. So we
use (v0 : v1 : v2) to denote the pointP. A point (v0 : v1 : v2) is calledsingular if Q(v0, v1, v2) = 0.

In the rest of this paper, we fix the quadratic formQ(x0, x1, x2) = x2
1 − x0x2. Let

O = {(ξ2 : ξ : 1) | ξ ∈ Fq} ∪ {(1 : 0 : 0)}. (1)
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ThenO is aconic. Let∞ = (1 : 0 : 0). We usePξ andP∞ to denote the points (ξ2 : ξ : 1) and
(1 : 0 : 0), respectively. No three distinct points ofO can be on a line. Therefore, any lineℓ
intersectsO at most 2 points. Accordingly,ℓ is calledhyperbolicor secantif |ℓ ∩ O | = 2, tangent
if |ℓ ∩ O | = 1, or elliptic or exterior if |ℓ ∩ O | = 0. We denote byL+, L0 andL− the set of all
hyperbolic, tangent and elliptic lines, respectively.

The following result is well known (e.g. see [20, Theorem 11.6]), from which Theorem 2.2
follows immediately.

Theorem 2.1. If V is an orthogonal geometry of dimension 3 and Witt index 1 over Fq, then
GO(V) ≃ {±1} × SO(V), SO(V) ≃ PGL(2, q), andSO(V) acts triply transitively on the set of all
singular points.

Theorem 2.2. The groupSO(V) acts generously transitively onLǫ for ǫ ∈ {+, 0}.

We remark that SO(V) also acts generously transitively onL−; see [18]. Therefore, the action
(SO(V),Lǫ) determines a symmetric association scheme, denoted byX(SO(3, q),Lǫ), ǫ = 0,±.

2.2. An embedding ofPΓL(2, q) into PΓL(3, q)

In this subsection, we describe an embedding of PΓL(2, q) into PΓL(3, q), which gives an
isomorphism PGL(2, q) ≃ SO(3, q) mentioned in Theorem 2.1 (cf. [4, Section 6.1] and [11,
Section 3]). While this is a folklore, a detailed account is provided here to prepare for later
sections.

We first describe the action of PΓL(2, q) on the projective line PG(1, q). Let

PG(1, q) = {(ξ : 1) | ξ ∈ Fq} ∪ {(1 : 0)}

andF∪{∞}q = Fq ∪ {∞}, the union ofFq and{∞}. Now we may identify PG(1, q) with F
∪{∞}
q by the

map: (ξ : 1)↔ ξ, (1 : 0)↔∞. The groupΓL(2, q) is the wreath product of GL(2, q) and Aut(Fq),
and PΓL(2, q) is the group induced on the the projective line PG(1, q) by ΓL(2, q). Each element

of PΓL(2, q) is induced by a pair (A, τ) with A =

(

a b
c d

)

∈ GL(2, q) andτ ∈ Aut(Fq), which acts

on PG(1, q) as follows:

ξ 7→ A(ξτ) :=
aξτ + b
cξτ + d

for all ξ ∈ F∪{∞}q .

The expressions involving∞ are evaluated by standard limit rules: e.g.,∞τ = ∞, A(∞) = a/c if
c , 0 andA(∞) = ∞ if c = 0.

Consider the vector spaceW of quadratic forms onF2
q: q(x, y) = ux2+vxy+wy2. So, dimW = 3.

The groupΓL(2, q) acts onW as follows: for each (A, τ) in ΓL(2, q),

q(x, y) 7→ q(A(xτ, yτ)T) for all q ∈W. (2)
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For brevity, we writeq(A(xτ, yτ)) = q(A(xτ, yτ)T). If A =

(

a b
c d

)

∈ GL(2, q), then

q(A(xτ, yτ)) =u(axτ + byτ)2 + v(axτ + byτ)(cxτ + dyτ) + w(cxτ + dyτ)2

=x2τ(ua2 + vac+ wc2) + xτyτ(2uab+ v(ad+ bc) + 2wcd) + y2τ(ub2 + vbd+ wd2)

=
(

x2τ xτyτ y2τ
)





















a2 2ab b2

ac ad+ bc bd
c2 2cd d2









































u
v
w





















.

Let

ρ(A) =





















a2 2ab b2

ac ad+ bc bd
c2 2cd d2





















. (3)

Since detρ(A) = det(A)3, it can be verified that (2) induces a homomorphism fromΓL(2, q) to
ΓL(3, q). In particular, ifτ is the identity automorphism,ρ is a homomorphism of GL(2, q) into
GL(3, q). The kernel ofρ is {±I }, whereI is the 2× 2 identity matrix . LetZ = {cI|c ∈ F∗q}. Since
PGL(2, q) = GL(2, q)/Z, ρ embeds PGL(2, q) into PGL(3, q). By abuse of notation, we also useρ
to denote the homomorphism induced by (2). Thus,ρ embeds PΓL(2, q) into PΓL(3, q).

Since




















a2 2ab b2

ac ad+ bc bd
c2 2cd d2









































ξ2τ

ξτ

1





















=





















(aξτ + b)2

(aξτ + b)(cξτ + d)
(cξτ + d)2





















, (4)

(ρ(A), τ) maps (ξ2 : ξ : 1) to
(

(

aξτ+b
cξτ+d

)2
,

aξτ+b
cξτ+d : 1

)

if cξτ + d , 0 and to (1 : 0 : 0) ifcξτ + d = 0.

Similarly, (ρ(A), τ) maps (1 : 0 : 0) to (1 : 0 : 0) ifc = 0, and to ((a/c)2, a/c, 1) if c , 0. Therefore,
ρ(PΓL(2, q)) fixes the setO .

Now we equip the spaceW with the quadratic formQ(u, v,w) = v2− uw. By (2), GL(2, q) acts
onW. Note that

Q(q(A(x, y)) = det(A)2Q(q(x, y)),

i.e.,Q is multiplied by a factor det(A)2 by the action ofρ(A). Hence, we find a subgroup of GO(3, q)
which is isomorphic to SL±(2, q)/{±I }, where SL±(2, q) is the group of matrices with determi-
nant±1. In general, PSL(2, q) ≃ PΩ(3, q) and they are simple ifq > 3. As a matter of fact,
ρ(PSL(2, q)) = PΩ(3, q).

Note that SL±(2, q)/{±I } and PGL(2, q) have the same size. Forq even, SL±(2, q)/{±I } =
SL(2, q) = PGL(2, q). For q odd, SL±(2, q)/{±I } and PGL(2, q) are not isomorphic. In this case,
ρ(SL±(2, q)/{±I }) is a subgroup PGO(3, q) of index 2, but it is not isomorphic to PSO(3, q).

Define a mapf from PG(1, q) to O as follows:

f (∞) = ∞ and f (ξ, 1) 7→ (ξ2 : ξ : 1) for all ξ ∈ Fq.

We have
f (A(ξ)) = ρ(A) f (ξ)T . (5)

The action of PGL(2, q) on PG(1, q) is equivalent to that of SO(3, q) onO .
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2.3. FT(q+ 1) andX(SO(3, q),Lǫ)ǫ=±
The triangular schemeT(n) comes from the action of Sym(n) on the collection of 2-element

subsets of ann-set (n ≥ 4): for any such subsetsx, y, (x, y) ∈ Ri if their intersection has size
2− i. T(n) is a 2-class Johnson scheme. It is well known that PGL(2, q) acts sharply 3-transitively
on PG(1, q). So PGL(2, q) acts generously transitively on the collection of 2-element subsets of
PG(1, q) and thus this action determines a symmetric association scheme. In the paper [5], de
Caen and van Dam described this scheme as a fission scheme of the triangular scheme on PG(1, q)
using the cross ratio, denoted by FT(q+ 1).

We know from the previous subsection that the action PGL(2, q) on PG(1, q) is equivalent to
that of SO(3, q) on O . So the schemes FT(q + 1) is isomorphic to the scheme coming from the
action of SO(3, q) on the 2-element subsets ofO . By definition, the hyperbolic linesL+ are in
one-to-one correspondence with the 2-element subsets ofO . Hence, FT(q + 1) is isomorphic
to X(SO(3, q),L+). In [11], Hollmann and Xiang investigatedX(SO(3, q),Lǫ) for ǫ = ± using
the cross ratio. In fact, they studied the coherent configuration from the action of PGL(2, q) (≃
SO(3, q)) onL+ ∪L−. For the caseq being a power of 4, they calculated the intersection numbers
for this coherent configuration and constructed another coherent configuration onL+ ∪ L− by
merging certain relations. In this new coherent configuration, the fiberL+ supports a 4-class
scheme andL− supports a 3-class scheme.

The 4-class scheme onL+ has an interesting history. Its existence as a fusion schemeof
FT(q+ 1) was first conjectured by de Caen and van Dam [5]. Tanaka [19]proved this conjecture
with character-theoretic method. Ebert et al. proved it with a geometric interpretation in [6] and
with a direct calculation of intersection numbers in [7]. Xiang gave a summary of these work in
[22].

The 3-class scheme is also very interesting. H. Tanaka observed that this 3-class scheme on
L− gives a family of primitive schemes having the same parameters as the first infinite family
of Q-polynomial but notP-polynomial association schemes by Penttila and Williford[16]. (The
reference to Hollmann and Xiang is incorrectly cited in [16], and it should be [11]. )

We conclude this subsection with a description of FT(q+1) following [5]. It has as vertices all
2-element subsets of PG(1, q) as and its relations are as follows:

R0 =
{

({ξ, γ}, {ξ, γ}) | ξ, γ ∈ F∪{∞}q

}

R1 =
{

({ξ, γ}, {ξ, β}) | ξ, γ, β ∈ F∪{∞}q

}

R−1 =
{

({ξ, γ}, {α, β}) | ξ, α, γ, β ∈ F∪{∞}q , cr(ξ, γ;α, β) = −1
}

Rr =
{

({ξ, γ}, {α, β}) | ξ, γ, α, β ∈ F∪{∞}q , cr(ξ, γ;α, β) = r or r−1
}

, r ∈ Fq \ {0,±1}.



















































(6)

where cr(x, y; z,w) = (x−z)(y−w)
(x−w)(y−z) is the cross ratio.R1 has valency 2(q − 1), andR−1 has valency

(q− 1)/2, which is half of that ofRr .

2.4. The case q odd
Throughout this subsection,q will be an odd prime power. The quadratic formQ(x0, x1, x2) =

x2
1 − x0x2 polarizes to the symmetric bilinear form

B((x0, x1, x2), (y0, y1, y2)) = 2x1y1 − x0y2 − x2y0.
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The formB (or the conicO) defines the followingpolarity on PG(2, q):

⊥: (x0 : x1 : x2) 7→ (x0 : x1, x2)
⊥ := {(y0 : y1 : y2) | B((x0, x1, x2), (y0, y1, y2)) = 0}. (7)

Denote byLξ,γ the hyperbolic line toO through distinct pointsPξ andPγ for ξ, γ ∈ F∪{∞}q . It is
not difficult to check the following:

L⊥ξ,γ =















(γξ : (ξ + γ)/2 : 1) if ξ, γ ∈ Fq, ξ , γ

(2ξ, : 1 : 0) if ξ ∈ Fq, γ = ∞,
Q(L⊥ξ,γ) =

(

γ−ξ
2

)2
and Q(L⊥ξ,∞) = 1.

(8)

A point P = (x0 : x1 : x2) is calledhyperbolic(respectivelyelliptic) if ( x0, x1, x2)⊥ is is a hyperbolic
(respectively elliptic) line. Because of (8), hyperbolic (elliptic) points are also referred to assquare
type(non-square type) in the literature. Since there areq(q+1)/2 secant lines, there areq(q+1)/2
hyperbolic points in total. Note thatℓ⊥ is a elliptic (respectively singular) point ifℓ is an elliptic
(respectively tangent) line.

Denote byL⊥ǫ the set of all hyperbolic, singular and elliptic points forǫ = +, 0, and−, respec-
tively, Then the action of SO(3, q) onL⊥ǫ determines a symmetric association scheme, denoted by
X(SO(3, q),L⊥ǫ ). We have the following result.

Theorem 2.3. Let q be odd. ThenX(SO(3, q),Lǫ) is isomorphic toX(SO(3, q),L⊥ǫ ).

To our best knowledge,X(SO(3, q),L⊥ǫ ) for ǫ = ± was first constructed by Shen [18]. In
fact, he studied association schemes coming from the actionof SO(n, q) on hyperbolic and elliptic
points in PG(n−1, q)(also cf. [2]). Kwok [15] calculated the character tables of X(SO(3, q),L⊥ǫ )ǫ=±.
We mention in passing thatX(SO(3, q),L0) is a 2-class symmetric scheme.

3. Three fission schemes of T(q + 1)

This section we are concerned with the three fission schemes of T(q+ 1) mentioned in Section
1. The next theorem holds for PSL(2, q) regardless the parity ofq (e.g, [20, Theorem 4.1]).

Theorem 3.1. The groupPSL(2, q) acts doubly transitively onPG(1, q). Hence,PΩ(3, q) acts
doubly transitively onO .

Recall thatΩ denotes the collection of 2-element subsets in PG(1, q). By the above theorem,
PSL(2, q) acts transitively onΩ, and thus the action determines an association scheme, denoted by
X(PSL(2, q),Ω). This is a fission scheme of FT(q+ 1).

In the rest of this paper, we shall describe association schemes from the actions of PSL(2, q),
M(q) and PΓL(2, q) onΩ. In Section 2, we give a one-to-one correspondence ofΩwithL+ (andL⊥+
via polarity) and an embeddingρ of PΓL(2, q). As result, for any transitive subgroup of PΓL(2, q)
on Ω, we obtain three isomorphic association schemes, e.g.,X(PSL(2, q),Ω), X(PΩ(3, q),L+)
andX(PΩ(3, q),L⊥+) in the case . of PSL(2, q). So we shall use the action onL⊥+ in subsequent
calculation.
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3.1. The association schemeX(PΩ(3, q),L+)
In this subsection, we consider the association scheme fromthe action of PΩ(3, q). Namely,

we shall prove the following result.

Theorem 3.2. The association schemeX(PΩ(3, q),L+) is non-symmetric with(3q+ 5)/4 classes
if q ≡ 1 mod 4and(3q+ 3)/4 classes if q≡ 3 mod 4.

Consider the stabilizer ofL⊥0,∞ in PΩ(3, q), which is denoted by PΩ(3, q)0,∞. We know from
Subsection 2.2 that PΩ(3, q) is induced by elements of form (3) withad− bc= 1. SinceL⊥∞,0 has
coordinates (0 : 1 : 0) by (8),





















a2 2ab b2

ac ad+ bc bd
c2 2cd d2









































0
1
0





















=





















2ab
ad+ bc

2cd





















=





















0
λ

0





















for someλ in F
∗
q. Sincead− bc= 1, we must havea = d−1, b = c = 0, ora = d = 0, b = −c−1. So

G := PΩ(3, q)0,∞ is induced by the following elements





















a2

1
a−2





















,





















b−2

−1
b2





















, a, b ∈ F∗q. (9)

For each relationR in (6), let

R{0,∞} =
{

Lξ,γ | (L0,∞, Lξ,γ) ∈ R
}

.

TheseR{0,∞} are all orbits of SO(3, q) onL+. Since PΩ(3, q) is a subgroup of SO(3, q) of index 2.
So any orbit of SO(3, q) either splits into a pair of orbits or remains to be an orbit of PΩ(3, q).

In the rest of this paper, z is a fixed non-square element inFq, s denotes a square element not in
{0,±1}, and t denotes a non-square element inFq. LetF∗2q be the set of all nonzero square elements
in Fq. So zF∗2q consists of all non-square elements ofFq.

By (8), the hyperbolic points come in with two forms:

(2ξ : 1 : 0) withξ ∈ Fq, or (γξ : (ξ + γ)/2 : 1) withξ, γ ∈ Fq, ξ , γ. (10)

First, we settle theG-orbits on (2ξ : 1 : 0). It is trivial thatΓ0 = {L0,∞} is a G-orbit. Now
assumeξ , 0. Note that





















a2

1
a−2









































2ξ
1
0





















=





















2a2ξ

1
0





















,





















a−2

−1
a2









































2ξ
1
0





















=





















0
−1

2a2ξ





















=





















0
−1

2a2ξ

1





















, (11)

where the last equality follows from that these two vectors represent the same (projective) point.
Recall that hyperbolic points are in one-to-one correspondence with 2-element subsets inO , which
are again in one-to-correspondence with those of PG(1, q). Note that (2a2ξ : 1 : 0) is determined
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by {a2ξ,∞}, and (0 : −1
2a2ξ

: 1) by {0,−(a2ξ)−1}. For a fixed square (respectively non-square)ξ in

F
∗
q, if −1 ∈ F∗q2, then botha2ξ and−(a2ξ)−1 range overF∗q

2 (respectivelyzF∗2q ). On the other hand,

if −1 < F∗q
2, thena2ξ ranges overF∗q

2 while−(a2ξ)−1 ranges overzF∗2q . Hence,R{0,∞}1 splits into two
orbits of lengthq− 1 each:















Γ+1 =
{

L0,ξ, L∞,ξ | ξ ∈ F∗q2
}

Γ−1 =
{

L0,ξ, L∞,ξ | ξ ∈ zF∗2q

}

if q ≡ 1 mod 4

Γ+1 =
{

L0,ξ, L∞,γ | ξ ∈ F∗q2, γ ∈ zF∗q
2
}

Γ−1 =
{

L0,ξ, L∞,γ | ξ ∈ zF∗q
2, γ ∈ F∗q2

}

if q ≡ 3 mod 4.
(12)

The remaining hyperbolic points are (γξ : (ξ + γ)/2 : 1) withξγ , 0. Note that





















a2

1
a−2













































γξ
ξ+γ

2

1

























=

























γ1ξ1
ξ1+γ1

2

1

























if and only if {a2γ, a2ξ} = {γ1, ξ1} (13)

and




















b−2

−1
b2













































γξ
ξ+γ

2

1

























=

























γ1ξ1
ξ1+γ1

2

1

























if and only if

{

−1
b2γ
,
−1
b2ξ

}

= {γ1, ξ1}. (14)

If γ/ξ = −1, R{0,∞}−1 remains to be aG-orbit for q ≡ 3 mod 4 and it splits into two orbits for
q ≡ 1 mod 4:















Γ−1 =
{

Lξ,−ξ | ξ ∈ F∗q
}

if q ≡ 3 mod 4

Γ+−1 =
{

Lξ,−ξ | ξ ∈ F∗q2
}

, Γ−−1 =
{

Lξ,−ξ | ξ ∈ F∗q \ F∗q2
}

if q ≡ 1 mod 4.
(15)

The orbit length is (q− 1)/2 in the first case and (q− 1)/4 in the second case.
Now supposer = γ/ξ < {0,±1}. We claim thatR{0,∞}γ becomes the followingG-orbit(s):















Γr =
{

Lξ,rξ | ξ ∈ F∗q
}

if −1/r is non-square

Γ+r =
{

Lξ,rξ | ξ ∈ F∗q2
}

, Γ−r =
{

Lξ,rξ | ξ ∈ zF∗q
2
}

if −1/r is square.
(16)

The orbit length is (q− 1) in the first case and (q− 1)/2 in the second case.
Now suppose thatγ = rξ and γ1 = rξ1. If ξ and ξ1 are both squares (non-squares), set

a2 = ξ1ξ
−1 = a2. By (13),Lξ,rξ andLξ1,rξ1 are in the sameG-orbit. Suppose thatξ is a square and

ξ1 is a non-square. If−1/r is a non-square, setb2 = −1
rξξ1

. ThenLξ,rξ andLξ1,rξ1 are in the same

G-orbit. On the other hand, if−1/r is a square, then{ξ1, rξ1} =
{

−1
b2ξ
, −1

b2rξ

}

if and only if r = ±1. As
r , ±1, Lξ,rξ andLξ1,rξ1 fall into different orbits. We prove the above claim.

Each orbitΓ determines a relationR of X(PΩ(3, q),L+), and vice versa. So we may equipR
with the same subscript/superscript ofΓ, e.g.,R−1, R+r , etc. We will adopt this convention for the
other two fission schemes to follow.

Now we determine the non-symmetric relations ofX(PΩ(3, q),L+). As an example, we illus-
trate withR+s . We shall use PSL(2, q), instead of PΩ(3, q). Take (L0,∞, L1,s) ∈ R+s . Note the function

9



x 7→ x−1
x−s maps{1, s} to {0,∞}. Now suppose that det

(

1 −1
1 −s

)

= 1− s is a non-square, sayz. The

functionx 7→ x−1
z(x−s) is in PSL(2, q). This function carries{1, s} to {0,∞}, and{0,∞} to {1z,

1
sz}. The

hyperbolic line corresponding to{1z,
1
sz} is in Γ−s and thustR+s = R−1

s . We can handle other relations
in a similar way.

Suppose thatq ≡ 1 mod 4. ThentR+−1 = R−−1 if 2 is a non-square inFq, and tR+s = R−1
s if

1− s is a non-square. It is well known that 2 is a square inFq if and only if the Legendre symbol
(

2
q

)

=

[

(−1)
p2−1

8

]m

= 1, whereq = pm for some odd primep (e.g., see [12, Section 6.1]). Suppose

thatq ≡ 3 mod 4. ThentR+1 = R−1 , andtR+t = R−1
t if 1 − t is a square.

By counting orbits in (12), (15) and (16), we see thatX(PΓL(q),L+) has the asserted class
number. The proof of Theorem 3.2 is complete.

3.2. The association schemeX(M(q),L+)
In this subsection, we describe the association schemeX(M(q),L+), which is a fusion scheme

of X(PΩ(3, q),L+). Now we prove the following result.

Theorem 3.3. Let q be an even power of an odd prime. The following holds:

(i) For q > 9, X(M(q),L+) is a non-symmetric association scheme with(3q+ 5)/8 classes ;

(ii) X(M(9),L+) is a symmetric P-polynomial association scheme.

Now consider the stabilizer M(q)0,∞ of L⊥0,∞ in M(q). Under the embeddingρ of PΓL(2, q)
into PΓL(3, q) in Subsection 2.2,ρ(S) = PΩ(3, q). The stabilizer ofL0,∞ in M(q) is the union of
PΩ(3, q)0,∞ andρ(T)0,∞, whereρ(T)0,∞ consists of elements inρ(T) that fix L0,∞. Thenρ(T)0,∞ is
induced by all the semilinear transformations of the following matrices and the unique involution
σ:





















a2

z
a−2z2





















,





















b2

−z
b−2z2





















, (17)

wherea, b ranges overF∗q.
For typographical convenience, we write ˜x = xσ. Sincex̃ = x for anyx in the fixed field Fix(σ)

of σ, we can check that, for any points (2θ : 1 : 0) and (γθ : (θ + γ)/2 : 1),





















a2

z
a−2z2









































2θ̃
1
0





















=





















2a2θ̃z−1

1
0





















,





















b2

−z
b−2z2









































2θ̃
1
0





















=























0
−b2

2zθ̃
1























, (18)

We remark that Fix(σ) has
√

q elements.
Note a transformation in (18) mapsΓ+1 to Γ−1 , and vice versa. So M(q)0,∞ combinesΓ+1 andΓ−1 :

∆1 = Γ
+
1 ∪ Γ−1 .
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The following equations shall be used in determining the remaining orbits of M(q)0,∞:
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z
a−2z2









































γ̃θ̃
(θ̃+γ̃)

2
1





















=



























a4γ̃θ̃

z2

a2(θ̃+γ̃)
2z
1



























,





















b2

−z
b−2z2









































γ̃θ̃
(θ̃+γ̃)

2
1





















=



























b4

θ̃γ̃z2

− (θ̃+γ̃)b2

2θ̃γ̃z

1



























. (19)

We can deduce from (19) that M(q)0,∞ combinesΓ+−1 andΓ−−1:

∆−1 = Γ
+
−1 ∪ Γ−−1.

Note that∆1 and∆−1 have lengths 2(q− 1) and (q− 1)/2, respectively.
Now we consider the orbits of M(q)0,∞ on the remaining points (θγ : (θ + γ)/2 : 1) with

γ + θ , 0. Let r = θ/γ. These orbits depend on whether ˜r is in {r, r−1} or not. Note if ˜r = r
(respectivelyr−1) , thenr

√
q−1 = 1 (respectivelyr

√
q+1 = 1) and thusr is a square inFq. In this

case, we obtain (
√

q− 3)/2 (respectively (
√

q− 1)/2) orbits of length (q− 1) each. Now changer
to s. So we can deduce from (19) that M(q)0,∞ combinesΓ+s andΓ−s if s̃= s or s−1:

∆s = Γ
+
s ∪ Γ−s .

If s ∈ F∗2q and s̃ < {s, s−1}, then we can deduce again from (19) that M(q)0,∞ combinesΓ+s and
Γ−s̃ (respectivelyΓ−s andΓ+s̃ ):

∆+s = Γ
+
s ∪ Γ−s̃ , ∆−s = Γ

−
s ∪ Γ+s̃ .

We obtain
(
√

q−3)(
√

q−1)
4 orbits of lengthq− 1.

If t is a non-square inFq, then M(q)0,∞ combinesΓt andΓt̃:

∆t = Γt ∪ Γt̃.

In this case, we obtain (q− 1)/8 orbits of length 2(q− 1) each.
Now we write the relations ofX(M(q),L+) according to these∆. If q , 9, X(M(q),L+) is

non-symmetric:tR+s = R−s . So we prove (i) of Theorem 3.3.X(M(9),L+) is a symmetric scheme;
see Example 3.1 below. In fact, it is aP-polynomial scheme on 45 vertices from a generalized
octagon of order (2, 1) [3, p. 419]. We complete the proof of Theorem 3.3.

Remark 1. Limited computation with Gap [10] shows thatX(M(q),L+) is not commutative for
q > 25. it is not symmetric but commutative forq = 25.

3.3. The association schemeX(PΓL(2, q),L+)
In this subsection, we consider an association scheme that is a fusion scheme of both FT(q +

1) andX(M(q),Ω). Since both PGL(2, q) and M(q) are subgroups of PΓL(2, q), the action of
PΓL(2, q) onΩ determines this fusion scheme.
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The stabilizer ofρ(PΓL(2, q))0,∞ of L⊥0,∞ induced by all the semilinear transformation of the
following matrices associated with an automorphismτ of Fq:





















a2

ad
d2





















,





















b2

bc
c2





















, (20)

wherea, b, c, d range overF∗q, andτ ranges over Aut(Fq) .
The groupρ(PΓL(2, q))0,∞ acts onL⊥+ similarly to that in (18) and (19) with ˜ replaced with

τ. By a similar argument employed in the previous subsection,ρ(PΓL(2, q))0,∞ has the following
orbits onL+:

Λ0 = {L0,∞}, Λ1 = {L0,ξ, L∞,ξ | ξ ∈ F∗q}, Λ−1 = {Lξ,−ξ | ξ ∈ F∗q},
Λr = {Lξ,γ | ξ/γ ∈ {rτ, r−τ | τ ∈ Aut Fq}}, (r ∈ F∗q \ {±1}).

(21)

No we can write down the corresponding relations ofX(PΓL(2, q),L+):
R0 = {(Lξ,γ, Lξ,γ) | {ξ, γ} ⊂ F

∪{∞}
q },

R1 = {(Lξ,γ, Lξ,β) | {ξ, γ, β} ⊂ F
∪{∞}
q },

R−1 = {(Lξ,γ, Lα,β) | {ξ, γ, α, β} ⊂ F
∗
q, cr(ξ, γ;α, β) = −1},

Rr =
{

(Lξ,γ, Lα,β) | {ξ, γ, α, β} ⊂ F
∗
q, cr(ξ, γ;α, β) ∈ {rτ, r−τ | τ ∈ Aut Fq}

}

, r ∈ F∗q \ {±1}.
Theorem 3.4. X(PΓL(2, q),L+) is a symmetric association scheme with the above relations.

Remark 2. Note that the relationR1 is an original relation in T(q+1). Forq = 9,X(PΓL(2, q),L+)
has 4 classes. It has theP-polynomial property given byR−1 but not theQ-polynomial property.
For q = 25 and 49,X(PΓL(2, q),L+) has 9 and 16 classes, respectively. These schemes don’t
have polynomial (P or Q) property. For the general case, the class number ofX(PΓL(2, q),L+) is
reduced to counting the number of orbits of Aut(Fq) on the collection{{rτ, r−τ} | r ∈ F∗q \ {±1}, τ ∈
Aut(Fq) }. However, we are unable to give an explicit formula for this number.

Example 3.1. In this example, we illustrate the four fission schemes of T(10) for q = 9. Let
g be a primitive element ofF9. We haveX(PΓL(2, 9),L+) = X(M(9),L+). The relations of
FT(10),X(PSL(2, 9),L+) andX(M(9),L+) are shown in the following diagram:

R1

��
�� >>

>>
R−1

{{
{{ CC

CC
Rg2

}}
} AA

A
Rg Rg3

R+1 R−1 R+−1 R−−1
R+

g2 R−
g2 Rg Rg3

R1

>>>>
����

R−1

CCCC
{{{{

Rg2

AAA }}}

Rg ∪ Rg3

IIIII
ttttt

The top, middle and bottom rows are the relations of FT(10),X(PSL(2, 9),L+) andX(M(9),L+),
respectively.

Remark 3. Primitive representations of PSL(2, q) were investigated by Sasha Ivanov and Loius
Tchuda via the use of so-called Burnside marks [14]. A general method was outlined in [8],
which allows one to obtain formulas for the rank and subdegrees for a (transitive) permutation
representation [14].
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