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ON THE EFFECTIVE MEMBERSHIP PROBLEM ON

SINGULAR VARIETIES

MATS ANDERSSON & ELIZABETH WULCAN

Abstract. We present some extensions to singular varieties of effective member-
ship results previously known in C

n or smooth varieties. In particular, we extend
a geometric effective Nullstellensatz due to Ein and Lazarsfeld, and a closely re-
lated result of Hickel for polynomial ideals on C

n, to singular varieties. We also
have extensions to singular varieties of classical theorems of Max Noether and
Macaulay.

1. Introduction

Let V be a reduced n-dimensional subvariety of CN . If F1, . . . , Fm are polynomials
in C

N with no common zeros on V , then by the Nullstellensatz there are polynomials
Qj such that

∑
FjQj = 1 on V . It was proved by Jelonek, [23], that if Fj have degree

at most d, then one can find Qj such that

deg (FjQj) ≤ cmd
µdegV,

where cm = 1 if m ≤ n, cm = 2 if m > n, and, throughout this paper,

µ := min(m,n).

Here degX means the degree of the closure X of V in P
N . This theorem generalizes

Kollár’s result1, [24], for V = C
n and does not require any smoothness assumptions

on V . The bound is optimal2 when m ≤ n and almost optimal when m > n.
However, in view of various known results in the case when V = C

n, one can expect
sharper degree estimates if the common zero set of the polynomials Fj behaves nicely
at infinity in P

N .
More generally one can take arbitrary polynomials Fj of degree at most d and look

for a solution Qj to

(1.1) F1Q1 + · · · + FmQm = Φ

with good degree estimates, provided that the polynomial Φ belongs to the ideal
(Fj) generated by Fj on V . It follows from a result of Hermann, [20], that one can

choose Qj such that deg (FjQj) ≤ deg Φ + C(d,N), where C(d,N) is like 2(2d)2
N−1

for large d, thus doubly exponential. It is shown in [28] that this estimate cannot be
substantially improved. However, under additional hypotheses on the singularities
of the common zero set of the Fj and V , much sharper estimates are possible. For
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instance, the classical AF+BG theorem of Max Noether reads (originally for n = 2):
If F1, . . . , Fn are polynomials in C

n such that their common zero set is discrete and
does not intersect the hyperplane at infinity, and Φ belongs to the ideal (Fj), then
one can find polynomials Qj such (1.1) holds and degFjQj ≤ degΦ. This result is
clearly optimal.

By homogenization, this kind of effective results can be reformulated as geometrical
statements: Let z = (z0, . . . , zN ), z′ = (z1, . . . , zN ), let fi(z) := zd0Fi(z

′/z0) be the d-

homogenizations of Fi, and let ϕ(z) := zdegΦ0 Φ(z′/z0). Then there is a representation
(1.1) on V with deg (FjQj) ≤ ρ if and only if there are (ρ − d)-homogeneous forms

qi on P
N such that

(1.2) f1q1 + · · · + fmqm = zρ−degΦ
0 ϕ

on the closure X of V in P
n. As usual, we can consider fj as holomorphic sections

of the (restriction to X of the) line bundle O(d) → P
N , zρ−degΦ

0 ϕ a section of O(ρ),
etc, so that (1.2) is a statement about sections of line bundles.

In this paper we present generalizations to singular varieties of some effective
membership results that are previously known for V = C

n or smooth varieties. In
particular we present some generalizations in Section 2 of results of Max Noether
type, but our main results are global effective versions of the Briançon-Skoda-Huneke
theorem:

Given x ∈ V there is a number µ0 such that if F1, . . . , Fm,Φ are any holomorphic
functions at x, ℓ ≥ 1, and |Φ| ≤ C|F |µ+µ0+ℓ−1 in a neighborhood of x, where |F |2 =
|F1|

2+ · · ·+ |Fm|2 and C is a positive constant, then Φ belongs to the local ideal (Fj)
ℓ
x

at x.

If x is a smooth point, then one can take µ0 = 0; this is the classical Briançon-
Skoda theorem, [13]. The general case was proved by Huneke, [22], by purely alge-
braic methods. An analytic proof appeared in [7].

Our global formulation involves the following two numbers: Given V ⊂ C
N , κ =

κ(V ) is the least number such that all holomorphic sections of O(s) over X extend
to global holomorphic sections over P

N for s ≥ κ, and ν = ν(V ) is the least number
such that H0,i(X,O(s)) = 0 for i ≥ 1 and s ≥ ν. See Section 6 for upper bounds
of κ and ν; in particular they are bounded by the so-called regularity regX of X.
When X is smooth, by Kodaira’s vanishing theorem, ν is less than or equal to the
least number σ such that O(σ)|X ⊗K−1

X is strictly positive, where K−1
X is the dual

of the canonical bundle. In particular, if V = C
n, i.e., X = P

n then ν = −n.

Given polynomials F1, . . . , Fm on V , let fj denote the corresponding sections of
O(d)|X , and let Jf be the coherent analytic sheaf over X generated by fj. Further-
more, let c∞ be the maximal codimension of the so-called distinguished varieties of
the sheaf Jf , in the sense of Fulton-MacPherson, that are contained in

X∞ := X \ V,

see Section 8. If there are no distinguished varieties contained in X∞, then we
interpret c∞ as −∞. It is well-known that the codimension of a distinguished variety
cannot exceed the number m, see, e.g., Proposition 2.6 in [15], and thus

(1.3) c∞ ≤ µ.

We let Zf denote the zero variety of Jf in X.
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Theorem 1.1. Assume that V is a reduced n-dimensional algebraic subvariety of
C
N .

(i) There exists a number µ0 such that if F1, . . . , Fm are polynomials of degree ≤ d
and Φ is a polynomial such that

(1.4) |Φ| ≤ C|F |µ+µ0

locally on V , then one can solve (1.1) on V with

deg (FjQj) ≤ max
(
degΦ + (µ + µ0)dc∞degX, dmin(m,n + 1) + ν, d+ κ

)
.

If X is smooth one can take µ0 = 0.

(ii) If just V is smooth, then there is a number µ′ such that if F1, . . . , Fm are poly-
nomials of degree ≤ d and Φ is a polynomial such that

(1.5) |Φ| ≤ C|F |µ

locally on V , then one can solve (1.1) on V with

deg (FjQj) ≤ max
(
degΦ + µdc∞degX + µ′, dmin(m,n+ 1) + ν, d+ κ

)
.

There is an analogous result for powers (Fj)
ℓ of (Fj), see Theorem 9.4. The number

µ′ in (ii) is related to the singularities of V at infinity, in particular one can take
µ′ = 0 if X is smooth. If V is arbitrary and Zf ∩ Xsing = ∅, then (i) holds with
µ0 = 0; for a slightly stronger statement, see Remark 9.2. Notice that if there are no
distinguished varieties contained in X∞, then dc∞ = 0.

Remark 1.2. For V = C
n we thus get from Theorem 1.1 the estimate

(1.6) deg (FjQj) ≤ max
(
deg Φ + µdc∞ , dmin(m,n + 1) − n

)
.

If m ≤ n it follows from the proof that we have in fact the sharper estimate

(1.7) deg (FjQj) ≤ deg Φ +mdc∞ .

The estimate (1.6) was proved by Hickel, [21], but with the term min(m,n+ 1)dµ

rather than our µdc∞ . The ideas in [21] are similar to the ones used in [15]. If
one applies the geometric estimate in [15], rather than the (closely related) so-called
refined Bezout estimate by Fulton-MacPherson that is used in [21], one can replace
the power µ by c∞. This refinement was pointed out already in Example 1 in [15].
The number (n+1) in the factor min(m,n+1) comes from an application of a global
Briançon-Skoda type theorem. In our approach we have to annihilate a certain
current, which is a purely local matter, and therefore it is enough with the local
Briançon-Skoda power µ. �

Remark 1.3. If we apply Theorem 1.1 to Nullstellensatz data, i.e., Fj with no common
zero on V and Φ = 1, we get back the optimal result of Jelonek, except for the
annoying factor µ + µ0 in front of dc∞ . On the other hand, (µ + µ0)d

c∞ < dµ if
c∞ < µ and d is large enough. �

We have the following more abstract variant of Theorem 1.1. It is a generalization
to nonsmooth varieties of the geometric effective Nullstellensatz of Ein-Lazarsfeld in
[15] (Theorem 10.1 below). Let X be a reduced projective variety. Recall that if
L→ X is ample, then there is a (smallest) number νL such that H i(X,L⊗s) = 0 for
i ≥ 1 and s ≥ νL, cf., [26, Ch. 1.2].
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Theorem 1.4. Let X be a reduced projective variety. There is a number µ0, only
depending on X, such that the following holds: Let f1, . . . , fm be global holomorphic
sections of an ample Hermitian line bundle L → X, and let φ be a section of L⊗s,
where s ≥ νL + min(m,n+ 1). If

(1.8) |φ| ≤ C|f |µ+µ0 ,

then there are holomorphic sections qj of L⊗(s−1) such that

(1.9) f1q1 + · · · + fmqm = φ.

If X is smooth we can choose µ0 = 0, and we then get back (a slightly sharpened
version of) one of the main results in [15], see Section 10 for the precise formulation.

Let Jf be the ideal sheaf generated by fj and assume that the associated distin-
guished varieties Zk have multiplicities rk, cf., Section 8. If we assume that φ is in

∩kJ (Zk)rk(µ+µ0), where J (Zk) is the radical ideal associated with the distinguished
variety Zk, then (1.8) holds, and hence we have a representation (1.9).

The starting point for the proofs is the framework introduced in [2], and further
developed in [5], for polynomial ideals in C

n. In [31] and [32] these ideas are adapted
to toric compactifications of C

n other than P
n, which leads to “sparse” effective

membership results. In our case, let us first assume that X is a smooth projective
variety and that f1, . . . , fm are sections of an ample line bundle L → X. From the
Koszul complex generated by fj we define a current Rf with support on Zf and
taking values in (a direct sum of) negative powers of L. If φ is a section of L⊗s,
vanishing enough on Zf so that the current Rfφ vanishes, and if in addition L⊗s is
positive enough so that a certain sequence of ∂̄-equations can be solved on X, we
end up with a holomorphic solution q = (q1, . . . , qm) to (1.9). The tricky point here
is to verify, by means of multivariable residue calculus, that φ annihilates Rf , i.e.,
Rfφ = 0.

The main novelty in this paper is an extension of this framework to singular X.
In this case we need an embedding i : X → Y of X into a smooth manifold Y . In Y
we define a residue current RJX obtained from a free resolution of the ideal sheaf JX

associated to X, and the “product” current Rf∧RJX . If all data, i.e., L, fj, and φ,
admit extensions to Y , this is the case in Theorem 1.1, then we can proceed basically
as before, showing that φ annihilates Rf∧RJX , solving ∂̄-equations in Y and ending
up with a holomorphic solution to (1.9). Via an additional trick it is in fact enough
to solve ∂̄-equations on X, so that we can avoid relying on vanishing theorems on
Y . This is described in Section 5. In the proof of Theorem 1.4 additional difficulties
arise, since we have no a priori extensions to a smooth manifold Y . In the next
section we present some generalizations of the Max Noether theorem. The proofs of
all these theorems are gathered in Sections 7 to 10 together with some further results
and comments.

2. Results of Max Noether and Macaulay type

Again let V be an algebraic subvariety of CN of pure dimension n. In the results
discussed so far we have assumed that Φ is in the ideal (Fj) by virtue of a Briançon-
Skoda-Huneke condition. In this section we consider results where the polynomial Φ
a priori is just assumed to belong to the ideal (Fj) on V . To get good degree estimates
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one then must impose geometrical restrictions on Zf , as well as on X when it is non-
smooth. Classical examples of such results are Max Noether’s theorem, [29], already
mentioned in Section 1 and Macaulay’s theorem, [27]:

If the polynomials F1, . . . , Fm of degree ≤ d in C
n have no common zeros in P

n,
then there are polynomials Qj such that F1Q1 + · · · + FmQm = 1 and degFjQj ≤
d(n+ 1) − n.

As before, let X be the closure of V in P
N . For the formulation of our first result

of this type we have to introduce certain intrinsic subvarieties

Xn−1 ⊂ · · · ⊂ X1 ⊂ X0 ⊂ X,

of X that reflect the complexity of the singularities of X; for the definition, see
Section 3.6. In fact, X0 = Xsing and Xℓ are BEF sets, see below, of the sheaf JX in

P
N . In particular, codimXℓ ≥ ℓ+1, ℓ ≥ 0. Our result can be seen as a generalization

of Max Noether’s (and Macaulay’s) theorem. As in that theorem the dimension of
Zf is assumed to be as small as possible in V , i.e., codimZf ≥ m, whereas at infinity
we only require Zf not to intersect Xsing too “much”.

Theorem 2.1. Assume that V is an algebraic subvariety of C
N and let X be its

closure in P
N . Let F1, . . . , Fm be given polynomials of degree ≤ d such that

(2.1) codimZf ∩ V ≥ m.

Furthermore, assume that

(2.2) codim (Zf ∩Xℓ) ≥ m+ ℓ + 1, ℓ ≥ 0.

If Φ ∈ (Fj) on V , then there is a representation (1.1) on V with

deg (FjQj) ≤ max(degΦ + µdc∞degX, dmin(m,n+ 1) + ν, d+ κ).

Notice that (2.2) forces that either Zf ∩Xsing = ∅ or m < n. Recall that c∞ ≤ m.

If X is smooth, then (2.2) is vacuous. If Zf has no irreducible component in X∞ at
all, then dc∞ = 0.

Corollary 2.2. Assume that X is smooth, m ≤ n, codimZf ≥ m, and Zf has no
irreducible component contained in X∞. If Φ is a polynomial that belongs to the ideal
(Fj) in V , then there is a representation (1.1) with

(2.3) deg (FjQj) ≤ max
(
degΦ, dm + ν, d+ κ

)
.

If V = C
n, and m ≤ n, one can replace dm + ν by zero since then there are

no ∂̄-cohomology obstructions, and κ = −∞, so the right hand side of (2.3) is just
deg Φ. This case appeared already in [2]. If m = n, and thus Zf is discrete, we get
back the classical theorem of Max Noether.

Corollary 2.3. If Zf is empty, then there are polynomials Qj such that
∑
FjQj = 1

on V and

deg (FjQj) ≤ max(d(n + 1) + ν, d+ κ).

Recall that if V = C
n, then ν = −n, cf., the introduction, and κ = −∞ so we get

back Macaulay’s theorem.

The principal condition in the previous theorem was assumption (2.1). We have a
similar result even when this condition is not fulfilled. For simplicity we restrict to
the case when X is smooth.
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Assume that the variety Zf ⊂ X associated to Jf has codimension p. There are
intrinsic analytic varieties

· · ·Zbef

k+1 ⊂ Zbef

k ⊂ · · · ⊂ Zbef

1 ⊂ Zbef

0 = Zf ,

that we call the BEF varieties3, that reflect the complexity of Jf . The codimension of
Zbef

k is at least k, and if the local ideal Jf,x at x has codimension p, then Zbef

p,x = Zbef

x .

Furthermore, Jf,x is Cohen-Macaulay if and only if Zbef

k,x = ∅ for k > p, see [16].

Theorem 2.4. Assume that V is an algebraic subvariety of CN such that its closure
X is smooth in P

N . Let F1, . . . , Fm be polynomials on V , let Zbef

k be the BEF varieties
associated with Jf , and assume that

(2.4) codim (X∞ ∩ Zbef

k ) ≥ k + 1, k ≥ 1.

Then there is a constant β = β(X,F1, . . . , Fm) such that if Φ ∈ (Fj), then there is a
representation (1.1) on V with

deg (FjQj) ≤ max(degΦ, β).

This estimate is clearly sharp if deg Φ ≥ β. If the ideal sheaf Jf is locally Cohen-
Macaulay, for instance locally a complete intersection, then (2.4) just means that
no irreducible component of Zf is contained in X∞. In special cases we have good
control of β, see Section 7 below. In particular, we get back Corollary 2.2 and a
smooth version of Corollary 2.3.

3. Some preliminaries on residue theory

Let X be a reduced projective variety of pure dimension n. The sheaf Cℓ,k of
currents of bidegree (ℓ, k) on X is by definition the dual of the sheaf En−ℓ,n−k of
smooth (n − ℓ, n − k)-forms on X. If i : X → Y is an embedding in a smooth
manifold Y of dimension N , then En−ℓ,n−k can be identified with the quotient sheaf

EY
n−ℓ,n−k/Ker i∗, where Ker i∗ is the sheaf of forms ξ on Y such that i∗ξ vanish on

Xreg. It follows that the currents τ in Cℓ,k can be identified with currents τ ′ = i∗τ
on Y of bidegree (N − n+ ℓ,N − n+ k) that vanish on Ker i∗.

Given a holomorphic function f on X, we have the principal value current [1/f ],
defined for instance as the limit

lim
ǫ→0

χ(|f |2/ǫ)
1

f
,

where χ(t) is the characteristic function of the interval [1,∞) or a smooth approxi-
mand of it. The existence of this limit for a general f relies on Hironaka’s theorem

that ensures that there is a modification π : X̃ → X such that π∗f is locally a mono-
mial. It also follows that the function λ→ |f |2λ(1/f), a priori defined for Reλ >> 0,
has a current-valued analytic continuation to Reλ > −ǫ, and that the value at λ = 0
is precisely the current [1/f ], see, for instance, [11] or [12]. Although less natural at
first sight, this latter definition via analytic continuation turns out to be much more

3 The sets Zbef
k are the zero varieties of certain Fitting ideals associated with a free resolution

of OX/Jf ; the importance of these sets (ideals) was pointed out by Buchsbaum and Eisenbud in
the 70’. We have not seen any notion for these important sets in the literature, and “Buchsbaum-
Eisenbud varieties” is already occupied for another purpose, so we stick to BEF as an acronym for
Buchsbaum-Eisenbud-Fitting.
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convenient. The same idea will be used throughout this paper. For the rest of this
paper we skip the brackets and write just 1/f . It is readily checked that

(3.1) f
1

f
= 1, f ∂̄

1

f
= 0.

3.1. Pseudomeromorphic currents. In [9] we introduced the sheaf PM of pseu-
domeromorphic currents on a smooth manifold X. The definition when X is singular
is identical. In this paper we will use the slightly extended definition introduced in
[6]: We say that a current of the form

ξ

sα1

1 · · · s
αn−1

n−1

∧∂̄
1

sαn
n
,

where s is a local coordinate system and ξ is a smooth form with compact support, is
an elementary pseudomeromorphic current. The sheaf PM consists of all possible (lo-
cally finite sums of) push-forwards under a sequence of maps Xm → · · · → X1 → X,
of elementary pseudomeromorphic currents, where Xm is smooth, and each mapping
is either a modification or a simple projection X̂ × Y → X̂.

The sheaf PM is closed under ∂̄ (and ∂) and multiplication with smooth forms.
If τ is in PM and has support on a subvariety V and η is a holomorphic form that
vanishes on V , then η∧τ = 0. We also have the
Dimension principle: If τ is a pseudomeromorphic current on X of bidegree (∗, p)
that has support on a variety V of codimension > p, then τ = 0.

If τ is in PM and V is a subvariety of X, then the natural restriction of τ to the
open set X\V has a canonical extension as a principal value to a pseudomeromorphic
current 1X\V τ on X: Let h be a holomorphic tuple with common zero set V . The

current-valued function λ 7→ |h|2λτ , a priori defined for Reλ >> 0, has an analytic
continuation to Reλ > −ǫ and its value at λ = 0 is by definition 1X\V τ , see, e.g.,
[9]. One can also take a smooth approximand χ of the characteristic function of the
interval [1,∞) and obtain 1X\V τ as the limit of χ(|h|/ǫ)τ when ǫ → 0. It follows
that 1V τ := τ − 1X\V τ is pseudomeromorphic and has support on V . Notice that if

α is a smooth form, then 1V ατ = α1V τ. Moreover, If π : X̃ → X is a modification,

τ̃ is in PM(X̃), and τ = π∗τ̃ , then

(3.2) 1V τ = π∗
(
1π−1V τ̃

)

for any subvariety V ⊂ X. There is actually a reasonable definition of 1W τ for any
constructible set W , and

(3.3) 1W1W ′τ = 1W∩W ′τ.

Recall that a current is semimeromorphic if it is the quotient of a smooth form
and a holomorphic function. We say that a current τ is almost semimeromorphic in

X if there is a modification π : X̃ → X and a semimeromorphic current τ̃ such that
τ = π∗τ̃ . Analogously we say that τ is almost smooth if τ = π∗τ̃ and τ̃ is smooth.
Any almost semimeromorphic (or smooth) τ is pseudomeromorphic.

3.2. Residues defined from Hermitian complexes. Assume that

(3.4) 0 → EM
fM

−→ . . .
f3

−→ E2
f2

−→ E1
f1

−→ E0 → 0

is a generically exact complex of Hermitian vector bundles over X and let Z be
the subvariety where (3.4) is not pointwise exact. The bundle E = ⊕Ek gets a
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natural superbundle structure, i.e., a Z2-grading, E = E+ ⊕ E−, E+ and E− being
the subspaces of even and odd elements, respectively, by letting E+ = ⊕2kEk and
E− = ⊕2k+1Ek. This extends to a Z2-grading of the sheaf C•(E) of E-valued currents,
so that the degree of ξ ⊗ e is the sum of the current degree of ξ and the degree of
e, modulo 2. An endomorphism on C•(E) is even if it preserves degree and odd
if it switches degree. The mappings f =

∑
fj and ∂̄ are then odd mappings on

C•(E). We introduce ∇ = ∇f = f − ∂̄; it is just (minus) the (0, 1)-part of Quillen’s
superconnection D − ∂̄. Since the odd mappings f and ∂̄ anticommute, ∇2 = 0.
Moreover, ∇ extends to an odd mapping ∇End on C•(EndE) so that

(3.5) ∇(αξ) = ∇Endα · ξ + (−1)degαα∇ξ

for sections ξ and α of E and EndE, respectively, and then ∇2
End = 0. In X \ Z we

define, following [8, Section 2], a smooth EndE-valued form u such that

∇Endu = I,

where I = IE is the identity endomorphism on E. We have that

u =
∑

ℓ

uℓ =
∑

ℓ

∑

k≥ℓ+1

uℓk,

where uℓk is in E0,k−ℓ−1(Hom (Eℓ, Ek)) over X \ Z. Following [8]4 we define a pseu-
domeromorphic current extension U of u across Z, as the value at λ = 0 of the
current-valued analytic function

λ 7→ Uλ := |F |2λu,

a priori defined for Reλ >> 0, where F is a holomorphic tuple that vanishes on Z.
In the same way we define the residue current R associated to (3.4) as the value at
λ = 0 of

λ 7→ Rλ := I − |F |2λ + ∂̄|F |2λ∧u.

This current clearly has its support on Z, and

R =
∑

ℓ

Rℓ =
∑

ℓ

∑

k≥ℓ+1

Rℓ
k,

where Rℓ
k is a Hom (Eℓ, Ek)-valued (0, k − ℓ)-current. The currents U ℓ and U ℓ

k are
defined analogously. Notice that U has odd degree and R has even degree. By
the dimension principle, Rℓ

k vanishes if k − ℓ < codimZ. In particular, R0
0 = (I −

|F |2λ)|λ=0 is zero, unless some components W of Z has codimension 0, in which case
R0

0 is the characteristic function for W times the identity I. However, when we define
products of currents later on, all components of Rλ may play a role.

Since ∇EndU
λ = I −Rλ and ∇EndR

λ = 0 when Reλ >> 0, we conclude that

(3.6) ∇EndU = I −R, ∇EndR = 0.

In particular, (3.6) means that, cf. (3.5),

f1U0
1 = IE0

, fk+1U0
k+1 − ∂̄U0

k = R0
k; k ≥ 1;

Notice that when φ is a section of E0, then R0φ = Rφ and U0φ = Uφ, and we will
often skip the upper indices.

4The definition is the same when X is singular.
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Example 3.1 (The Koszul complex). Let f1, . . . , fm be holomorphic sections of a
Hermitian line bundle L → X. Let Ej be disjoint trivial line bundles with basis
elements ej and define the rank m bundle

E = L−1 ⊗E1 ⊕ · · · ⊕ L−1 ⊗ Em

over X. Then f =
∑
fje

∗
j , where e∗j is the dual basis, is a section of the dual bundle

E∗ = L⊗ (E1)∗ ⊕· · ·⊕L⊗ (Em)∗. If S → X is a Hermitian line bundle we can form
a complex (3.4) with

E0 = S, Ek = S ⊗ ΛkE,

where all the mappings fk in (3.4) are interior multiplication δf with the section f .
Notice that

Ek = S ⊗ L−k ⊗ Λk(E1 ⊕ · · · ⊕ Em).

The superstructure of ⊕kEk in this case coincides with the natural grading of the
exterior algebra ΛE of E modulo 2.

Let us recall how the currents U0 and R0 are defined in this case. For simplicity
we suppress the upper indices throughout this example. We have the natural norm

|f |2 =
∑

j

|fj |
2
L

on E∗. Let σ be the section over X \Z of pointwise minimal norm such that f · σ =
δfσ = 1, i.e.,

σ =
∑

j

f∗j ej

|f |2
,

where f∗j are the sections of L−1 of minimal norm such that fjf
∗
j = |fj|

2
L.

Let us consider the exterior algebra over E ⊕ T ∗(X) so that dz̄j∧eℓ = −eℓ∧dz̄j
etc. Then, e.g., ∂̄σ is a form of positive degree. We have the smooth form u =

∑
uk,

where uk = σ∧(∂̄σ)k−1 in X \ Z, and it turns out that it admits a natural current
extension U across Z, e.g., defined as the analytic continuation of Uλ = |f |2λu to
λ = 0. Furthermore, the associated residue current R is obtained as the evaluation
at λ = 0 of

Rλ := 1 − |f |2λ + ∂̄|f |2λ∧u =

1 − |f |2λ + ∂̄|f |2λ∧u1 + · · · + ∂̄|f |2λ∧umin(m,n) =: Rλ
0 +Rλ

1 + · · · +Rλ
min(m,n).

The existence of the analytic continuations follows from a suitable resolution X̃ → X,
see [1], see also Section 8 below. �

3.3. The associated sheaf complex. Given the complex (3.4) we have the asso-
ciated complex of locally free sheaves

(3.7) 0 → O(EM )
fM

−→ . . .
f3

−→ O(E2)
f2

−→ O(E1)
f1

−→ O(E0).

In this paper E0 is always a line bundle so that J := Im f1 is a coherent ideal sheaf
over X.

Consider the double sheaf complex Mℓ,k = C0,k(Eℓ) with mappings f and ∂̄. We
have the associated total complex

. . .
∇f
−→ Mj

∇f
−→ Mj−1

∇f
−→ . . . ,
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where Mj = ⊕ℓ−k=jMℓ,k. If X is smooth, then Mℓ,k is exact in the k-direction
except at k = 0, and the kernels there are O(Eℓ). Notice that if φ is in O(Eℓ) and
f ℓφ = 0, then also ∇fφ = 0. We therefore have a natural mapping

(3.8) Hj(O(E•)) → Hj(M•).

By standard homological algebra, (3.8) is in fact an isomorphism. We can also
consider the corresponding sheaf complexes ME

ℓ,k, ME
j of smooth sections, and the

analogue of (3.8) is then an isomorphism as well.

Lemma 3.2. If φ is a holomorphic section of E0 that φ annihilates R, i.e., Rφ = 0,
then φ is in J .

Proof. In fact, by (3.6) we have that

∇f (Uφ) = φ−Rφ = φ.

Since X is smooth, (3.8) is an isomorphism, and thus locally φ = f1ψ for some
holomorphic ψ, i.e., φ is in J . �

The smoothness assumption is crucial, as the following example shows.

Example 3.3. Let f be one single function. Then the residue condition Rφ = 0 means
that ∂̄(φ/f) = 0. Thus ψ = φ/f is in the Barlet-Henkin-Passare class, cf., [19] and
[6]; however in general ψ is not (strongly) holomorphic, i.e., in general φ is not in
J = (f). �

We shall now see that if X is smooth and there is a global current solution to
∇W = φ, then there is also a smooth global solution. For further reference however
we need a slightly more general statement about of the associated complex of global
sections. Let Mℓ,k(X) and ME

ℓ,k(X) be the double complexes of global current valued

and smooth sections, respectively, and let M•(X) and ME
• (X) be the associated total

complexes. Notice that we have natural mappings

(3.9) Hj(ME
• (X)) → Hj(M•(X)), j ∈ Z.

Proposition 3.4. If X is smooth, then the mappings (3.9) are isomorphisms.

Proof. By the de Rham theorem, the natural mappings

(3.10) Hk(E0,•(X,Eℓ)) → Hk(C0,•(X,Eℓ)), k ∈ Z,

are isomorphisms; these spaces are in fact naturally isomorphic to the cohomology
groups Hk(X,O(Eℓ)). The short exact sequence

0 → ME(X) → M(X) → M(X)/ME (X) → 0

gives rise to, for each fixed ℓ, the long exact sequence

. . .→ Hk−1(E0,•(X,Eℓ)) → Hk−1(C0,•(X,Eℓ)) →

Hk−1(C0,•(X,Eℓ)/E0,•(X,Eℓ)) → Hk(E0,•(X,Eℓ)) → . . . ,

and in view of (3.10) therefore the cohomology in the k-direction of Mℓ,k(X)/ME
ℓ,k(X)

is zero. By a simple homological algebra argument, using that the the double com-
plexes involved are bounded it follows that

Hk(M•(X)/ME
• (X)) = 0
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for each k. The proposition now follows from the long exact sequence

. . .→ Hk−1(ME
• (X)) → Hk−1(M•(X)) →

Hk−1(M•(X)/ME
• (X)) → Hk(ME

• (X)) → . . . .

�

3.4. Duality principle and BEF varieties. We now consider the case when the
locally free complex (3.7) is exact, i.e., a resolution of the sheaf O(E0)/J . Let Zbef

k

be the (algebraic) set where the mapping fk does not have optimal rank. These
sets Zbef

k are independent of the choice of resolution; we call them the BEF-sets
associated to J , cf., Section 2. It follows from the Buchsbaum-Eisenbud theorem
that codimZbef

k ≥ k. If moreover J has pure dimension, for instance J is the
radical ideal sheaf of a pure-dimensional subvariety, then codimZbef

k ≥ k + 1 for
k ≥ 1 + codimJ , see [16].

Let us equip Ek with Hermitian metrics and let R be the associated residue cur-
rent. We will refer to a (locally free) resolution O(E0)/J together with a choice of
Hermitian metrics on the corresponding vector bundles Ek as a (locally free) Her-
mitian resolution. Then by [8, Theorem 3.1], we have that Rℓ = 0 for each ℓ ≥ 1,
i.e., R = R0. There are almost semimeromorphic Hom (Ek, Ek+1)-valued (0, 1)-forms
αk+1, that are smooth outside Zbef

k+1, such that

Rk+1 = αk+1Rk

there, see [8]. From [8] we also have:

Duality principle: If X is smooth and (3.7) is a resolution of the sheaf O(E0)/J ,
then φ ∈ J if and only if Rφ = 0.

That is, the annihilator ideal sheaf of the residue current R is precisely the ideal
sheaf J generated by f1.

If for instance f1 = (f1, . . . , fm) defines a complete intersection, i.e, codimZf = m,
then the Koszul complex is a resolution of J and hence the duality principle states
that the annihilator of the residue current in Example 3.1 is the ideal itself. This
special case was proved already in [30].

3.5. Tensor product of complexes. Assume that Eg
• , g and Eh

• , h are Hermitian

complexes. We can then define a complex Ef
• = Eg

• ⊗ Eh
• , f , where

Ef
k =

⊕

i+j=k

Eg
i ⊗ Eh

j ,

and f = g + h, or more formally f = g ⊗ IEh + IEg ⊗ h, such that

(3.11) f(ξ ⊗ η) = gξ ⊗ η + (−1)deg ξξ ⊗ hη.

Notice that E0 is the line bundle Eg
0 ⊗ Eh

0 . If g1O(Eg
1) = Jg and h1O(Eh

1 ) = Jh,
then f1O(E1) = Jg + Jh. One extends (3.11) to current-valued sections ξ and η,
and deg ξ then means total degree. We write ξ · η, or sometimes ξ∧η to emphasize
that the sections may be form- or current-valued, rather than ξ ⊗ η, and define

(3.12) η · ξ = (−1)deg ξdeg ηξ · η.

Notice that

∇f (ξ · η) = ∇gξ · η + (−1)degξξ · ∇hη.
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Let ug and uh be the corresponding End(Eg)-valued and End(Eh)-valued forms,
cf., Section 3.2. Then u = uh∧ug is a End(Ef )-valued form defined outside Zg ∪
Zh. Following the proof of Proposition 2.1 in [9] we can define End(Ef )-valued
pseudomeromorphic currents

Uh∧Rg := Uh,λ∧Rg|λ=0, Rh∧Rg := Rh,λ∧Rg|λ=0.

We have that, cf., (3.6) and [4, Section 4],

∇End,f (Uh∧Rg + Ug) = IEf −Rh∧Rg.

In general, the current Rh∧Rg will change if we interchange the roles of g and h.
In particular we can form the product Eh

• ⊗ Eh
• of Eh

• by itself. In this case we
consider (3.12) as an identification, so that, for instance,

(Eh
• ⊗ Eh

• )1 = Eh
1 ⊗̇E

h
0 , (Eh

• ⊗ Eh
• )2 = Eh

2 ⊗̇E
h
0 + Λ2Eh

1 ,

etc, where ⊗̇ denotes symmetric tensor product. In general, ξ · ξ = 0 if ξ has odd
(total) degree.

We can just as well form a similar product of more than two complexes, and in
particular, we can form the product (Eh)⊗k = Eh⊗Eh⊗· · ·⊗Eh of a given complex
by itself.

3.6. The structure form ω on a singular variety. Let i : X → Y be an em-
bedding of X in a smooth projective manifold Y , let JX be the radical ideal sheaf
associated to X in Y , and let S → Y be an ample Hermitian line bundle. Moreover,

let Ej
k be disjoint trivial line bundles over Y with basis elements ek,j. There is a

(possibly infinite) resolution, see, e.g., [26, Ch.1, Example 1.2.21],

(3.13) . . .
g3

−→ O(E2)
g2

−→ O(E1)
g1

−→ O(E0)

of O(E0)/JX = OX , where

Ek =
(
E1

k ⊗ S−d1
k

)
⊕ · · · ⊕

(
Erk

k ⊗ S−d
rk
k

)
, E0 = E0

0 ≃ C,

Ei
k are trivial line bundles, and

gk =
∑

ij

gkijek−1,i ⊗ e∗k,j,

are matrices of sections
gkij ∈ O(Y, Sd

j
k
−di

k−1);

here e∗k,j are the dual basis elements. There are natural induced norms on Ek.

The associated residue current5 R is annihilated by all smooth forms ξ such that
i∗ξ = 0. Let γ be a global non-vanishing (dimY, 0)-form with values in K−1

Y . By [6,
Proposition 16] there is a (unique) almost semimeromorphic current ω on X, smooth
on Xreg, such that

i∗ω = R∧γ.

We say that ω is a structure form on X.
As an immediate consequence of the existence of ω, the product α∧R is well-

defined for (sufficiently) smooth forms α on X. If α = i∗a, we let α∧R := a∧R. This
product only depends on α, since if i∗a = 0, then a∧R∧γ = i∗(i∗a∧ω) = 0 and hence
a∧R = 0 since γ 6= 0.

5The fact that (3.13) may be infinite causes no problem, since, for degree reasons, U and R only
contain a finite number of terms.
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Let Xk be the BEF sets of JX , and define

X0 = Xsing, Xℓ = XN−n+ℓ, ℓ ≥ 1.

Since JX has pure dimension it follows that codimXk ≥ k + 1, and in particular,
Xn = ∅. These sets Xℓ are actually independent of the choice of embedding of X,
cf., the text after Lemma 4.2 in Section 4.

Let gℓ be the restriction to X of gN−n+ℓ, and let ∇g = g• − ∂̄ on X. Let Eℓ =
EN−n+ℓ|X . Then ω = ω0+ω1+· · ·+ωn, where ωℓ is a (n, ℓ)-form on X taking values in
Eℓ, and ∇gω = 0 on X. There are almost semimeromorphic Hom (Eℓ, Eℓ+1)-valued
(0, 1)-forms αℓ+1 such that

(3.14) ωℓ+1 = αℓ+1ωℓ

there. In fact, αℓ is the pullback to X if the form αN−n+ℓ associated to a resolution
of OY /JX in Y , cf., Section 3.4.

Since ω is almost semi-meromorphic, it has the the standard extension property,
SEP on X, which means that 1Wω = 0 for all varieties W ⊂ X of positive codimen-
sion.

The singularities of a structure form ω only depend on X, in the following sense:

Proposition 3.5. Let X be a projective variety. There is a smooth modification

τ : X̃ → X and a holomorphic section η of a line bundle S → X̃ such that the
following holds: If X → Y is an embedding of X in a smooth manifold Y , O(Eg

• ), g
is a locally free Hermitian resolution of OY /JX , and ω is the associated structure

form on X, then ητ∗ω is smooth on X̃.

The proof is postponed to Section 4. Since ω is almost semimeromorphic, the
pullback τ∗ω is well-defined; this will follow from the proof below, cf., also the remark
after Definition 12 in [6].

Example 3.6. See [8, Section 6]. If Y = P
N and S = O(1), then

Ek =
(
E1

k ⊗O(−d1k)
)
⊕ · · · ⊕

(
Erk

k ⊗O(−drkk )
)

and gk are matrices of homogeneous forms with deg gkij = djk − dik−1, and

|ξ(z)|2Ek
=

rk∑

j=1

|ξj(z)|
2|z|2d

j
k ,

if ξ = (ξ1, . . . , ξrk). Moreover,

γ = const×
∑

(−1)jzjdz0∧ . . .∧d̂zj∧ . . .∧dzN

in P
N .

Let JX denote the homogeneous ideal in the graded ring S = C[z0, . . . , zN ] that
corresponds to X, and let S(ℓ) denote the module S but where all degrees are shifted
by ℓ. Then O(E•), g corresponds to a free resolution

. . .→ ⊕iS(−dik) → . . .→ ⊕iS(−di2) → ⊕iS(−di1) → S

of the module S/JX . By Hilbert’s Syzygy theorem one can assume that Ek = 0 for
k > N + 1. �
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3.7. Local division problems on a singular variety. Still assume that we have
the embedding i : X → Y , where Y is smooth, and the complex Eg

• , g over Y corre-

sponding to a locally free Hermitian resolution of OY /JX . If Ef
• , f is an arbitrary

Hermitian complex over Y we have the complex EF = Ef ⊗ Eg with mappings
F = g + f as in Section 3.5. Let F k = F |Ek

. Since Rf∧Rg = Rf,λ∧Rg|λ=0 and

Uf∧Rg = Uf,λ∧Rg|λ=0 cf., Section 3.6, these currents only depend on the values of
f on X. From Section 3.5 we also have that

(3.15) ∇End,FU = I −Rf∧Rg

if U = Uf∧Rg + Ug. If Φ is a (locally defined) holomorphic function in Y and
Rf∧RgΦ = 0, then, following the proof of Lemma 3.2, there is a local holomorphic

solution v = vg + vf in EF
1 = Ef

1 ⊗Eg
0 +Ef

0 ⊗Eg
1 to g1vf + f1vg = F 1v = Φ. Notice

that in fact Rf∧RgΦ only depends on the class φ of Φ in OY /JX = OX , so Rf∧Rgφ
is well-defined for φ in OX . We can define the intrinsic residue current

Rf∧ω := Rf,λ∧ω|λ=0

on X. Since i∗R
f,λ∧ω = Rf,λ∧Rg∧γ when Reλ >> 0, we can conclude that

i∗R
f∧ω = Rf∧Rg∧γ.

Since γ is non-vanishing, Rf∧ωφ = 0 implies that Rf∧Rgφ = 0 and thus we have:

Proposition 3.7. Assume that Ef
• , f is a Hermitian complex on X. If φ is a holo-

morphic section of Ef
0 on X such that Rf∧ωφ = 0, then locally φ is in the image of

f1 on X.

3.8. A fine resolution of O on X. It was proved in [6], see [6, Theorem 2], that
there exist sheaves Ak of (0, k)-currents on X with the following properties:
(i) Ak is equal to E0,k on Xreg,
(ii) A = ⊕kAk is closed under multiplication with smooth (0, ∗)-forms,
(iii) ∂̄ maps Ak → Ak+1 and if E is any vector bundle over X, then the sheaf complex

0 → O(E) → A0(E)
∂̄

−→ A1(E)
∂̄

−→ A2(E)
∂̄

−→ . . .

is exact.

By standard sheaf theory we have canonical isomorphisms

Hk(X,O(E)) =
Ker

(
Γ(X,Ak(E))

∂̄
→ Γ(X,Ak+1(E))

)

Im
(
Γ(X,Ak−1(E))

∂̄
→ Γ(X,Ak(E))

) , k ≥ 1.

4. Singularities of the structure form

In this section we provide a proof of Proposition 3.5. For the first part of the proof
let us fix an embedding i : X → Y where Y is projective and smooth of dimension N .
Recall that the kth Fitting ideal (sheaf) of OY /JX , Fitt0g

k, is the ideal generated
by all rk-minors of (the matrix) gk in a locally free resolution O(Eg

• ), g of OY /JX ,
where rk is the generic rank of gk, see, e.g., [16]. It is well-known that these ideals
are independent of the resolution O(Eg

• ), g, and the zero variety of Fitt0g
k is just the

BEF-variety Zbef

k , cf., Section 3.4. Moreover, since X has pure dimension, Fitt0g
k

are trivial when k ≥ N , see [16, Corollary 20.14]. Let p = N −n be the codimension
of X in Y . For ℓ = 1, . . . , n − 1, let aℓ be the pullback (restriction) of Fitt0g

p+ℓ to
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X. It follows that these ideals only depend on the embedding i : X → Y . Let us call
them the structure ideals on X associated to the given embedding.

Let τ : X̃ → X be a smooth modification that satisfies:
(i) all the ideals τ∗aℓ are principal on X̃ and have simple normal crossings,

(ii) τ−1Xsing is a hypersurface in X̃ with simple normal crossings.
The simple normal crossing assumption means that the ideal τ∗aℓ is generated by a
section sℓ (of a line bundle) that is a monomial in suitable local coordinates.

Our goal is to find a holomorphic section η such that ητ∗ω is smooth for all
structure forms ω coming from locally free Hermitian resolutions O(Eg

•), g of OY /JX

in Y ; eventually we also want to vary the embedding i. We will start by looking for a
section s such that sτ∗ω0 is smooth. Let us fix a Hermitian resolution O(Eg

•), g and
let σk be the pointwise minimal inverse of gk, cf., [8, Section 2]. The denominator
of σk is the modulus square of a tuple of generators of Fitt0g

k, cf. [8, Section 4],
and thus i∗σp+k =: σk is well-defined and almost semimeromorphic on X. By [6,
Lemma 17], for x ∈ X, in a neighborhood U , ω0 admits a representation ω0 = πa,
where a is meromorphic and π = IEp − gp+1σ1. Furthermore, by [8, Lemma 2.1],

(4.1) skτ
∗σk

is smooth in X̃. It follows that τ∗ω0 is semimeromorphic in τ−1U , and since ω0 is
indeed smooth outside Xsing it follows, see [8, Lemma 3.2], that s0τ

∗ω0 is smooth if

s0 is a holomorphic section on X̃ that vanishes enough on the divisor τ−1Xsing.

Lemma 4.1. Let O(Eg
•), g and O(Eg′

• ), g′ be locally free Hermitian resolutions of
OY /JX with corresponding structure forms ω and ω′. If s is a holomorphic section
such that sτ∗ω0 is smooth, then

s21sτ
∗ω′

0

is smooth in X̃.

Proof. Fix a point x ∈ X and let O(Eĝ
•), ĝ be a Hermitian minimal resolution of

OY /JX at x with corresponding structure form ω̂.

It is well-known that Eĝ
• , ĝ is a direct summand of Eg

• , g in a small neighborhood
Ω ⊂ Y of x, and following the proof of Theorem 4.4 in [8], we see that Rĝ ⊕ 0 is
the residue current obtained from the resolution O(Eg

• ), g if it is equipped with an
appropriate metric. For simplicity, we can assume therefore that we have just one
resolution O(Eg

•), g, but two different metrics, and write Rĝ rather than Rĝ ⊕ 0. Let
σ̂k be the pointwise minimal inverses with respect to the new metric on Eg

• of the
mappings gk. In Ω \Xp+1 we have that

Rĝ
p = (IEp − gp+1σ̂1)Rg

p,

see the proof of Theorem 4.4 in [8], and thus

ω̂0 = (IEp − gp+1σ̂1)ω0,

in X \X1. Since s1τ
∗σ̂1 is smooth and ω̂0 has the SEP we conclude that s1sτ

∗ω̂0 is
smooth in τ−1(X ∩ Ω).

By the same arguments, since Eĝ
• , ĝ is also a direct summand of Eg′

• , g
′, in a

possibly smaller neighborhood Ω of x, we have that

ω′
0 = (IEp − (g′)p+1(σ′)1)ω̂0,



16 MATS ANDERSSON & ELIZABETH WULCAN

where (σ′)1 is (the pullback to X of) the pointwise minimal inverse of (g′)p+1. Thus
s21sτ

∗ω0 is smooth in τ−1(X ∩ Ω). Since x was arbitrary we conclude that s21sτ
∗ω0

is smooth in X̃ . �

Summing up so far we have found a holomorphic section s := s21s0 such that sτ∗ω0

is smooth for all structure forms ω associated with Hermitian resolutions O(Eg
• ), g.

Next, we will vary the embedding i : X → Y .

Lemma 4.2. Assume that aℓ and a
′
ℓ are the structure ideals associated with the

embeddings i : X → Y and i′ : X → Y ′, respectively. Then for each ℓ ≥ 1,

(4.2) aℓ · · · an−1 ⊂ a
′
ℓ.

Since the zero set of ak+1 is contained in the zero set of ak it follows that the zero
set Xℓ of aℓ, cf., Section 3.6, coincides with the zero set of a′ℓ. It follows that Xℓ is
independent of the embedding i.

Proof. Given i : X → Y and a point x ∈ X there is a neighborhood V ⊂ X such that
the restriction to V of i factorizes as

V
j
→ Ω̂

ι
→ Ω̂ × B

M =: Ω,

where j is a minimal (and therefore basically unique) embedding at x, BM ⊂ C
M
w

is a ball centered at 0, ι is the trivial embedding z 7→ (z, 0) if z are coordinates in

Ω̂, and Ω is a neighborhood of x in Y . Let now O(Eĝ
• ), ĝ be a Hermitian minimal

resolution of OΩ̂/JV at x in Ω̂ and assume that p̂ is the codimension of V in Ω̂. Thus
p = p̂+M , where as before p is the codimension of X in Y .

Let Ew, δw be the Koszul complex generated by w = (w1, . . . , wM ). The sheaf
complex associated with the product complex Eĝ⊗Ew with mappings g = ĝ(z)+δw ,
cf., Section 3.5, provides a (minimal) resolution of OΩ/JX in Ω, see [4, Remark 8].
Notice that gp+ℓ is the mapping

(Eĝ
p̂+ℓ ⊗Ew

M ) ⊕ (Eĝ
p̂+ℓ+1 ⊗ Ew

M−1) ⊕ · · · ⊕ (Eĝ
p̂+ℓ+M ⊗ Ew

0 )
ĝ(z)+δw
−→

(Eĝ
p̂+ℓ−1 ⊗ Ew

M ) ⊕ (Eĝ
p̂+ℓ ⊗ Ew

M−1) ⊕ · · · ⊕ (Eĝ
p̂+ℓ+M−1 ⊗ Ew

0 ).

Since w = 0 on X, the restriction of gp+ℓ to X splits into the direct sum of the
separate mappings

ĝp̂+ℓ+j : Eĝ
p̂+ℓ+j ⊗ Ew

M−j → Eĝ
p̂+ℓ+j−1 ⊗ Ew

M−j, j = 0, 1, . . . ,M.

Since the optimal rank rp+ℓ of gp+ℓ is attained at every point on Xreg, it follows that

rp+ℓ = r̂p̂+ℓ + r̂p̂+ℓ+1 + · · ·+ rp̂+M , where r̂k is the generic rank of ĝk. Therefore, the

restriction to X of Fitt0g
p+ℓ is equal to (the restriction to X of) the product ideal

Fitt0ĝ
p̂+ℓ · Fitt0ĝ

p̂+ℓ+1 · · ·Fitt0ĝ
p̂+ℓ+M .

Since X is of pure dimension Fitt0ĝ
k are trivial for k ≥ p̂ + n = dim Ω̂, and thus if

âℓ are the structure ideals associated with j : V → Ω̂,

(4.3) aℓ = âℓ · · · âmin(n−1,ℓ+M).

Hence

(4.4) âℓ · · · ân−1 ⊂ aℓ ⊂ âℓ.



ON THE EFFECTIVE MEMBERSHIP PROBLEM ON SINGULAR VARIETIES 17

By the same argument, since i′ factorizes as V
j
→ Ω̂

ι′
→ Ω̂ × B

M ′
, at least if V is

small enough,

(4.5) a
′
ℓ = âℓ · · · âmin(n−1,ℓ+M ′)

and so (4.4) holds at x for a
′
ℓ instead of aℓ. Combining we see that (4.2) holds in a

neighborhood of x. Since x ∈ X is arbitrary, the inclusion holds globally on X. �

If a product of local ideals is principal each of the factors much be principal. Since
by assumption τ∗aℓ are principal, (4.3) thus implies that τ∗âℓ are principal, and by
(4.5) we conclude that τ∗a′ℓ are principal. Let the corresponding generating sections
be denoted by s′ℓ. In fact, in light of (4.3) and (4.5), aℓ = a

′
ℓ whenever M = M ′, i.e.,

dimY = dimY ′.

Lemma 4.3. Let i : X → Y and i′ : X → Y ′ be embeddings of X and into smooth

manifolds, let Ø(Eg
• , g) and Ø(Eg′

• , g
′) be locally free Hermitian resolutions of OY /JX

and OY ′
/JX with corresponding structure forms ω and ω′, respectively, and let sℓ

and s′ℓ, ℓ ≥ 1, be sections generating the ideals τ∗aℓ and τ∗a′ℓ, respectively. If s is a
holomorphic section such that sτ∗ω0 is smooth, then (s′1)

2s21sτ
∗ω′

0 is smooth.

Proof. Take a point x ∈ X, factorize i : X → Y at x as in the proof of Lemma 4.2,

and let O(Eĝ
• , ĝ) be a Hermitian minimal resolution of OΩ̂/JX . Using the notation

from that proof, recall that O(Eĝ
• ⊗ Ew

• ), ĝ + w is a minimal resolution of OΩ/JX .

The associated residue current is equal to Rĝ(z)∧Rw, see [4, Remark 4.6].
Since w are just the coordinate functions in C

M , the Bochner-Martinelli formula
asserts that Rw

M∧dw1∧ . . .∧dwM = (2πi)M [w = 0]. Let N̂ = dim Ω̂, and let ω̂ denote

the structure form in Ω̂ associated with Rĝ(z), so that j∗ω̂ = Rĝ∧dz1∧ . . .∧dzN̂ .
Then,

i∗ω̂ = ι∗R
ĝ∧dz1∧ . . .∧dzN̂ = Rĝ∧dz1∧ . . .∧dzN̂∧[w = 0] ∼

Rĝ∧Rw∧dw1∧ . . .∧dwM∧dz1∧ . . .∧dzN̂ ,

where ∼ denotes “equal to a nonzero constant times”. We conclude that ω̂ is also a
structure form associated to a resolution of OΩ/JX with a special choice of Hermitian
metric. Now Lemma (4.1) implies that s21sω̂0 is smooth.

With the same arguments it follows that ω̂ is the structure form obtained from a
local embedding of X → Ω′ where Ω′ is a neighborhood of x in Y ′ and a Hermit-

ian resolution O(Eg′

• ), g′ in Ω′. By another application of Lemma 4.1 we find that
(s′1)

2s21sω
′
0 is smooth. �

We can now conclude the proof of Proposition 3.5. Fix an embedding i : X → Y
and a resolution O(Eg

•), g with structure form ω. Let s1, . . . , sn−1 be associated

sections on X̃ , and let s0 be a section such that s0τ
∗ω0 is smooth.

If ω′ is a structure form associated with an embedding i′ : X → Y ′, with corre-

sponding sections s′1, . . . , s
′
n−1, and a Hermitian resolution O(Eg′

• ), g′, then Lemma 4.3

asserts that (s′1)
2s21s0τ

∗ω′
0 is smooth. Outside Xℓ, ω′

ℓ = α′
p+ℓ · · ·α

′
p+1ω

′
0, where

α′
k = 1Xreg

∂̄σ′k, cf., (3.14) and [8, Section 2]. Thus, since ω′
ℓ has the SEP, in light

of (4.1), s′ℓ · · · s
′
1(s

′
1)2s21s0τ

∗ω′
ℓ is smooth, and so s′n−1 · · · s

′
1(s

′
1)

2s21s0τ
∗ω′ is smooth.

Lemma 4.2 implies that sℓ · · · sn−1/s
′
ℓ is holomorphic in X̃ . Hence

η := (sn−1 · · · s1)
n+1s21s0
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satisfies that ητ∗ω′ is smooth.

5. Global division problems and residues

Let (3.4) be a generically exact Hermitian complex over a smooth variety X.
Moreover, let φ be a global holomorphic section of E0 such that Rfφ = 0. As
we have seen, then ∇f (Ufφ) = φ. If the double complex Mℓ,k = C0,k(X,Eℓ) is
exact in the k-direction except at k = 0, then it follows, cf., (3.8), that there is a
global holomorphic solution to f1q = φ. Let us see more precisely what is needed:

Notice that Uf
min(M,n+1)φ is automatically ∂̄-closed. Since X is smooth then by the

Dolbeault isomorphism for currents it is possible to solve successively the equations

∂̄wmin(M,n+1) = Uf
min(M,n+1)φ, ∂̄wk = Uf

k φ− fk+1wk+1, 1 ≤ k < min(M,n + 1),

if

(5.1) Hk−1(X,O(Ek)) = 0, 1 ≤ k ≤ min(M,n + 1).

Then

q := Uf
1 φ− f2w2

is a holomorphic solution to f1q = φ. To sum up we have

Proposition 5.1. Assume that X is smooth and φ is a holomorphic section of E0.
If Rfφ = 0 and (5.1) holds, then there is a global holomorphic section q of E1 such
that f1q = φ.

Remark 5.2. Assume that φ belongs to the sheaf Jf = Im f1. This means that
locally we have a holomorphic solution q to ∇fq = φ. However, this does not imply
that there is a global (smooth or current) solution to ∇fv = φ, unless the complex
O(E•), f is exact.

For instance, take global sections f1j of O(d) → P
n, i.e., homogeneous forms f1j

of degree d on C
n+1, and let O(E•), f be the Koszul complex generated by f1 =

(f11 , . . . , f
1
m), cf., Example 3.1, tensorized by O(ρ). Assume that φ is a section of

O(ρ) that is locally in the image of f1, i.e., φ is a global section of Jf ⊗ O(ρ). If
there is a global solution to ∇fv = φ and ρ ≥ (n + 1)d − n so that (5.1) is fulfilled,
then, cf., the proof of Theorem 1.1 below, there are holomorphic forms qj such that∑
f1j qj = φ. However, in general the mapping

⊕Γ(Pn,O(ρ− d))
f1

→ Γ(Pn,Jf ⊗O(ρ))

seems to be surjective only if ρ is much larger than (n + 1)d − n, see, e.g., [10] and
[17, Proposition 4.16].

If O(E•), f is exact, then by the duality principle, φ annihilates the residue Rf ,
and so we get a global solution to ∇fv = φ. One can also piece together local
holomorphic solutions to a global smooth solution elementarily, using the exactness
of O(E•), f , cf., the proof of Lemma 5.6 below. �

We will now present an analogous result for a singular X. Since we have no access
to a ∂̄-theory for currents on X, we must in first place assume that the complex
E•, f is defined in a small neighborhood of X in some embedding in a larger smooth
manifold. One can get rid of the hypothesis of extendability of f , but to the cost of a
slightly more complicated residue current to annihilate; see the proof of Theorem 1.4
below.
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Theorem 5.3. Let i : X → Y be an embedding of X in a projective manifold Y ,
let Ø(Eg

• ), g be a locally free Hermitian resolution of OY /JX in Y , and let ω be the
associated structure form on X.

Let (3.4) be a Hermitian complex over (an open neighborhood U of X in) Y , and
let Rf∧ω be the associated residue current. Moreover let φ be a global section of E0

on X.

(i) If Rf∧ωφ = 0, then there is a global smooth solution W on X to

(5.2) ∇fW = φ.

(ii) If (5.2) has a global smooth solution on X and (5.1) holds, then there is a global
holomorphic section q of O(E1) such that f1q = φ on X.

With minor modifications of the proof we get the following more general version
of Theorem 5.3:

With the general hypotheses of Theorem 5.3, assume that φ is a global holomorphic
section of Eℓ such that f ℓφ = 0.

(i) If Rℓ∧ωφ = 0 then there is a smooth global solution to (5.2).

(ii) If (5.2) has a smooth solution and

H0,k−1−ℓ(X,O(Ek)) = 0, ℓ+ 1 ≤ k ≤ min(M,n+ 1 + ℓ),

then there is a global holomorphic section q of Eℓ+1 such that f ℓ+1q = φ.

Remark 5.4. Assume that we have an embedding i : X → Y and that the data

Ef
• , f and φ are defined globally on Y . If ∇F v = φ has a (current) solution on Y ,

cf., Section 3.7, and all the the occurring ∂̄-equations are solvable, we get a global
holomorphic solution (q, η) on Y to f1q + g1η = φ. If for instance, Y = P

N and

all the bundles Ef
k are direct sums of line bundles O(ℓ) for various ℓ, then q is a

tuple of homogeneous forms qj on C
N+1 such that

∑
f1j qj = φ on X. However,

we get slightly sharper degree estimates if we solve f1q = φ intrinsically on X by
Theorem 5.3 and then extend to a global solution by Proposition 6.1 below. �

Remark 5.5. If we just have a current solution to ∇fV = φ on X it does not follow
that there is a holomorphic solution, not even locally. In fact, if X is non-normal,
there are holomorphic f and φ such that ∂̄(φ/f) = 0 but U = φ/f is not holomorphic.
Thus (f − ∂̄)U = φ but φ is not in the ideal (f). If X is normal but non-smooth,
there are similar examples with more generators, see [25]. �

We cannot assume that the section φ in Theorem 5.3 has a holomorphic extension
to (a neighborhood of X in) Y . However, as a substitute we can find what we will
call a ∇g-closed extension.

Lemma 5.6. Let i : X → Y be an embedding of X in a projective manifold Y and
let φ be a global holomorphic section on X of a line bundle S → Y .

(i) There is a global smooth section Φ =
∑

ℓ≥0 Φℓ of ⊕ℓE0,ℓ(E
g
ℓ ⊗ S)) on Y such that

∇gΦ = 0 on Y and Φ0 = φ on X, i.e., i∗Φ0 = φ.

(ii) Φ is such an extension of φ if and only if

(5.3) Φ −Rgφ = ∇gw

for some current w.
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Recall that Eg
0 ≃ C is a trivial line bundle.

One can obtain a ∇g-closed extension Φ of φ quite elementarily by piecing together
local holomorphic extensions, due to the exactness of O(Eg

•), g. However, we prefer
an argument that also relates to residue calculus as in (ii), and we also think that
Lemma 5.6 (ii) may be of independent interest.

Proof. As noted in Section 3.7, Rgφ is a well-defined ∇g-closed current in Y . In
view of Proposition 3.4 there is a smooth ∇g-closed Φ such that (5.3) holds for some
current w. Thus (i) follows from (ii).

Assume that Φ is a smooth extension of φ as in (i). From (3.6) we have that
∇g(Ug∧Φ) = Φ−Rg∧Φ. Since O(Eg

• ), g is exact, (Rg)ℓ = 0 for ℓ ≥ 1, cf., Section 3.4,
and hence Rg∧Φ = RgΦ0 = Rgφ, since Φ0 = φ on X. Thus

∇g(Ug∧Φ) = Φ −Rgφ.

Conversely, assume that Φ is smooth and (5.3) holds. Then clearly ∇gΦ = 0. We
have to prove that Φ0 = φ on X. Since this is a local statement, given a point on
X there is a neighborhood U where we have holomorphic extension φ̂ of φ. Then
∇g(Ugφ̂) = φ̂−Rgφ̂ = φ̂−Rgφ in U . Thus ∇g(w−Ugφ̂) = Φ− φ̂. By Proposition 3.4

there is a smooth ξ such that ∇gξ = Φ − φ̂. It follows that g1ξ1 = Φ0 − φ̂ and hence

Φ0 = φ̂ = φ in U . �

Proof of Theorem 5.3. Recall from Section 3.7 that Rf∧ωφ = 0 implies that Rf∧Rgφ =
0. Let Φ be a ∇g-closed smooth extension of φ, as in Lemma 5.6 (i), to Y . We claim
that

(5.4) Rf∧Rg ∧ Φ = 0.

In fact, cf., the proof of Lemma 5.6, Rg∧Φ = RgΦ0 = Rgφ. Thus Rf∧Rg ∧ Φ =
Rf∧Rgφ = 0.

From (5.4) and (3.15) we get, cf., Section 3.7,

∇F [(Uf∧Rg + Ug) ∧ Φ] = Φ.

By Proposition 3.4 we have a smooth solution Ψ to ∇FΨ = Φ in Y ; i.e.,

F 1Ψ1 = Φ0, F k+1Ψk+1 − ∂̄Ψk = Φk, k ≥ 1.

If we let lower indices (i, j) denote values in Ef
i ⊗Eg

j , and notice that Φk = Φ0,k, we
see that

(5.5) f1Ψ1,0 + g1Ψ0,1 = Φ0, fk+1Ψk+1,0 + g1Ψk,1 − ∂̄Ψk,0 = 0, k ≥ 1.

Since Ψ is smooth we can define the forms Wk = i∗Ψk,0 on X, and (5.5) then means
that

f1W1 = φ, fk+1Wk+1 − ∂̄Wk = 0, k ≥ 1.

Thus (i) follows.
Now (ii) follows as in the case when X is smooth, cf., the beginning of Section 5

(now W plays the role of Ufφ), but using the sheaves Ak over X, rather than C0,k,
and the isomorphisms in Section 3.8. �

It should be possible to express the ∇F -exactness of Φ in Y by means of Cech
cohomology, then make the restriction to X, and rely on the vanishing of the relevant
Cech cohomology groups on X. In this way one could possibly avoid the reference
to the sheaves Ak over X.
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6. Upper bounds for κ and ν

The following simple (and most certainly well-known) interpolation result gives
an estimate of the number κ introduced in Section 1.

Proposition 6.1. Let i : X → P
N be an embedding. Assume that 0 → O(EM )

gM

→

. . .
g3

→ O(E2)
g2

→ O(E1)
g1

→ O is a resolution of the sheaf O/JX over P
N , where Ek

are as in Example 3.6. The restriction mapping

(6.1) O(PN ,O(ℓ)) → O(X,O(ℓ))

is surjective if ℓ ≥ maxi d
i
N −N . If M < N , then (6.1) is surjective for all ℓ.

In particular, κ ≤ maxi d
i
N −N . For the proof we need, see, e.g., [14], that

(6.2) Hk(PN ,O(ℓ)) = 0 if ℓ ≥ −N or k < N.

Proof. Let Φ be a smooth ∇g-closed extension of φ to P
N as in Lemma 5.6. Notice

that ΦN is a (0, N)-form that takes values in ⊕iO(ℓ − diN ) so by (6.2) there is a
smooth solution to ∂̄wN = ΦN if ℓ − diN ≥ −N . We can then successively find

smooth solutions to the equations ∂̄wk = Φk + gk+1wk+1 for k = N − 1, . . . , 1.

Finally we obtain the holomorphic section φ̂ = Φ0 + g1w1 of O(ℓ) over P
N , which,

since w1 is smooth, coincides with Φ0 on X. If M < N no cohomological obstruction
occurs, cf., (6.2). �

Let MX = C[z0, . . . , zN ]/JX , where JX is the homogeneous ideal associated with
X, cf., Example 3.6. The regularity regX of X introduced by Eisenbud and Goto,
[18], is defined as maxi,k(dik−k) for a minimal free resolution of MX as in Example 3.6.
It follows from Proposition 6.1 that κ ≤ regX. This estimate also follows from [18],
see [17, Proposition 4.16]. The same proposition also implies that H i(X,O(ℓ)) = 0
for all i ≥ 1 if ℓ ≥ regX − 1; thus ν ≤ regX − 1. It follows that

(6.3) max(dmin(m,n+ 1) + ν, d+ κ) ≤ dmin(m,n + 1) + regX.

If m > 1 we actually have strict inequality in (6.3).
If MX is Cohen-Macaulay and X is not contained in any hyperplane in P

N , then
regX ≤ degX−(N−n), see e.g., [17, Corollary 4.15]. In that case (if n, d,degX ≥ 2)
the last two entries in the estimates in Theorem 1.1 can be omitted unless c∞ = −∞.
A particular case is when X is a complete intersection:

Example 6.2. Assume that X ⊂ P
N is a reduced complete intersection not contained

in a hyperplane, i.e., there are homogeneous forms g1, . . . , gN−n such that (gj) = JX

and dj := deg gj ≥ 2. Then the Koszul complex generated by gj is a resolution,
and it terminates before level N unless n = 0. As long as n > 0 thus (6.1) is
surjective for all ℓ, i.e., κ = −∞. If n = 0, then d1N = d1 + d2 + · · · + dN and hence
κ ≤ d1+d2+ · · ·+dN −N. It is easy to see that regX = d1+ · · ·+dN−n−(N−n) and
thus ν ≤ d1+ · · ·+dN−n−(N−n)−1. By Bezout’s formula, degX = d1 · · · dN−n and
since dj ≥ 2 this is larger than or equal to ≥ d1 + · · ·+ dN−n = regX + (N −n). �

We do not know whether κ and ν always are small compared to degX.
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7. Proof of Theorem 2.4

Let f1, . . . , fm be the d-homogenizations of the polynomials F1, . . . , Fm, considered

as sections of O(d)|X → X. Let O(Ef
• ), f be a locally free resolution of OX/Jf over

X, where Ef
k have the form ⊕iE

i
k ⊗ O(−dik) and Ei

k are trivial line bundles, cf.

Section 3.6, and let Rf be the associated residue current on X. Recall that, cf.,
Section 3.4, that Rf = (Rf )0.

Claim. The hypothesis (2.4) implies that 1X∞R
f = 0.

By the dimension principle, 1X∞R
f
0 = 0 since the current has bidegree (0, 0) and

support on X∞, which has codimension at least 1. We proceed by induction so

assume that 1X∞R
f
k = 0. Outside Zbef

k+1 we then have, cf., Section 3.4, that

1X∞R
f
k+1 = 1X∞αk+1R

f
k = αk+11X∞R

f
k = 0

since αk+1 is smooth there. Thus 1X∞R
f
k+1, which has bidegree (0, k+1), has support

on X∞∩Zbef

k+1 and in view of (2.4) and the dimension principle it must vanish. Thus
the claim follows.

Fix an integer ρ ≥ deg Φ. Notice that the complex Ef
• ⊗ O(ρ), f also has Rf as

its associated residue current. Let φ be the ρ-homogenization of Φ, so that φ is a

section of O(ρ) = Ef
0 ⊗ O(ρ). By the duality principle, Rfφ = 0 in V since Φ is in

(Fj), and thus

(7.1) 1VR
fφ = 0.

Since Rfφ = 1V R
fφ + 1X∞R

fφ, cf., Section 3.1, we conclude, from (7.1) and the
claim, that Rfφ = 0.

Assume that the complex Ef
• , f ends at level M and let

rf = max
i
dimin(n+1,M).

If also ρ ≥ rf + ν, it follows from Proposition 5.1 that we have a global holomorphic
q on X such that f1q = φ. Since qj take values in O(ρ−d)|X they have holomorphic

extensions to P
N if ρ − d ≥ κ. We then get the desired polynomial solution Qj to

(1.1) after dehomogenization. Thus Theorem 2.4 follows with

β = max(rf + ν, d+ κ).

If f1, . . . , fm form a complete intersection, i.e., codim XZ
f = m (so that Zf = ∅ if

m ≥ n+1), then the Koszul complex generated by fj provides a resolution of ØX/Jf .
Using the notation from the preceding proof, we then have rf = dmin(m,n + 1).
Since a complete intersection is locally Cohen-Macaulay, Zbef

k = ∅ for k > m. The

condition (2.4) then means that Zf has no irreducible component contained in X∞.
In particular, Corollary 2.3 for smooth X and Corollary 2.2 follow.

8. Integral closure, distinguished varieties and residues

Let f1, . . . , fm be global holomorphic sections of the ample Hermitian line bundle
L → X, and let Jf be the coherent ideal sheaf they generate. Let

ν : X+ → X

be the normalization of the blow-up of X along Jf , and let W =
∑
rjWj be the

exceptional divisor; here Wj are irreducible Cartier divisors. The images Zj = ν(Wj)
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are called the Fulton-MacPherson distinguished varieties associated with Jf . If f =
(f1, . . . , fm) is considered as a section of E∗ = ⊕m

1 L, then ν∗f = f0f ′, where f0

is a section of the line bundle O(−W ) defined by W , and f ′ = (f ′1, . . . , f
′
m) is a

non-vanishing section of ν∗E ⊗ O(W ) where, O(W ) = O(−W )−1. Furthermore,
ωf := ddc log |f ′|2 is a smooth first Chern form for ν∗L⊗O(W ).

Recall that (a germ of) a holomorphic function φ belongs to the integral closure
Jf,x of Jf,x at x if ν∗φ vanishes to order (at least) rj on Wj for all j such that x ∈ Zj.
This holds if and only if |ν∗φ| ≤ C|f0| (in a neighborhood of the relevant Wj), which

in turn holds if and only if |φ| ≤ C|f | in some neighborhood of x. Let J f denote the
integral closure sheaf. It follows that

(8.1) |φ| ≤ C|f |ℓ if and only if φ ∈ J ℓ
f .

If X is smooth it follows that φ is in the integral closure, if for each j, φ vanishes
to order rj at a generic point on Zj . See [26, Section 10.5] for more details (e.g., the
proof of Lemma 10.5.2).

We will use the geometric estimate

(8.2)
∑

rjdeg LZj ≤ deg LX

from [15], see also [26, (5.20)].

Lemma 8.1. There is a number µ0, only depending on X, such that if

(8.3) |φ| ≤ C|f |µ+µ0 ,

then Rf∧ωφ = 0 if ω is a structure form of X and Rf is the residue current obtained
from the Koszul complex of f . If X is smooth one can take µ0 = 0.

This proposition (and its proof) is analogous to Proposition 4.1 in [7]; the im-
portant novelty here is that µ0 can be chosen uniform in ω, which is ensured by
Proposition 3.5. However, for the readers convenience and further reference we dis-
cuss the proof.

Proof. Let us first assume that X is smooth and µ0 = 0, and that φ satisfies (8.3).
Then ω is smooth so we have to show that Rfφ = 0. If f ≡ 0 on (a component of) X,
then Rf ≡ 1 and φ ≡ 0, and thus φRf = 0. Let us now assume that codimZf ≥ 1.

Then Rf
0 = 0 by the dimension principle. Let ν : X+ → X be the normalization of the

blow-up along Jf as above, so that ν∗f = f0f ′. Using the notation in Example 3.1,
then ν∗σ = (1/f0)σ′, where 1/f0 is a meromorphic section of Ø(W ) and σ′ is a
smooth section of ν∗E ⊗O(−W ). It follows that

ν∗(σ∧(∂̄σ)k−1) =
1

(f0)k
σ′∧(∂̄σ′)k−1,

and hence

ν∗Rf,λ
k = ∂̄|f0f ′|2λ∧

1

(f0)k
σ′∧(∂̄σ′)k−1,

when k ≥ 1. Recall that Rf
0 = 0 unless f ≡ 0 on some component, in which case

φ ≡ 0 as well and Rf = 1 so that Rfφ = 0.
Since f ′ is nonvanishing, the value at λ = 0 is precisely, see, e.g., [1, Lemma 2.1],

(8.4) R+
k := ∂̄

1

(f0)k
∧σ′∧(∂̄σ′)k−1.
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Notice that

(8.5) ν∗R
+
k = Rf

k .

Assume that φ satisfies (8.3) for µ0 = 0. Then |ν∗φ| ≤ C|f0|µ and since X+ is
normal it follows that ν∗φ contains a factor (f0)µ. Therefore,

(8.6) ν∗φ∂̄
1

(f0)k
= 0, k ≤ µ,

because of (3.1). Moreover, since σ′∧(∂̄σ′)k−1 is smooth on X+, it follows from (8.6)

and (8.4) that ν∗φR+
k = 0. Therefore, cf., (8.5), Rf

kφ = ν∗(R
+
k ν

∗φ) = 0.

Notice that we could have used any normal modification π : X̃ → X such that π∗f
is of the form f0f ′ in the proof so far.

Now consider a general X. Let us take a smooth modification τ : X̃ → X as
in Section 4, such that τ∗ω is semimeromorphic with a denominator that is locally
a monomial in suitable coordinates sj. In this proof it is convenient to use the
regularization

Rf,ǫ := 1 − χ(|f |2/ǫ) + ∂̄χ(|f |2/ǫ)∧u,

where u is the form from Example 3.1 and χ is a smooth approximand of the charac-
teristic function of [1,∞), cf., the beginning of Section 3, so that all the approximands

Rf,ǫ are smooth. If f ≡ 0 on a component X̃j of X̃, then Rf,ǫ ≡ 1 on X̃j and if

φ satisfies (8.3) for any µ0, then φ ≡ 0 on X̃j . Hence 1
X̃j
Rf,ǫ∧ωφ = 0 and so

1
X̃j
Rf∧ωφ = 0. We can therefore assume that f 6≡ 0 on X̃. Locally on X̃ , the

action of Rf,ǫ∧ωφ on a test form is a sum of integrals like (suppressing the notation
τ∗ for simplicity)

∫

X̃

ds1∧ . . .∧dsn

sα1+1
1 · · · sαn+1

n

∧Rf,ǫφ∧ξ,

where αj are nonnegative integers and ξ is a smooth form. Following [7, Section 3]
one can integrate by parts |α| = |α1| + · · · + |αn| times, and get a constant times

(8.7)

∫

X̃

ds1∧ . . .∧dsn
s1 · · · sn

∧∂αs
(
Rf,ǫφ∧ξ

)
,

where ∂αs = ∂|α|

∂s
α1
1 ···∂sαn

n
. If µ0 ≥ µ+ |α| + 1 and φ satisfies (8.3), then by the smooth

Briançon-Skoda theorem, locally in X̃, φ is in the ideal (f)µ+|α|+1. Therefore,

|∂ℓsφ| ≤ C|f |µ+|α|−|ℓ|+1.

Following [7, Section 4] one finds that ∂ℓsR
f,ǫ has a certain homogeneity with a

singularity that increases with ℓ: if we take a smooth modification π : X̂ → X̃
such that π∗f is principal, then ∂ℓsR

f,ǫ is like 1/(f0)µ+|ℓ|+1 and with support where
|f |2 ∼ ǫ. It follows by dominated convergence that (8.7) tends to zero when ǫ → 0,
and this means that Rf∧ωφ = 0.

In view of Proposition 3.5 we can thus choose µ0 that is larger than or equal to
any number µ+ |α| + 1 that may appear here, and so the lemma follows. �
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9. Proofs of Theorems 1.1 and 2.1 and variations

For the proof of Theorem 1.1, besides the basic Lemma 8.1 we also need

Lemma 9.1. Assume that V ⊂ C
N is smooth, and let ω be a structure form on X.

Then there is a number µ′ such that zµ
′

0 ω is almost smooth on X.

Proof. Let τ : X̃ → X be as in Section 4. Then ω̃ := τ∗ω is a semimeromorphic form
whose denominator locally is a monomial whose zeros are contained in τ−1Xsing.

Since V is smooth, Xsing ⊂ X∞ ⊂ {z0 = 0}, and it follows that τ∗(zµ
′

0 )ω is smooth

for some large enough number µ′. Hence zµ
′

0 ω is almost smooth. �

Proof of Theorem 1.1. Let fj be the d-homogenizations of Fj and let Rf be the

residue current constructed from the Koszul complex Ef
• , δf generated by f1, . . . , fm,

and let φ be the ρ-homogenization of Φ, where

(9.1) ρ = max(deg Φ + (µ+ µ0)d
c∞degX, dmin(m,n+ 1) + ν, d+ κ),

where µ0 is chosen as in Lemma 8.1; in particular, µ0 = 0 if X is smooth. Throughout
this proof we will use the notation from Section 8.

The assumption (1.4) implies that ν∗φ vanishes to order (µ + µ0)rj on each Wj

such that ν(Wj) is not contained in X∞. Now consider Wj such that ν(Wj) ⊂ X∞.
If Ω is a first Chern form for O(1)|X , e.g., Ω = ddc log |z|2, then dΩ is a first Chern
form for L = O(d)|X on X (notice that d is the degree and not the differential). By
(8.2) we therefore have that

rj

∫

Zj

(dΩ)dimZj ≤

∫

X

(dΩ)n.

which implies that

(9.2) rj ≤ dcodimZjdegX.

By the choice (9.1) of ρ, φ is of the form z
(µ+µ0)dc∞degX
0 times a holomorphic section,

and thus ν∗φ vanishes to order at least (µ+ µ0)rj on Wj. Thus φ vanishes to order
(µ + µ0)rj on Wj for each j and thus (8.3) holds, cf., (8.1). It thus follows from

Lemma 8.1 that φRf∧ω = 0.

Since ρ ≥ dmin(m,n + 1) + ν it follows that Ef
k ⊗ O(ρ) is a direct sum of line

bundles O(ℓi), where ℓi ≥ ν. By Theorem 5.3 we therefore have a holomorphic
solution to fq = φ on X. By the definition of κ, q extends to a global section over
P
N . After dehomogenization, part (i) of Theorem 1.1 follows.

For the second part choose ρ = max(deg Φ + µdc∞degX + µ′, dmin(m,n + 1) +
ν, d + κ), where µ′ is chosen as in Lemma 9.1, and let φ and φ′ be the ρ- and
(deg Φ + µdc∞degX)-homogenizations of Φ, respectively. Then

φRf∧ω = φ′Rf∧β,

where β is almost smooth, and by (1.5) and (9.2),

(9.3) |φ′| ≤ C|f |µ.

Now take a smooth modification π : X̃ → X such that β = π∗β̃, where β̃ is smooth,
and f = f0f ′, where f0 is a section of a line bundle and f ′ is nonvanishing. Then
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φRf∧ω is the push-forward under π of a finite sum of currents like

(π∗φ′)∂̄
1

(f0)µ
∧smooth,

cf., (8.4), (8.5), and in view of (9.3) they must vanish. Thus φRf ∧ ω = 0 and (ii) is
proved as (i). �

If X = C
n and m ≤ n, then, cf., (6.2), there are no cohomological obstructions at

all, and so we get the estimate (1.7).

Remark 9.2. If

(9.4) codim (Zf ∩Xℓ) ≥ µ+ ℓ+ 1, ℓ ≥ 0

where Xℓ is as in Section 3.6 (thus either Xsing ∩ Zf = ∅ or m < n), then Theo-
rem 1.1 (i) holds with µ0 = 0. To see this, take ρ ≥ deg Φ + µdc∞degX in the proof
of Theorem 1.1. Then φRf = 0 on Xreg, and thus φRf ∧ ω = 0 there. From (9.4)

and the dimension principle it follows that φRf∧ω0 = 0.
To see this, take ρ ≥ deg Φ + µdc∞degX in the proof of Theorem 1.1. Then

φRf = 0 on Xreg, and thus φRf ∧ ω has support on Zf ∩X0. Since φRf ∧ ω0 has

bidegree at most (n, µ) and codim (Zf ∩ X0) ≥ µ + 1 by (9.4), it follows from the
dimension principle that φRf∧ω0 = 0.

Thus φRf∧ω1 = φRf∧α1ω0 vanishes outside X1, so again by (9.4) and the dimen-
sion principle we find that φRf∧ω1 vanishes identically. By induction, φRf∧ω =
0. �

Example 9.3. In light of Example 2.3 of Kollár in [24] one can see that the power
c∞ in Theorem 1.1 cannot be improved: Let X = P

n and let m be an integer with
2 ≤ m ≤ n. Consider the m polynomials

zd1 , z1z
d−1
m − zd2 , . . . , zm−2z

d−1
m − zdm−1, zm−1z

d−1
m − 1,

in C
n. The associated projective variety {z0 = z1 = · · · = zm−1 = 0} ⊂ X∞ has

codimension m, and hence c∞ = m, cf., (1.3). It follows from Theorem 1.1 that
we have a representation (1.1) with Φ = 1 and degFjQj ≤ mdm (if d is not too
small). However, if Qj are any polynomials so that (1.1) holds with Φ = 1, then by
considering the curve

t 7→ (td
m−1−1, td

m−2−1, . . . , td−1, 1/t, 0, . . . , 0),

one can conclude that Q1 must have degree at least dm−d so that degF1Q1 ≥ dm. �

In [3] is used a slight generalization of the Koszul complex to deal with a positive
power J ℓ

f of Jf , cf. [15, p. 439]. The first mapping in the complex is the natural

mapping E⊗ℓ → C induced by the fj. The associated residue current is the push-
forward of currents like

∂̄
1

(f0)k
∧smooth

for ℓ ≤ k ≤ µ + ℓ− 1. By an analogous proof we get the following generalization of
Theorem 1.1.

Theorem 9.4. With the notation in Theorem 1.1, if

|Φ| ≤ C|F |µ+µ0+ℓ−1
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locally on V , then Φ ∈ (Fj)
ℓ and there are polynomials QI such that

Φ =
∑

I1+···+Im=ℓ

F I1
1 · · ·F Im

m QI

and

deg (F I1
1 · · ·F Im

m QI) ≤

max
(
degΦ + (µ+ µ0 + ℓ− 1)dc∞degX, d(min(m,n+ 1) + ℓ− 1) + ν, dℓ+ κ

)
.

There is also an analogous generalization of part (ii) of Theorem 1.1.

Proof of Theorem 2.1. Choose ρ = max(deg Φ+µdc∞degX, dmin(m,n+1)+ν, d+κ).
As in the proof of Theorem 1.1, let φ be the ρ-homogenization of Φ and let Rf ∧ ω
be the residue current associated with the Koszul complex of the homogenizations
fj of Fj , and make the decomposition

(9.5) Rf ∧ ω = 1VR
f ∧ ω + 1X∞R

f ∧ ω.

Since codimZf ∩ V ≥ m, the duality principle for a complete intersection implies
that φRf = 0 in Vreg = V \X0, and so 1V φR

f∧ω0 has support on Zf ∩X0.

Consider now the normalization of the blow-up ν : X+ → X, and let R+ :=
∑
R+

k

be as in the proof of Lemma 8.1. LetWj be the irreducible components of W = ν−1Zf

that are contained in ν−1X∞ and let W ′ be their union. We claim that

(9.6) 1X∞R
f = ν∗

(
1W ′R+

)
.

In fact, by (3.2),

(9.7) 1X∞R
f = ν∗

(
1ν−1X∞

R+
)

= ν∗(1ν−1X∞
(1W ′ + 1W\W ′)R+

)
.

By, (3.3), 1ν−1X∞
1W ′R+ = 1W ′R+. Moreover,

1ν−1X∞
1W\W ′∧∂̄

1

(f0)k
= 0

by the dimension principle since ν−1X∞ ∩W \W ′ has codimension at least 2 in X+.
In view of (8.4) we conclude that 1ν−1X∞

1W\W ′R+ = 0, and so (9.6) follows from
(9.7).

Claim. 1X∞φR
f vanishes outside X0.

In view of (9.6), the dimension principle, and (8.4) it is enough to show that
ν∗φ1W ′R+ vanishes in a neighborhood of each point x on W ′ where W ′ and W
are regular. Consider now such a regular point x on say Wj. In a neighborhood of x
we have that f0 = srjv, where s is a coordinate function and v is nonvanishing and
rj is as in Section 8. By the choice of ρ, ν∗φ vanishes to order (at least) dc∞µdegX
on W ′ and thus in view of (9.2) it vanishes to order µrj on Wj and hence it has a
factor sµrj . Now in a neighborhood of x we have

∂̄
1

(f0)k
= ∂̄

1

skrj
· smooth

and it follows that it is annihilated by ν∗φ for k ≤ µ. Thus the claim follows in light
of (8.4).

Summing up so far we have found, in view of (9.5), that φRf∧ω0 has support
on Zf ∩ X0. By (2.2) and the dimension principle we conclude that it vanishes
identically, since the bidegree of Rf is at most (0, µ). Thus φRf∧ω1 = φRf∧α1ω0
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vanishes outside X1, and by (2.2) and the dimension principle, it vanishes identically.
By induction, it follows that φRf∧ωℓ = 0 for each ℓ. We conclude that φRf ∧ω = 0.
Now the theorem follows from Theorem 5.3 as in previous proofs. �

10. Proofs of Theorem 1.4 and variations

We first look at the case when X is smooth.

Theorem 10.1. Let X be a smooth projective variety, let L → X be an ample
Hermitian line bundle, and let A → X is a line bundle that is either ample or big
and nef. Moreover, let f1, . . . , fm be global holomorphic sections of L, and let φ be a
section of

L⊗s ⊗KX ⊗A,

where s ≥ min(m,n+ 1). If

(10.1) |φ| ≤ C|f |µ

on X, then there are holomorphic sections qj of L⊗(s−1) ⊗KX ⊗A such that

(10.2) f1q1 + · · · + fmqm = φ.

Let Jf be the ideal sheaf generated by fj and assume that the associated dis-
tinguished varieties Zk have multiplicities rk, cf., Section 8. If φ vanishes to (at
least) order rkµ at a generic point on Zk, for each k, then, cf., e.g., the proof of
Lemma 10.5.2 in [26], (10.1) holds, and thus we have

Corollary 10.2. If φ vanishes to order rkµ at a generic point on Zk, for each k,
then we have a representation (10.2).

This corollary is precisely part (iii) of the main theorem in [15, p. 430], except for
that we have µrk rather than (n + 1)rk, cf., the discussion in Remark 1.2. Recall
from Section 8 that one can estimate the multiplicities rk; for instance rk ≤ deg LX,
see (8.2).

One can also have a mixed hypothesis, and for instance assume that (10.1) holds
outside a hypersurface H and that φ vanishes to order µrk on each distinguished
variety Zk contained in H; this would lead to an “abstract” Hickel theorem.

Proof of Theorem 10.1. Let E•, δf be the Koszul complex generated by f1, . . . , fm,

as in Example 3.1, tensorized with L⊗s ⊗ A ⊗ KX and let Rf be the associated
residue current on X. From the hypothesis (10.1) and Lemma 8.1 we conclude that

Rfφ = 0. The bundle Ek is a direct sum of line bundles L⊗(s−k) ⊗ A ⊗KX and so
all the relevant cohomology groups (5.1) vanish by Kodaira’s vanishing theorem, or,
at the top degree, by the Kawamata-Viehweg vanishing theorem if A is nef and big.
Thus Theorem 10.1 follows from Proposition 5.1. �

Proof of Theorem 1.4. Let Ef
• , δf be the Koszul complex generated by f1, . . . , fm

tensorized with L⊗s. The choice of s guarantees that (5.1) is satisfied and thus by
the same arguments as in the proof of Theorem 5.3 (ii) we get the desired holomorphic
solution to (1.9) as soon as we have a smooth solution to

(10.3) ∇fW = φ
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on X. Hence to prove the theorem it suffices to show that there is a µ0 such that
we can find a smooth solution to (10.3) for each global section φ of L⊗s that satis-
fies (1.8). The strategy will be to follow and further elaborate the proof of Theo-
rem 5.3 (i). Note that we cannot apply Theorem 5.3 (i) directly since a priori L and
the sections fj are only defined on X.

We first claim that there is an embedding i : X → Y into a smooth projective
manifold Y and a line bundle  L → Y such that L =  L|X , i.e., L = i∗  L. In fact, if M
is large enough, there are embeddings ij : X → P

Nj , j = 1, 2, such that O(1)
PN1 |X =

LM and O(1)
PN2 |X = LM+1. If πj : PN1 × P

N2 → P
Nj , then  L := π∗2O(1)

PN2 ⊗
π∗1O(−1)

PN1 is a line bundle over Y := P
N1×P

N2 and its restriction to X ≃ ∆X×X ⊂
Y is precisely L. This argument was recently communicated to us by R. Lazarsfeld.
Let O(Eg

•), g be an Hermitian resolution of OY /JX in Y .
In general we cannot assume that the fj extends holomorphically to Y or even a

neighborhood of X in Y . However, let Eh
• , h be a complex that is isomorphic to but

disjoint from Eg
• , g. Then, in view of Lemma 5.6, we can choose smooth ∇h-closed

extensions f̃j ∈ ⊕iE0,i(E
h
i ⊗  L) of fj to Y , as defined in Section 5. Let E1, . . . , Em be

trivial line bundles as in Example 3.1, with basis elements e1, . . . , em, respectively,
and let f̃ be the section f̃ := f̃je

∗
j of Eh

• ⊗ E∗, where E :=
⊕m

j=1  L−1 ⊗ Ej and e∗j
are the dual basis elements. Note that each f̃j has even degree so that f̃ has odd
degree.

Inspired by Example 3.1 we want to construct a Koszul complex of f̃ as an exten-

sion of Ef
• , δf and an associated residue current. In order to do this we will need to

take products of sections of Eh
• . We therefore introduce EH

• :=
⋃

k≥1(E
h
• )⊗k. Since

Eh
0 is the trivial line bundle, (Eh

• )⊗k is a natural subcomplex of (Eh
• )⊗(k+1) and

thus the definition makes sense. In fact, our objects will all take values in (Eh
• )⊗n.

Next let δ
f̃

: EH
• ⊗ ΛkE → EH

• ⊗ Λk−1E be contraction with f̃ , i.e., for a section

ξ =
∑

I={i1,...,ik}
ξI ∧ eI , with ξI ∈ EH

• and eI = ei1 ∧ · · · ∧ eik , of EH
• ⊗ ΛkE,

δf̃ ξ =
∑

I(−1)deg ξI ξI
∑

j(−1)j−1f̃ij ∧ eI\ij .

As long as we restrict to X we can write f̃ = f −f ′, where f :=
∑
fje

∗
j and f ′ has

positive form degree. Let δf ′ be defined analogously to δ
f̃

and let σ be the section of

Ef̃ over X \Z of pointwise minimal norm such that δfσ = 1 there, cf. Example 3.1.
Then

δ
f̃
σ = δfσ − δf ′σ = 1 − δf ′σ

on X \Z. Notice that δf ′σ has even degree, and form bidegree at least (0, 1), so that

1

1 − δf ′σ
= 1 + δf ′σ + (δf ′σ)2 + · · · + (δf ′σ)n

is a form on X \ Z with values in EH
• ⊗ Λ•E. Let σ̃ := σ/(1 − δf ′σ) on X \ Z; then

δ
f̃
σ̃ = 1 on X \ Z. Next, let

ũ =
σ̃

(δf̃ + ∇h)σ̃
=

∑

k≥1

σ̃ ∧ (−∇hσ̃)k−1,

cf. Example 3.1. Note that δ
f̃

anticommutes with (the extension to EH
• ⊗ Λ•E of)

∇h, i.e., δ
f̃
⊗∇h = −∇h ⊗ δ

f̃
. It follows that

(δf̃ + ∇h)ũ = 1
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on X \ Z, cf. Section 3.2.
Let Rg be the residue current associated with the resolution O(Eg

•), g. Recall
from Section 3.6 that if α is a sufficiently smooth form on X, then α ∧Rg is a well-
defined; in particular, χ(|f |2/ǫ)ũ∧Rg is a well-defined current in Y with values in
EH

• ⊗ Λ•E ⊗ Eg
• . Letting

∇ = g + δ
f̃

+ ∇h = g + δ
f̃

+ h− ∂̄,

note that

∇(χ(|f |2/ǫ)ũ∧Rg + Ug) = I − R̃ǫ∧Rg,

where R̃ǫ = I − χ(|f |2/ǫ)I + ∂̄χ(|f |2/ǫ) ∧ ũ.
We claim that χ(|f |2/ǫ)ũ∧Rg has a limit when ǫ→ 0. To see this, recall from Sec-

tion 3.6, using the notation from that section, that χ(|f |2/ǫ)ũ∧Rg∧γ = i∗(χ(|f |2/ǫ)ũ∧ω).
Next, notice that

(10.4) σ̃∧(−∇hσ̃)k−1 = σ∧(∂̄σ)k−1 ∧
n∑

j=0

ckj (δf ′σ)j ,

for some numbers ckj , since σ∧σ = 0. Let π : X̃ → X be a smooth modification

such that π∗ω is semimeromorphic and π∗σ is of the form σ′/f0, cf. Section 8. Then
π∗ũ is a finite sum of terms αk/(f

0)k, where αk are smooth, and hence, by [12],
limǫ→0 π

∗(χ(|f |2/ǫ)∧ũ∧ω) exists. Since γ is non-vanishing it follows that the limit
of χ(|f |2/ǫ)ũ∧Rg exists.

Let

Ũ∧Rg = lim
ǫ→0

χ(|f |2/ǫ)ũ∧Rg, R̃∧Rg = lim
ǫ→0

R̃ǫ∧Rg.

Then

∇(Ũ∧Rg + Ug) = I − R̃∧Rg,

and if Φ is a smooth ∇g-closed extension of φ as in Lemma 5.6 (regarded as a section

of EH
• ⊗ Λ•E ⊗ Eg

•), it follows that

(10.5) ∇
(
(Ũ∧Rg + Ug)

)
∧Φ) = Φ

in Y as soon as

(10.6) R̃∧Rgφ = 0,

since, as was noted in the proof of Lemma 5.6, Rg∧Φ = Rgφ.
We claim that there is a µ0, only depending on X, such that (10.6) holds as soon as

φ satisfies (1.8). Note that (10.6) is equivalent to that R̃∧Rgφ∧γ = limǫ→0 i∗(R̃
ǫφ∧ω)

vanishes. Let τ : X̃ → X be a smooth modification as in Section 4, so that τ∗ω =
smooth
sα+1 as in the proof of Lemma 8.1. Following that proof, the action of R̃ǫφ∧ω on

a test form is a sum of integrals like (suppressing τ∗ for simplicity)

(10.7)

∫

X̃

ds1∧ . . .∧dsn
s1 · · · sn

∧∂αs
(
R̃ǫφ∧ξ

)
,

where ξ is smooth. As in the proof of Lemma 8.1 it is enough to consider components

of X̃ where f does not vanish identically.
As in the proof of Lemma 8.1, ∂αs R̃

ǫ has a certain homogeneity that increases with

ℓ. Indeed, in view of (10.4), R̃ǫ is a finite sum of terms like

∂̄χ(|f |2/ǫ)∧σ∧(∂̄σ)k−1∧(f ′ · σ)j ,
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where k + j ≤ n for degree reasons; recall that f ′ has form degree at least (0, 1).

Now, if we take a smooth modification π : X̂ → X̃ such that π∗f is principal,

then π∗σ = smooth/f0, π∗
(

∂
∂sj
σ
)

= smooth/(f0)2 and combining with the proof of

Lemma 8.1 it follows that π∗(∂ℓsR̃
ǫ) is like 1/(f0)n+|ℓ|+1 with support where |f |2 ∼ ǫ.

Choose µ0 ≥ n+ |α| + 1. Then |∂ℓsφ| ≤ C|f |n+|α|−|ℓ|+1, cf. the proof of Lemma 8.1.
Now by dominated convergence (10.7) tends to zero when ǫ→ 0, and since the choice
of µ0 only depends on α and n the claim follows.

To sum up so far, if φ satisfies (1.8), we have a current solution to ∇Ψ = Φ. By
a slight modification of Proposition 3.4 we also have a smooth solution. To see this,
let EF

• = Λ•E ⊗ Eg
• and let M• and ME

• be defined as in Section 3.3, but for the

complex EH
• instead of Ef

• . Then we have the double complex

Bℓ,k = ⊕jC0,j(E
H
j+k ⊗ EF

ℓ ) =: Mk(EF
ℓ )

with mappings ∇h : Bℓ,k → Bℓ,k−1 and F := g + δf̃ : Bℓ,k → Bℓ−1,k; indeed note that

∇h ◦ F = −F ◦ ∇h. If Bj :=
⊕

ℓ+k=j Bℓ,k we get the associated total complex

. . .
∇
−→ Bj

∇
−→ Bj−1

∇
−→ . . . .

Let BE
ℓ,k = ⊕jE0,j(E

H
j+k ⊗ EF

ℓ ) =: ME
k(EF

ℓ ) with total complex BE
• . Moreover, let

B•(X) and BE
• (X) be the associated complexes of global sections. Note that we have

natural mappings

(10.8) Hj(BE
• (X)) → Hj(B•(X)), j ∈ Z.

Proposition 3.4 implies that the natural mappingsHk(ME
• (X,EF

ℓ )) → Hk(M•(X,EF
ℓ ))

are isomorphisms. Now, by repeating the proof of Proposition 3.4 with M•, ME
• ,

C0,•, and E0,• replaced by B•, B
E
• , M•, and ME

• , respectively, using that the double
complex Bℓ,k is bounded in the ℓ-direction, we can therefore prove that the mappings
(10.8) are in fact isomorphisms, and so the current solution (10.5) gives a smooth
solution to ∇Ψ = Φ.

Let lower indices (i, j, k) denote components in EH
i ⊗ ΛjE ⊗ Eg

k . Then Φ =
Φ0,0,0 + Φ0,0,1 + · · · + Φ0,0,n, where Φ0,0,k has form bidegree (0, k). Notice that we

have the decomposition f̃ = f0 − f ′ in Y , where f0 denotes the 0-component of f̃
and hence is a smooth extension of f to Y . It follows that

(10.9) hΨ1,0,0 + δf0Ψ0,1,0 + gΨ0,0,1 = Φ0,

hΨ1,j,0 + δf0Ψ0,j+1,0 + gΨ0,j,1 − ∂̄Ψ0,j,0 = 0, j ≥ 1,

Indeed, note that δf ′Ψi,j,k has positive degree in EH
• for all non-vanishing Ψi,j,k.

Since Ψ is smooth, we can define the smooth forms Wj := i∗Ψ0,j,0 on X. Since
gΨ0,j,1 = g1Ψ0,j,1 and hΨ1,j,0 = h1Ψ1,j,0 are in JX , (10.9) implies

δfW1 = φ, δfWj+1 − ∂̄Wj = 0, j ≥ 1.

Thus we have shown that if µ0 ≥ n + |α| + 1 and φ satisfies (1.8), then we get a
smooth solution to ∇fW = φ; this concludes the proof. �

Remark 10.3. If if Eh
• , h is a Koszul complex, then we just simply take EH

• = Eh
• ,

since he desired ”product” already exists within Eh
• . �

In analogy with Theorem 9.4 we also have the following generalizations of Theo-
rems 10.1 and 1.4.
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Theorem 10.4. With the notation in Theorem 10.1, if φ is a section of L⊗s⊗KX⊗A,
where s ≥ min(m,n+ 1) + ℓ− 1, and

|φ| ≤ C|f |µ+ℓ−1,

there are holomorphic sections qI , |I| = ℓ, of L⊗(s−ℓ) ⊗KX ⊗A, such that

(10.10) φ =
∑

I1+...+Im=ℓ

f I11 · · · f Imm qI .

With the notation in Theorem 1.4, if φ is a section of L⊗s with s ≥ νL+min(m,n+
1) + ℓ− 1 such that

|φ| ≤ C|f |µ0+µ+ℓ−1,

then there are holomorphic sections qI of L⊗(s−ℓ) such that (10.10) holds.
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