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Confluent A-hypergeometric functions and rapid decay

homology cycles ∗

Alexander ESTEROV †and Kiyoshi TAKEUCHI ‡

Abstract

We study confluent A-hypergeometric functions introduced by Adolphson [1].
In particular, we give their integral representations by using rapid decay homology
cycles of Hien [10] and [11]. The method of toric compactifications introduced in
[21] and [25] will be used to prove our main theorem.

1 Introduction

The theory of A-hypergeometric systems introduced by Gelfand-Kapranov-Zelevinsky [7]
is a vast generalization of that of classical hypergeometric differential equations. As in the
case of hypergeometric equations, the holomorphic solutions to their A-hypergeometric
systems (i.e. the A-hypergeometric functions) admit power series expansions ([7]) and
integral representations ([8]). Moreover this theory has deep connections with other fields
of mathematics, such as toric varieties, projective duality, period integrals, mirror sym-
metry and combinatorics. Also from the viewpoint of D-module theory (see [15] and [16]
etc.), A-hypergeometric D-modules are very elegantly constructed in [8]. For the recent
development of this subject see [32] and [33] etc. In [3], [8], [13] and [36] etc. the mon-
odromy of their A-hypergeometric functions was studied. In [1] Adolphson generalized the
hypergeometric systems of Gelfand-Kapranov-Zelevinsky [7] to the confluent (i.e. irregu-
lar) case and proved many important results. However the construction of the confluent
A-hypergeometric D-modules is not functorial as in [7] and [8]. This leads us to some
difficulties in obtaining the integral representations of their holomorphic solutions. In this
paper, we construct Adolphson’s confluent A-hypergeometric D-modules functorially as
in [8]. Note that recently the same problem was solved more completely in Saito [31]
and Schulze-Walther [34], [35] by using commutative algebras. However our approach is
based on sheaf-theoretical methods and totally different from theirs. In this paper we also
go a little bit further and give an integral representation of A-hypergeometric functions
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by using the rapid decay homology cycles introduced in Hien [10] and [11]. Our integral
representation

u(z) =

∫

γz

exp(

N
∑

j=1

zjx
a(j))xc1−1

1 · · ·xcn−1
n dx1 ∧ · · · ∧ dxn (1.1)

coincides with the one in Adolphson [1, Equation (2.6)], where γ = {γz} is a family of
real n-dimensional topological cycles γz in the algebraic torus T = (C∗)nx on which the
function exp(

∑N
j=1 zjx

a(j))xc1−1
1 · · ·xcn−1

n rapidly decays at infinity. See Sections 3 and
4 for the details. In other words, we could give a geometric meaning to Adolphson’s
formula [1, Equation (2.6)] by using rapid decay homology cycles. Note that this integral
representation can be considered as a natural generalization of those for the classical Bessel
and Airy functions etc. Recall that in the case of hypergeometric functions associated
to hyperplane arrangements the same problem was precisely studied by Kimura-Haraoka-
Takano [19] etc. We hope that our geometric construction would be useful in the explicit
study of Adolphson’s confluent A-hypergeometric functions. In the course of the proof,
we will use the method of toric compactifications introduced in [21] and [25]. Moreover we
will introduce Proposition 3.3 which enables us to calculate Hien’s rapid decay homologies
in [10], [11] by using (usual) relative twisted homologies. By Proposition 3.3 and Lemmas
3.4 and 3.5 we can calculate the rapid decay homologies very explicitly in many cases.

2 Adolphson’s results

First of all, we recall the definition of the confluent A-hypergeometric systems introduced
by Adolphson [1] and their important properties. In this paper, we essentially follow the
terminology of [15] and [16] etc. Let A = {a(1), a(2), . . . , a(N)} ⊂ Zn be a finite subset
of the lattice Zn. Assume that A generates Zn as in [7] and [8]. Following [1] we denote
by ∆ the convex hull of A∪{0} in Rn. By definition ∆ is an n-dimensional polytope. Let
c = (c1, . . . , cn) ∈ Cn be a parameter vector. Moreover consider the n×N integer matrix

A :=
(

ta(1) ta(2) · · · ta(N)
)

= (ai,j) ∈ M(n,N,Z) (2.1)

whose j-th column is ta(j). Then Adolphson’s confluent A-hypergeometric system on
X = CA = CN

z associated with the parameter vector c = (c1, . . . , cn) ∈ Cn is

(

N
∑

j=1

ai,jzj
∂

∂zj
+ ci

)

u(z) = 0 (1 ≤ i ≤ n), (2.2)







∏

µj>0

(

∂

∂zj

)µj

−
∏

µj<0

(

∂

∂zj

)−µj







u(z) = 0 (µ ∈ KerA ∩ Z
N ). (2.3)

Remark 2.1. In [1] Adolphson does not assume that A generates Zn. However we need
this condition to obtain a geometric construction of his confluent A-hypergeometric sys-
tems. Even when A does not generate Zn, by a suitable linear coordinate change of Rn we
can get an equivalent system for A′ ⊂ Z

n and c′ ∈ C
n such that A′ generates Zn. Namely

our condition is not restrictive at all.
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Let D(X) be the Weyl algebra over X and consider the differential operators

Zi,c :=
N
∑

j=1

aijzj
∂

∂zj
+ ci (1 ≤ i ≤ n), (2.4)

�µ :=
∏

µj>0

(

∂

∂zj

)µj

−
∏

µj<0

(

∂

∂zj

)−µj

(µ ∈ KerA ∩ Z
N) (2.5)

in it. Then the above system is naturally identified with the left D(X)-module

MA,c = D(X)/





∑

1≤i≤n

D(X)Zi,c +
∑

µ∈KerA∩ZN

D(X)�µ



 . (2.6)

Let DX be the sheaf of differential operators over the “algebraic variety” X and define a
coherent DX-module by

MA,c = DX/





∑

1≤i≤n

DXZi,c +
∑

µ∈KerA∩ZN

DX�µ



 . (2.7)

Then MA,c is the localization of the left D(X)-module MA,c (see [15, Proposition 1.4.4
(ii)] etc.). Adolphson [1] proved that MA,c is holonomic. In fact, he proved the following
more precise result.

Definition 2.2. (Adolphson [1, page 274], see also [28] etc.) For z ∈ X = C
A we say

that the Laurent polynomial hz(x) =
∑N

j=1 zjx
a(j) is non-degenerate if for any face Γ of

∆ not containing the origin 0 ∈ Rn we have
{

x ∈ T = (C∗)n | hΓ
z (x) =

∂hΓ
z

∂x1
(x) = · · · · · · =

∂hΓ
z

∂xn
(x) = 0

}

= ∅, (2.8)

where we set hΓ
z (x) =

∑

j:a(j)∈Γ zjx
a(j).

Let Ω ⊂ X be the Zariski open subset of X consisting of z ∈ X = CA such that the
Laurent polynomial hz(x) =

∑N
j=1 zjx

a(j) is non-degenerate. Then Adolphson’s result in
[1, Lemma 3.3] asserts that the holonomic DX-moduleMA,c is an integrable connection on
Ω (i.e. the characteristic variety of MA,c is contained in the zero section of the cotangent
bundle T ∗Ω). Now let Xan (resp. Ωan) be the underlying complex analytic manifold of
X (resp. Ω) and consider the holomorphic solution complex SolX(MA,c) ∈ Db(Xan) of
MA,c defined by

SolX(MA,c) = RHomDXan ((MA,c)
an,OXan) (2.9)

(see [15] etc. for the details). Then by the above Adolphson’s result, SolX(MA,c) is a
local system on Ωan. Moreover he proved the following remarkable result.

Theorem 2.3. (Adolphson [1, Corollary 5.20]) Assume that the parameter vector c ∈ Cn

is semi-nonresonant (see [1, page 284]). Then the rank of the local system H0SolX(MA,c)
on Ωan is equal to the normalized n-dimensional volume VolZ(∆) ∈ Z of ∆ with respect
to the lattice Zn.

This is a generalization of the famous result of Gelfand-Kapranov-Zelevinsky in [7]
to the confluent case. The sections of the local system H0SolX(MA,c)|Ωan are called A-
hypergeometric functions (associated to the parameter c ∈ Cn).
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3 Hien’s rapid decay homologies

In this section, we review Hien’s theory of rapid decay homologies invented in [10] and
[11]. Let U be a smooth quasi-projective variety of dimension n and (E ,∇) an integrable
connection on it. We consider (E ,∇) as a left DU -module and set

DRU(E) = ΩUan ⊗L
DUan Ean ≃ Ω·Uan ⊗OUan Ean[n]. (3.1)

Assume that i : U →֒ Z is a smooth projective compactification of U such that D = Z \U
is a normal crossing divisor and the extension i∗E of E to Z admits a good lattice in
the sense of Sabbah [30] and Mochizuki [26]. Such a compactification always exists by
the fundamental theorem established by Mochizuki [26]. Now let π : Z̃ −→ Zan be
the real oriented blow-up of Zan in [10], [11] and set D̃ = π−1(Dan). Recall that π
induces an isomorphism Z̃ \ D̃

∼
−→ Zan \Dan. More precisely, for each point q ∈ Dan by

taking a local coordinate (x1, . . . , xn) on a neighborhood of q such that q = (0, . . . , 0) and
Dan = {x1 · · ·xk = 0} the morphism π is explicitly given by

([0, ε)× S1)k ×B(0; ε)n−k −→ B(0; ε)k × B(0; ε)n−k (3.2)

({(ri, e
iθi)}ki=1, xk+1, . . . , xn) 7−→ ({rie

iθi}ki=1, xk+1, . . . , xn), (3.3)

where we set B(0; ε) = {x ∈ C | |x| < ε} for 0 < ε. For p ≥ 0 and a subset B ⊂ Z̃
denote by Sp(B) the C-vector space generated by the piecewise smooth maps c : ∆p −→ B
from the p-dimensional simplex ∆p. We denote by C−p

Z̃,D̃
the sheaf on Z̃ associated to the

presheaf
V 7−→ Sp(Z̃, (Z̃ \ V ) ∪ D̃) = Sp(Z̃)/Sp((Z̃ \ V ) ∪ D̃). (3.4)

Namely C−p
Z̃,D̃

is the sheaf of the relative p-chains on the pair (Z̃, D̃). Now let L :=

H−nDRU(E) = Ker{∇an : Ean −→ Ω1
Uan ⊗OUan Ean} be the sheaf of horizontal sections of

the analytic connection (Ean,∇an) and ι : Uan →֒ Z̃ the inclusion. Then ι∗L is a local
system on Z̃. We define the sheaf C−p

Z̃,D̃
(ι∗L) of the relative twisted p-chains on the pair

(Z̃, D̃) with coefficients in ι∗L by C−p
Z̃,D̃

(ι∗L) = C−p
Z̃,D̃

⊗C
Z̃
ι∗L.

Definition 3.1. (Hien [10] and [11]) A section γ = c ⊗ s ∈ Γ(V ; C−p
Z̃,D̃

(ι∗L)) is called a

rapid decay chain if for any point q ∈ c(∆p) ∩ D̃ ∩ V the following condition holds:
In a local coordinate (x1, . . . , xn) on a neighborhood of q such that q = (0, . . . , 0) and

Dan = {x1 · · ·xk = 0} by taking a local trivialization (i∗E)an ≃ ⊕r
i=1OZan(∗Dan)ei for a

free basis e1, . . . , er and setting s =
∑r

i=1 fi · ι∗i
−1ei (fi ∈ ι∗OZan), for any 1 ≤ i ≤ r and

N = (N1, . . . , Nk) ∈ Nk there exists CN > 0 such that

|fi(x)| ≤ CN |x1|
N1 · · · |xk|

Nk (3.5)

for any x ∈ (c(∆p) \ D̃) ∩ V with small |x1|, . . . , |xk|.
In particular, if c(∆p) ∩ D̃ ∩ V = ∅ we do not impose any condition on s ∈ ι∗L.

Note that this definition does not depend on the local coordinate (x1, . . . , xn) nor the
local trivialization (i∗E)an ≃ ⊕r

i=1OZan(∗Dan)ei. We denote by Crd,−p

Z̃,D̃
(ι∗L) the subsheaf of
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C−p
Z̃,D̃

(ι∗L) consisting of rapid decay chains. According to Hien [10] and [11], Crd,−p

Z̃,D̃
(ι∗L) is

a fine sheaf. Then we otain a complex of fine sheaves on Z̃:

Crd,−·

Z̃,D̃
(ι∗L) =

[

· · · −→ Crd,−(p+1)

Z̃,D̃
(ι∗L) −→ Crd,−p

Z̃,D̃
(ι∗L) −→ Crd,−(p−1)

Z̃,D̃
(ι∗L) −→ · · ·

]

.

(3.6)

Definition 3.2. (Hien [10] and [11]) For p ∈ Z we set

Hrd
p (U ; E) := H−pΓ(Z̃; Crd,−·

Z̃,D̃
(ι∗L)) (3.7)

and call it the p-th rapid decay homology group associated to the integrable connection E .

If E ≃ OU and its analytification Ean ≃ OUan induces an isomorphism L ≃ CUang (⊂
OUan) for a possibly multi-valued holomorphic function g : Uan −→ C, we call Hrd

p (U ; E)
the p-th rapid decay homology group associated to the function g. In the special case
where g(x) = exp(h(x))g0(x) for a meromorphic function h on Zan with poles in Dan and
a possibly multi-valued holomorphic function g0 on Uan, we shall give a purely topological
interpretation of Hrd

p (U ; E). By the admissibility of E the meromorphic function h has
no point of indeterminacy on the whole Zan (see [12, the paragraph just below Definition
2.1] etc.). By ι : Uan →֒ Z̃ we consider Uan as an open subset of Z̃ and set

P = D̃ ∩ {x ∈ Uan | Reh(x) ≥ 0}. (3.8)

Let D = D1 ∪ · · · ∪Dm be the irreducible decomposition of D. For 1 ≤ i ≤ m let bi ∈ Z

be the order of the meromorphic function h along Di. If bi ≥ 0 we say that the irreducible
component Di is irrelevant. Denote by D′ the union of the irrelevant components of D.
Then we set Q = D̃ \ {P ∪ π−1(D′)an}. Note that Q is an open subset of D̃ (i.e. the set
of the rapid decay directions of the function g in D̃). By dividing Uan into small sectors
and using a homotopy argument on each of them, we can easily prove the following useful
proposition.

Proposition 3.3. In the situation as above, we have an isomorphism

Hrd
p (U ; E) ≃ Hp(U

an ∪Q,Q; ι∗(CUang0)) (3.9)

for any p ∈ Z, where the right hand side is the p-th relative twisted homology group of the
pair (Uan ∪Q,Q) with coefficients in the rank-one local system ι∗(CUang0) on Z̃.

The following lemma will be used in Section 4.

Lemma 3.4. In the situation as above, for q ∈ Dan let k ≥ 0 be the number of the relevant
irreducible components of Dan passing through q. Assume that k ≥ 2. Then for a small
open neighborhood V of q in Zan we have

∑

p∈Z

(−1)pdimHp((V ∩ Uan) ∪ (π−1(V ) ∩Q), (π−1(V ) ∩Q); ι∗(CUang0)) = 0. (3.10)

5



In the sequel, we consider the more special case where U = C∗x and E is an integrable
connection on U such that L = H−1DRU(E) ≃ CUan exp(h(x))g0(x) for a Laurent polyno-
mial h(x) =

∑

i∈Z aix
i and a possibly multi-valued holomorphic function g0 on Uan. Then

we can take the projective line P to be the compactification Z of U = C∗x. In this case,
we have D = Z \ U = D1 ∪ D2, where we set D1 = {0} and D2 = {∞}. For the real
oriented blow-up π : Z̃ −→ Zan of Zan the subset D̃ = π−1(Dan) of Z̃ is a union of two
circles D̃i := π−1(Dan

i ) ≃ S1 (i = 1, 2). Moreover the open subset Q ⊂ D̃ is a union of
open intervals in D̃1 ∪ D̃2 ≃ S1 ∪ S1. Let NP (h) ⊂ R be the Newton polytope of h i.e.
the convex hull of the set {i ∈ Z | ai 6= 0} in R. Finally denote by ∆ ⊂ R the convex hull
of NP (h) ∪ {0} in R. Then by using Proposition 3.3 we can easily prove the following
result.

Lemma 3.5. In the situation as above, we have
(i) The dimension of the rapid decay homology group Hrd

p (U ; E) is VolZ(∆) if p = 1 and
zero otherwise.
(ii) Assume that ∆ = [−m, 0] (resp. ∆ = [0, m]) for some m > 0. Then Q ⊂ D̃ is a
union of open intervals Q1, Q2, . . . , Qm in D̃1 ≃ S1 (resp. in D̃2 ≃ S1) and the first rapid
decay homology group Hrd

1 (U ; E) has a basis formed by the m cycles

[γi] ∈ Hrd
1 (U ; E) (i = 1, 2, . . . , m), (3.11)

where γi is a 1-dimensional smooth chain in Uan∪Q starting from a point in Qi and going
directly to that in Qi+1 (here we set Qm+1 = Q1).
(iii) Assume that ∆ = [−m1, m2] for some m1, m2 > 0. Then Q ⊂ D̃ is a union of
open intervals Q1, Q2, . . . , Qm1 in D̃1 ≃ S1 and the ones Q′1, Q

′
2, . . . , Q

′
m2

in D̃2 ≃ S1. If
moreover the function g0 has a non-trivial monodromy around the origin, then the first
rapid decay homology group Hrd

1 (U ; E) has a basis formed by the m1 +m2 cycles

[γi] ∈ Hrd
1 (U ; E) (i = 1, 2, . . . , m1) (3.12)

and
[γ′i] ∈ Hrd

1 (U ; E) (i = 1, 2, . . . , m2), (3.13)

where γi (resp. γ′i) is a 1-dimensional smooth chain in Uan ∪ Q starting from a point in
Qi (resp. Q

′
i) and going directly to that in Qi+1 (resp. Q′i+1).

4 A geometric construction of integral representa-

tions

In this section we give a geometric construction of Adolphson’s confluent A-
hypergeometric D-module MA,c and apply it to obtain the integral representations
of A-hypergeometric functions. Let Y = (CA)∗ = CN

ζ be the dual vector space of
X = CA = CN

z , where ζ is the dual coordinate of z. As in [8], to A ⊂ Zn we asso-
ciate a morphism

j : T = (C∗)nx −→ Y = (CA)∗ = C
N
ζ (4.1)

defined by x 7−→ (xa(1), xa(2), . . . , xa(N)). Since we assume here that A generates Zn, j is an
embedding. Let I ⊂ C[ζ1, . . . , ζN ] be the defining ideal of the closure j(T ) of j(T ) ⊂ Y in

6



Y . Moreover denote by D(Y ) the Weyl algebra over Y . Then we have a ring isomorphism

∧ : D(X)
∼

−→ D(Y ) (4.2)

defined by

(
∂

∂zj
)∧ = ζj, (zj)

∧ = −
∂

∂ζj
(j = 1, 2, . . . , N). (4.3)

We call ∧ the Fourier transform (see Malgrange [22] etc. for the details). Via this ∧, the
Adolphson’s system MA,c is transformed to the one

(Zi,c)
∧v(ζ) = 0 (1 ≤ i ≤ n), (4.4)

f(ζ)v(ζ) = 0 (f ∈ I) (4.5)

on Y = (CA)∗. Note that this system has no holomorphic solution. Let

NA,c = M∧
A,c = D(Y )/

(

∑

1≤i≤n

D(Y )(Zi,c)
∧ +

∑

f∈I

D(Y )f

)

(4.6)

be the corresponding left D(Y )-module and NA,c the coherent DY -module associated to
it. By a theorem of Hotta [14] NA,c is regular holonomic. Now on T = (C∗)nx we define a
holonomic DT -module Rc by

Rc = DT/
∑

1≤i≤n

DT

{

xi
∂

∂xi
+ (1− ci)

}

. (4.7)

This is an integrable connection on T and we have

DRT (Rc) ≃ (CT anx−c1+1
1 · · ·x−cn+1

n )[n]. (4.8)

Let v = [1] ∈ NA,c and w0 = [1] ∈ Rc be the canonical generators. Recall that the
transfer bimodule DT−→Y has the canonical section 1T−→Y . We define a section 1Y←−T of
DY←−T = ΩT ⊗OT

DT−→Y ⊗j−1OY
j−1Ω⊗−1Y by

1Y←−T = (dx1 ∧ · · · ∧ dxn)⊗ 1T−→Y ⊗ j−1(dζ1 ∧ · · · ∧ dζN)
⊗−1. (4.9)

Note that this definition of 1Y←−T depends on the coordinates of Y and T . Then we
obtain a section w of the holonomic DY -module

SA,c :=

∫

j

Rc = j∗(DY←−T ⊗DT
Rc) (4.10)

defined by w = j∗(1Y←−T ⊗ w0). We can easily check that this section w ∈ SA,c satisfies
the system (4.4). Hence as in [8, page 268-269], we obtain a morphism

Ψ : NA,c −→ SA,c =

∫

j

Rc (4.11)

of left DY -modules which sends the canonical generator v = [1] ∈ NA,c to w ∈ SA,c.

7



Definition 4.1. (Gelfand-Kapranov-Zelevinsky [8, page 262]) For a face Γ of ∆ contain-
ing the origin 0 ∈ R

n we denote by Lin(Γ) ⊂ C
n the C-linear span of Γ. We say that

the parameter vector c ∈ Cn is nonresonant (with respect to A) if for any face Γ of ∆ of
codimension 1 such that 0 ∈ Γ we have c /∈ {Zn + Lin(Γ)}.

Recall that if c ∈ Cn is nonresonant then it is semi-nonresonant in the sense of [1,
page 284]. The following result was proved by Saito [31] and Schulze-Walther [34], [35]
by using commutative algebras. Here we give a geometric proof to it.

Lemma 4.2. Assume that the parameter vector c ∈ C
n is nonresonant. Then the holo-

nomic DY -module SA,c is irreducible.

Proof. Note that DRT (Rc) ≃ (CT anx−c1+1
1 · · ·x−cn+1

n )[n] is an irreducible perverse sheaf
on T an. Then also its minimal extension by the locally closed embedding j is irreducible
(see [15, Corollary 8.2.10] etc.). As in [8, Theorem 3.5 and Propositions 3.2 and 4.4] it
suffices to show that the canonical morphism

j!(CT anxc1−1
1 · · ·xcn−1

n ) −→ Rj∗(CT anxc1−1
1 · · ·xcn−1

n ) (4.12)

is a quasi-isomorphism. For this, we have only to prove the vanishing
Rj∗(CT anxc1−1

1 · · ·xcn−1
n )q ≃ 0 for any q ∈ j(T ) \ j(T ). Note that by the nonresonance

of c ∈ Cn for any p ∈ Z and the local system L := CT anxc1−1
1 · · ·xcn−1

n on T we have
Hp(T an;L) = 0. Let S(A) ⊂ Zn (resp. K(A) ⊂ Rn) be the semigroup (resp. the convex
cone) generated by A. Recall that there exists a natural bijection between the faces of
K(A) and the T -orbits in j(T ). First consider the case where 0 ∈ R

n is an appex of
K(A) and q = 0 ∈ Y = CN

ζ . If 0 ∈ A i.e. 0 = a(j) for some 1 ≤ j ≤ N we have

j(T ) ⊂ {ζj = 0} ≃ CN−1. Hence we may assume that 0 /∈ A from the first. In this case,

{0} ⊂ j(T ) is the unique 0-dimensional T -orbit in j(T ) which corresponds to {0} ≺ K(A).
From now on, we will prove that Rj∗(L)0 ≃ 0. By our assumption there exists a linear
function l : Rn −→ R such that l(Zn) ⊂ Z and K(A) \ {0} ⊂ {l > 0}. We define a
real-valued function ϕ : Y = CN

ζ −→ R by

ϕ(ζ) = |ζ1|
C

l(a(1)) + · · ·+ |ζN |
C

l(a(N)) , (4.13)

where we take C ∈ Z>0 large enough so that ϕ and its level sets ϕ−1(b) (b > 0) are
smooth. Let (l1, l2, . . . , ln) ∈ Zn be the coefficients of the linear function l. Define an
action of the multiplicative group R>0 on T by

r · (x1, . . . , xn) = (rl1x1, . . . , r
lnxn) (4.14)

for r ∈ R>0. Then we have

j(r · x) = (rl(a(1))xa(1), . . . , rl(a(N))xa(N)) (4.15)

and hence
ϕ(j(r · x)) = rCϕ(j(x)). (4.16)

Therefore by the action of R>0 on Y = CN
ζ defined by

r · (ζ1, . . . , ζN) = (rl(a(1))ζ1, . . . , r
l(a(N))ζN), (4.17)
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a level set ϕ−1(b) (b > 0) of ϕ is sent to the one ϕ−1(rCb). Moreover this action preserves
the T -orbits in j(T ). Let O ⊂ j(T ) be such a T -orbit. Then all the level sets ϕ−1(b)
(b > 0) of ϕ are transversal to O, or all are not. But the latter case cannot occur by the
Sard theorem. Then we obtain an isomorphism

HpRj∗(L)0 ≃ Hp(CN ;Rj∗(L)) ≃ Hp(T an;L) ≃ 0 (4.18)

for any p ∈ Z. Next consider the remaining case where q ∈ O for a T -orbit O in
j(T ) such that dimO ≥ 1. Then in a neighborhood of q, the variety j(T ) is a product
W × O for an affine toric variety W ⊂ CN ′

and j(T ) = (T1 ⊔ · · · ⊔ Tk)× O for some tori
Ti ≃ (C∗)n−dimO. See [9, Chapter 5, Theorem 3.1] and the proof of [23, Theorem 4.9] etc.
for the details. Moreover for the semigroup S(AO) ⊂ Zn−dimO generated by a finite subset
AO ⊂ Zn−dimO we have Ti ≃ Spec(C[S(AO)]) ⊂ W (i = 1, 2, . . . , k). These varieties Ti

are the irreducible components of W . For the explicit construction of Ti see the proof
of [23, Theorem 4.9]. By this construction 0 ∈ Rn−dimO is an appex of the convex cone
K(AO) ⊂ Rn−dimO generated by AO. Let p2 : W ×O −→ O and q2 : Ti ×O −→ O be the
second projections. Then it follows from the nonresonance of c ∈ Cn the restriction of L
to q−12 p2(q) ≃ Ti is a non-constant local system. So we can apply our previous arguments
and prove Rj∗(L)q ≃ 0 in this case, too. This completes the proof.

By Lemma 4.2, if c ∈ Cn is nonresonant the non-trivial morphism Ψ should be sur-
jective. According to Schulze-Walther [34, Corollary 3.8] the morphism Ψ is also an
isomorphism in this case. Let ∨ : D(Y )

∼
−→ D(X) be the inverse of the Fourier transform

∧. Then we have an isomorphism N∨A,c ≃ MA,c of left D(X)-modules. The corresponding
coherent DX-module N ∨A,c ≃ MA,c can be more geometrically constructed as follows. Let

σ =< ·, · >: X × Y −→ C be the canonical pairing defined by < z, ζ >=
∑N

j=1 zjζj and
p1 : X × Y −→ X (resp. p2 : X × Y −→ Y ) the first (resp. second) projection. Then we
have the following theorem due to Katz-Laumon [17].

Theorem 4.3. (Katz-Laumon [17]) In the situation as above, we have an isomorphism

N ∨A,c ≃

∫

p1

{

(p∗2NA,c)⊗OX×Y
OX×Y e

σ
}

, (4.19)

where OX×Y e
σ is the integrable connection associated to eσ : X ×Y −→ C (see [22] etc.).

In the same way, we have

S∨A,c =

∫

p1

{

(p∗2SA,c)⊗OX×Y
OX×Y e

σ
}

. (4.20)

From now on, we assume that c ∈ Cn is nonresonant. Then by Lemma 4.2 we obtain
surjective morphisms NA,c −→ SA,c(Y ) and MA,c(X) ≃ N∨A,c −→ S∨A,c(X). Hence we
obtain a surjective morphism

MA,c ≃ N ∨A,c −→ S∨A,c (4.21)

of left DX-modules. Let eτ : X × T −→ C be the function defined by eτ (z, x) =
exp(

∑N
j=1 zjx

a(j)) and q1 : X × T −→ X (resp. q2 : X × T −→ T ) the first (resp.
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second) projection. Then by the base change theorem [15, Theorem 1.7.3], we have the
isomorphism

S∨A,c ≃

∫

q1

{

(q∗2Rc)⊗OX×T
OX×T e

τ
}

. (4.22)

Namely S∨A,c is the direct image of the integrable connection

K = (q∗2Rc)⊗OX×T
OX×T e

τ (4.23)

on X × T by q1. Define a function g : X × T −→ C by

g(z, x) = exp(
N
∑

j=1

zjx
a(j))xc1−1

1 · · ·xcn−1
n . (4.24)

Then by the results of Hien-Roucairol [12] the holomorphic solution complex

SolX(S
∨
A,c) = RHomDXan ((S

∨
A,c)

an,OXan) (4.25)

of S∨A,c is expressed by the rapid decay homology groups associated the function g. Indeed,
for z ∈ Ω let Kz (resp. gz : T −→ C) be the restriction of the connection K (resp. the
function g) to Uz := q−11 (z) ≃ T ⊂ Ω× T . Namely we set

gz(x) = exp(

N
∑

j=1

zjx
a(j))xc1−1

1 · · ·xcn−1
n . (4.26)

for z ∈ Uz ≃ T . Then for the dual connection K∗z of Kz we have

H−nDRT (K
∗
z) ≃ CUan

z
gz. (4.27)

Moreover for any p ∈ Z, the rapid decay homology groups

Hrd
p (Uz;K

∗
z) (z ∈ Ωan) (4.28)

associated to the integrable connections K∗z (or to the functions gz : T −→ C) are isomor-
phic to each other and define a local system Hrd

p on Ωan. The following result is essentially
due to Hien-Roucairol [12].

Theorem 4.4. (Hien-Roucairol [12]) In the situation as above, for any p ∈ Z we have
an isomorphism

Hrd
n+p ≃ HpSolX(

∫

q1

K) ≃ HpSolX(S
∨
A,c) (4.29)

of local systems on Ωan.

In [1, Section 3] Adolphson proved that MA,c is an integrable connection on Ω. Then
by the surjective morphism MA,c ≃ N ∨A,c −→ S∨A,c we find that S∨A,c is also an integrable
connection on Ω. This in particular implies that for any p 6= 0 we have HpSolX(S∨A,c) ≃ 0.
Hence we get

Hrd
n+p(Uz;K

∗
z) ≃ 0 (p 6= 0, z ∈ Ωan). (4.30)
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It follows also from the surjection MA,c −→ S∨A,c that we have an injection

Φ : Hrd
n ≃ HomDXan ((S

∨
A,c)

an,OXan) (4.31)

→֒ HomDXan ((MA,c)
an,OXan). (4.32)

By using the generator

u = [1] ∈ MA,c = DX/





∑

1≤i≤n

DXZi,c +
∑

µ∈KerA∩ZN

DX�µ



 (4.33)

of MA,c we regard HomDXan ((MA,c)
an,OXan) as a subsheaf of OXan . Then we have the

following result.

Theorem 4.5. Assume that the parameter vector c ∈ Cn is nonresonant. Then the
morphism Φ induces an isomorphism

Hrd
n ≃ HomDXan ((MA,c)

an,OXan) (4.34)

of local systems on Ωan. Moreover this isomorphism is given by the integral

γ 7−→

{

Ωan ∋ z 7−→

∫

γz

exp(
N
∑

j=1

zjx
a(j))xc1−1

1 · · ·xcn−1
n dx1 ∧ · · · ∧ dxn

}

, (4.35)

where for a family γ of rapid decay cycles and z ∈ Ωan we denote by γz the restriction
γ ∩ Uz of γ to Uz = q−11 (z) ≃ T .

Note that this integral representation of the confluent A-hypergeometric functions
HomDXan ((MA,c)

an,OXan) coincides with the one in Adolphson [1, Equation (2.6)].

Proof. Recall that the sheaf HomDXan ((MA,c)
an,OXan) is a local system on Ωan. Moreover

by [1, Corollary 5.20] its rank is VolZ(∆). So it suffices to show that for any z ∈ Ωan the
dimension of the n-th rapid decay homology group Hrd

n (Uz;K∗z) is also VolZ(∆). Let

Eurd(Uz;K
∗
z) :=

∑

p∈Z

(−1)pdimHrd
p (Uz;K

∗
z) (4.36)

be the rapid decay Euler characteristic. Then by (4.30) we have only to prove the equality

Eurd(Uz;K
∗
z) = (−1)nVolZ(∆). (4.37)

Let Σ0 be the dual fan of ∆ in Rn and Σ its smooth subdivision. Denote by ZΣ the
smooth toric variety associated to the fan Σ. Then ZΣ is a smooth compactification of
Uz ≃ T such that ZΣ \ Uz is a normal crossing divisor. By using the non-degeneracy of
the Laurent polynomial hz(x) =

∑N
j=1 zjx

a(j), as in [25, Section 3] we can construct a

blow-up Z := Z̃Σ of ZΣ such that the meromorphic extension of hz to it has no point
of indeterminacy. Hence we can use this smooth compactification Z of Uz ≃ T and the
normal crossing divisor D := Z \ Uz in it to define the rapid decay homology groups
associated to the function gz(x) = exp(hz(x))x

c1−1
1 · · ·xcn−1

n (see [12, the paragraph just
below Definition 2.1] etc.). Let π : Z̃ −→ Zan be the real oriented blow-up of Zan along
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Dan and set D̃ = π−1(Dan). Then, as in Section 3 we define the rapid decay homology
groups Hrd

p (Uz;K
∗
z) by using π : Z̃ −→ Zan, D̃ and gz etc. By Proposition 3.3, Lemmas

3.4 and 3.5, Mayer-Vietoris exact sequences for relative twisted homology groups and
the geometry of D̃ ⊂ Z̃, we can easily calculate the rapid decay Euler characteristic
Eurd(Uz;K∗z) and prove the equality (4.37). This completes the proof of the isomorphism
(4.34). Let us prove the remaining assertion. Denote the distinguished section (q∗2w0)⊗eτ

of the integrable connection K = (q∗2Rc)⊗OX×T
OX×T e

τ by t. Let Ω·X×T/X ⊗OX×T
K be the

relative algebraic de Rham complex of K associated to the morphism q1 : X × T −→ X .
Then we have an isomorphism

S∨A,c ≃

∫

q1

K ≃ Hn
{

(q1)∗(Ω
·
X×T/X ⊗OX×T

K)
}

. (4.38)

For a relative n-form ω ∈ (q1)∗Ω
n
X×T/X denote by cl(ω ⊗ t) the section of S∨A,c which

corresponds to the cohomology class [(q1)∗(ω⊗ t)] ∈ Hn{(q1)∗(Ω·X×T/X ⊗OX×T
K)} by the

above isomorphism. According to the result of [12], by the isomorphism

Hrd
n ≃ HomDXan ((S

∨
A,c)

an,OXan) (4.39)

of local systems on Ωan, a family of rapid decay cycles γ ∈ Hrd
n is sent to the section

[

(S∨A,c)
an ∋ f ⊗ cl(ω ⊗ t) 7−→

{

Ωan ∋ z 7−→ f(z)

∫

γz

exp(
N
∑

j=1

zjx
a(j))xc1−1

1 · · ·xcn−1
n ω

}]

(4.40)
(f ∈ OXan) of HomDXan ((S∨A,c)

an,OXan). Then the remaining assertion follows from the
lemma below. This completes the proof.

Lemma 4.6. By the morphism

MA,c −→ S∨A,c ≃ Hn
{

(q1)∗(Ω
·
X×T/X ⊗OX×T

K)
}

(4.41)

the canonical section u = [1] ∈ MA,c is sent to the cohomology class cl((dx1∧· · ·∧dxn)⊗t).

Proof. First note that the morphism Ψ∨(X) : MA,c(X) ≃ MA,c ≃ N∨A,c −→ S∨A,c(X) ≃
SA,c(Y ) sends the canonical generator u = [1] ∈ MA,c(X) to w = j∗(1Y←−T ⊗ w0) ∈
SA,c(Y ). On the other hand, by (4.20) we have an isomorphism

S∨A,c ≃ HN
[

(p1)∗
{

Ω·X×Y/X ⊗OX×Y
(p∗2SA,c)⊗OX×Y

OX×Y e
σ
}]

. (4.42)

Then by Malgrange’s simple proof [22, page 135] of Theorem 4.3, via this isomorphism
the section w ∈ S∨A,c(X) ≃ SA,c(Y ) corresponds to the cohomology class

[(p1)∗ {(dζ1 ∧ · · · ∧ dζN)⊗ (p∗2w)⊗ eσ}] . (4.43)

Let j̃ : X × T →֒ X × Y be the embedding induced by j. By the isomorphism

S∨A,c ≃ HN
[

(p1)∗
{

Ω·X×Y/X ⊗OX×Y
j̃∗ (DX×Y←−X×T ⊗X×T K)

}]

(4.44)

the above cohomology class corresponds to the one

ρ :=
[

(p1)∗
{

(dζ1 ∧ · · · ∧ dζN)⊗ j̃∗(1X×Y←−X×T ⊗ t)
}]

, (4.45)
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where the section 1X×Y←−X×T ∈ DX×Y←−X×T is defined similarly to 1Y←−T ∈ DY←−T .
Then it suffices to show that via the isomorphism

S∨A,c ≃

∫

p1

∫

j̃

K ≃

∫

q1

K (4.46)

the cohomology class ρ is sent to the one cl((dx1 ∧ · · · ∧ dxn) ⊗ t) = [(q1)∗{(dx1 ∧ · · · ∧
dxn)⊗ t}] in

∫

q1

K ≃ Hn
{

(q1)∗(Ω
·
X×T/X ⊗OX×T

K)
}

. (4.47)

Since X and X × Y are affine, we have only to prove that via the isomorphism

HNΓ(X × Y ; Ω·X×Y/X ⊗OX×Y

∫

j̃

K) (4.48)

≃ HnΓ(X × T ; Ω·X×T/X ⊗OX×T
K) (4.49)

the cohomology class
[

(dζ1 ∧ · · · ∧ dζN)⊗ j̃∗(1X×Y←−X×T ⊗ t)
]

(4.50)

is sent to the one [(dx1∧· · ·∧dxn)⊗ t]. With the help of the fact that X×T is affine and
Y = CN , we can easily prove it by an explicit calculation. This completes the proof.

As a corollary of Theorem 4.5, we recover the following Saito and Schulze-Walther’s
geometric (functorial) construction of Adolphson’s confluent A-hypergeometric D-module
MA,c on Ω ⊂ X = CA.

Corollary 4.7. (Saito [31] and Schulze-Walther [34], [35]) Assume that the parameter
vector c ∈ Cn is nonresonant. Then we have an isomorphism MA,c

∼
−→ S∨A,c of integrable

connections on Ω. In particular, MA,c is an irreducible connection there.

This result was first obtained in Saito [31] and Schulze-Walther [34], [35] by using
totally different methods. In fact, they proved moreover that we have an isomorphism
MA,c

∼
−→ S∨A,c on the whole X .

Remark 4.8. Since NA,c is regular holonomic by a theorem of Hotta [14], it is also regular
at infinity in the sense of Daia [4]. Then by using the Fourier-Sato transforms (see [16]
and [22] etc.), we can apply the main theorem of Daia [4] to get a topological construction
of the sheaf of the confluent A-hypergeometric functions HomDXan ((MA,c)

an,OXan). This
construction is valid even when the parameter c ∈ Cn is not nonresonant.

Example 4.9. Assume that n = 1 and T = C∗x.
(i) If A = {1,−1} ⊂ Z our integral representation of the A-hypergeometric functions
u(z1, z2) on C2

z is

u(z1, z2) =

∫

γz

exp(z1x+
z2
x
)xc−1dx. (4.51)

By the restriction of u(z1, z2) by the injective map Ct →֒ C2
z, t 7−→ ( t

2
,− t

2
) we obtain the

classical Bessel function

v(t) =
1

2πi

∫

γ
( t2 ,− t

2 )

exp(
tx

2
−

t

2x
)x−ν−1dx (4.52)
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for the parameter ν = −c.
(ii) If A = {3, 1} ⊂ Z our integral representation of the A-hypergeometric functions
u(z1, z2) on C2

z is

u(z1, z2) =

∫

γz

exp(z1x
3 + z2x)x

c−1dx. (4.53)

By the restriction of u(z1, z2) by the injective map Ct →֒ C2
z, t 7−→ (1

3
,−t) we obtain the

classical Airy function

v(t) =
1

2πi

∫

γ
( 13 ,−t)

exp(
x3

3
− tx)dx (4.54)

for c = 1.
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