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Harmonic analysis and the Riemann-Roch theorem.

D.V. Osipov, A.N. Parshin *f

1. Let D be a smooth projective curve over a finite field k. It is known (see, e.g., [6],
§3]) that the Poisson summation formula applied to the discrete subgroup k(D) of the
adelic space Ap implies the Riemann-Roch theorem on the curve D . In this note we
will show how the two-dimensional Poisson formulas (see [3, §5.9] and [4, §13]) imply the
Riemann-Roch theorem (without the Noether formula) on a projective smooth algebraic
surface X over k.

First, we need some general proposition. Let E = (I, F, V') be a Cy-space over the field
k (see [2]). Recall that for any 4, j € I we have constructed in [3, §5.2] a one-dimensional
C-vector space of virtual measures u(F (i) | F(j)) = uw(F(i)/F(1))* @c p(F(1)/F(j)),
where [ € I such that [ <i, [ <j,and pu(H) is the space of C-valued Haar measures
on a C-space H . The space u(F(i)| F(j)) does not depend on the choice of [ € I up
to a canonical isomorphism.

Let 0 4 A - E — B — 0 be an admissible triple of Cj3-spaces over k. Let
A= (J,G,W) as a Cy-space, and W = F(j) for some 7 € I. Then A is a cCs-
space and B is a dCy-space (see [3| §5.1]). Let o € I and p € pw(W/F(o) N W),
v ev(F(o)/F(o)NnW)*. Then in [3, form. (164)] we have constructed the characteristic
element 04,00 € D, (E). We note that p®@v € p(F (o) | W). Therefore we can replace
p®v by nep(F(o)| W) and write 04, € D, (E) instead of the previous notation.

Let 0 = L - EF — M — 0 be an admissible triple of C5-spaces over k such that
L is a cfCy-space and M is a dfCy-space (see [3, §5.1]). In [3| form. (169)] we have
constructed the characteristic element d;, € Dp)(£). We note that for any i,j € I
the space L defines a non-zero element jif, pgyriy € p(£(7) | F(j)) in the following
way. Let L = (K,T,U) as a Cy-space. Choose some [ € [ such that | < i, [ < j.
Then pip pey,r@) = luz,lF(l),F(i) ® pr,r@),F@) » Where for any m <n € I we define pup,,, €
p(F(n)/F(m)) as pipmn(U N F(n)/UNF(m)) = 1. The element iy, p;y,p) does not
depend on the choice of [ € I.

There is a natural pairing < -+ >: Dp()(E) X Dy, (E) — C. From the above
definitions it is easy to prove the following proposition.

Proposition 1

Ui

<0p,04y >= ——.
KL, F(o),W
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2. Let X be a smooth projective algebraic surface over a finite field k. Let | k |= q.
For any quasicoherent sheaf F on X there is an adelic complex Ax(F) such that
H*(Ax(F)) = H*(X,F). Let C € Div(X). For the sheaf Ox(C) on X we will write
this complex in the following way:

Ayc @A c DAy — Apic @ Apc @ Anc — Anac,

where A, ¢ = Ax.(Ox(C)) (see the corresponding notations and definitions in [4, §14.1]),
and we have omitted indication on X in the notations of subgroups of the adelic complex,
because we will work only with one algebraic surface X during this note. We note that
that all the groups A, ¢ are subgroups of the group Az ¢ . Besides, the following groups
does not depend on C € Div(X):

AO,C = Ao, AOI,C = AOlv A02,C = A027 A012,C = A012 =A.

Moreover, A C [],.p, Kap, where & € D runs over all pairs with irreducible curve D
on X and z is apoint on D . Thering K, p is a finite product of two-dimensional local
fields with the last residue field k(z).

We fix a rational differential form w € Qi( xk - Let (w) € Div(X) be the correspond-
ing divisor. The following pairing (which depends on w) is well-defined, symmetric and
non-degenerate:

AxA—k : {fx,D} X {g:c,D} — Z Trk(gc)/k Oresx,D(fx,D 9z.D CU), (1)

zeD

where res, p is the two-dimensional residue. For any k-subspace V' C A we will denote
by V4 the annihilator of V in A with respect to the pairing (Il). Using the reciprocity
laws for the residues of differential forms on X (the reciprocity laws ”around a point”
and the reciprocity laws "along a curve”) one can prove the following proposition.

Proposition 2 We have the following properties.

Ay =Ap + A, Aig=An+Apw-c, Aje=Ap+Apw-c
Ag = Ao, Aj=Ap, Abe=Anw _c.

We note that A = lim Ay, and A = lim Ay o/Ajg . For any C' < C' the
CeD_iJ(X) CZC

k-space Ajs /A5 has the natural structure of a complete Cj-space over the field k.
Hence we obtain that the k-space A has the following structure of a complete Cs-space
over k: (Div(X), F,A), where F(C) = Ay for C € Div(X). For simplicity we will
use the same notation A for this Cs-space, i.e. we will omit the partially ordered set
Div(X) and the function F'. The subspaces A, of A (and the factor-spaces by these
subspaces) have induced structures of Cy-spaces, which we will also denote by the same
notations A, ¢ (by notations for factor-spaces).

From proposition B it follows that the Cy-dual space (see [3, §5.1]) A coincides with
the Cs-space A itself:

A= lim  lim Ay o /A0 = lim  lim A w)—cr /A2, w)-c = A,
CeDiv(X) C'<C CreDiv(X) C>C"
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3. For any E € Div(X) we denote h'(F) = dim;, H(X,Ox(FE)), where 0 < i < 2.
We fix any H,C € Div(X). We consider the following admissible triple of complete
C5 -spaces over k:

O—>A0—>A01—>A01/A0—>0. (2)

The space Ag is a c¢fCy-space, and the space Ay /Ay is a dfCy-space. Therefore there
is the characteristic element 4, € Dy, ,, (Ao1) .
Now we consider the following admissible triple of complete C5-spaces over k:

0— AI,C — A()l — AOI/AI,C — 0. (3)

We note that the space Ay is a df Cy-space. Therefore for any H', C' € Div(X) there is
a natural element 0pr v € p(Ay g | Ay ¢r) which is uniquely defined by the following two
conditions: 1) dprar @ Iy cr = 0y v for any H', M',C" € Div(X), and 2) if H' < '
then 0/ o € p(Arcr /A1 ) is defined as dpr /((0)) = 1, where (0) is the zero subspace
in the discrete C-space A;c//A; p . Besides, the space A is a c¢Cy-space, and the
space Ag1/Ac is a dCy-space. Hence there is the characteristic element da, . s, . €
DALH (Agp) .

Lemma 1 We have the following equality:

< 5Ao , 5A1,076H,C >= th(C’)—hO(H)'
Proof We will use proposition [Il From this proposition it follows that it is enough to
consider H < C'. In this case, by this proposition again, we have < 0ay,04, ¢ 650 >=
g™V where the k-vector space V = (AgNA;¢)/(AgNA; g). Now we use AgNA; g =
H°(X,0x(E)) for any E € Div(X). The lemma is proved.
Now we fix any P, Q) € Div(X). We consider the following admissible triple of complete
C5 -spaces over k:

0— AQQ/AQ — A/Aol — A/(AOQ + AOl) — 0, (4)

where we use that Ag = Ay N Agy. The space Agy/A is a cfCy-space, and the space
A/(Ao1 + Ag2) is a dfCy-space. Therefore there is the characteristic element 04,,/a, €
DA12,P/A1,P (A/A()l) :

Now we consider the following admissible triple of complete C5-spaces over k :

00— A127Q/A17Q — A/AOl — A/(Alg,Q + A()l) — O, (5)

where we use that Ao = Ag N Ajpg. We note that the space A/Ay is a c¢fCsy-
space. Therefore for any P’, Q)" € Div(X) there is the following natural element 1p/ ¢ €
(Ao pr /Ay pr | Ay g /A1) which is uniquely defined by the following two conditions:
1) 1P’,R’ (%9 1R’,Q’ = 1P’,Q’ for any P/,R,,Q/ S DlV(X), and 2) if P’ < Q, then 1p/7QI S
1((Ar2,q /Arq)/(Arz,p /A1 pr)) is defined as 1p o ((Arz,q /ALg)/(Awp/ALp)) = 1,
since (A2 /A1 g)/(A12,pr /A pr) is a compact C)-space. Besides, the space Ajs /A g
is a cCy-space, and the space A/(Ajag + Ag) is a dCs-space. Hence there is the char-
acteristic element 04, o/a10,150 € Phy, pya, p (A/Ao1) -
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Lemma 2 We have the following equality:

< Bhon/ho » Ot /i g ipg >= qhQ(Q)—hQ(P)_

Proof We will use proposition [l By this proposition, it is enough to consider P > ). In
this case, by this proposition again, we have < day, /a0 Oars0/a1 0,100 >= @™, where
the k-vector space W = (Ag + Az + Ao p)/(Ao1 + Az + Ao o) . Now we use that from
the adelic complex Ax(Ox(E)) we have A/(Ag + Ag + A p) = H*(X,Ox(E)) for
any F € Div(X). The lemma is proved.

Now we suppose that @ = (w) — C and P = (w) — H . From proposition 2] it follows
that triple (@) is a Cs-dual sequence to triple ([2)), and triple (@) is a Cs-dual sequence
to triple (B). We have also the two-dimensional Fourier transforms F : Dy , (Ag) —
Dpropsarp(A/Ag) and F : D"MH(AM) — Dj&lg,p/Al,p(A/Am) (see [3, §5.4.2] and [4]
§8.2]), which we denote by the same letter, although they act from various spaces. Now
by the two-dimensional Poisson formula II (see [3} th. 3]) we have F(da,) = 044,/a, - By the
two-dimensional Poisson formula I (see [3} th. 2]) we have F (04, o 65.c) = Oars0/A1.0.1p0 -
(We used that according to [3| form. (103)] we have pu(Ay g | Avo) = p(Awp/Arp |
A1 g/A1g), and dgc — 1pg under this isomorphism.) Now since F o F(g) = ¢ for
g = 0py OF g = Op, ¢ 6y and the maps F are conjugate with respect to each other
(see [3, prop. 24]), we have that < da,, 04, ¢,6n0c >=< F(da,), F(0a, ¢,61) > Hence and
from lemmas we obtain for any H,C € Div(X) the following equality:

W (C) = W'(H) = h*((w) = C) = h*((w) — H). (6)

4. For any E € Div(X) we denote the Euler characteristic x(E) = h°(E) — h'(E) +
h*(E). We fix any R, S € Div(X). We consider the following admissible triple of complete
C5 -spaces over k:

O—)Am—)A—)A/AOQ—)O. (7)

The space Agy is a cfCy-space, and the space A/Agy is a df Cy-space. Therefore there
is the characteristic element 04, € Dy, ,(A).
Now we consider the following admissible triple of complete C5-spaces over k :

00— Alg,s — A — A/Alg,s — 0. (8)

The subspace Ay, uniquely defines an element vg g € p(Ap g | Apgr) for any R, S" €
Div(X) in the following way. If R’ < S’ then we consider the following admissible triple
of (] -spaces:

0 — Ay g /A g — Apg /Ao — Arps /A1 g+ Ajgpr — 0,

where A; ¢/A g is a discrete Cy -space, and Ajs o//A; ¢+ Ao g is a compact C -space.
Now Vg st € ,U(A12,S’/A12,R’) is equal to 50 ®1 s where 50((0)) = 1, 50 S ,U(ALS’/ALR’) s
and 1(A12,S//A17S/ + A127R/) = 1, 1e U(AH,S’/ALS’ + A127R/) . For arbitrary R/, S’ the
element vp g is defined by the following rule: vg ¢ = v v Qv o, where T" € Div(X)
is any. The space A g is a cCy-space, and the space A/Aj5 g is a dCy-space. Hence
there is the characteristic element 64, 5,0, 5 € Dy, ,(A).
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Lemma 3 We have the following equality:

< Oag » 51%12,571/12,5 >= qX(S)_X(R)'

Proof We will use proposition [II From this proposition it follows that it is enough to
consider R < .S In this case, by this proposition again, we have < day,, 04,5 5,055 >= ¢°,
where a is equal to the Euler characteristic of the following complex, which has the finite-
dimensional over k£ cohomology groups:

A g/Air & Asg/Aop — Ao g/Aisp. 9)

Complex (@) is the factor-complex of the adelic complex Ax(Ox(S)) by the adelic com-
plex Ax(Ox(R)). Therefore the Euler characteristic of complex (@) is the difference of
the Euler characteristics of corresponding adelic complexes. The lemma is proved.

From proposition 2 it follows that triple ([7) itself is a C5-dual sequence to triple (),
and triple ([8) is a Cy-dual sequence to triple (8) when S +— (w) — 5. We have al-
so the two-dimensional Fourier transforms F : Dy, o(A) — Da,  ,(A) and F :
D, (A) — D, (A). By the two-dimensional Poisson formulas (see [3, th. 2-

Ao R A12 (w)-R

th. 3]) we have F(dap) = 0ap, and F(0a,,,0ns) = Oaim ) siviw)yn s (We used
that from proposition 2 it follows that vrs + V(w)-R, (w)-s under the natural iso-
morphism p(Apr | Ags) = p(Aigw)-r | Aizw)-s).) From [3, prop. 24] we have
< Ongys Onppgvns >=< F(0ay), F(da,s,0ns) > Hence and from lemma B we have
that x(S) — x(R) = x((w) = 5) — x((w) — R). If we put R = (w) — S, then for any

S € Div(X) we obtain from the previous formula the following equality:

X(5) = x((w) = 9). (10)

5. In section 1 we introduced the element jis, pg) pe;) € p(F(3), F(j))) for the admissible
monomorphism of Cy-spaces L — E. When L =Agp, E=A, F(i)=Apsr, F(j) =
Ajp g for R, S € Div(X) we will denote this element by jp g . From the proof of lemma [3]

it follows that
P O-xw) _ IRS (11)
KR,
For any g € A* and any R,S € Div(X) we have a natural action: g¢* : u(A2 g |

Ao g) = u(gA1o g | gA12s) . Hence we obtain a central extension (see also [3, §5.5.3]):
1 —C* — A 75 A*—1,
where A* = {(g,¢) : g € A", ¢ € p(Aiap | ghi2o), ¢ # 0}, and (g1, ¢1)(g2, 2) =

(9192, 01 ® gi(¢2)) . (Here A9 is the group connected with the zero divisor on X .) For

any g¢i,g2 € A* we denote (g1,92) = [G1, 2] € C*, where g; € A* are any such that
7(g;) = ¢i - The element (g1, g2) does not depend on the choice of appropriate elements
g; - From [1] it follows the following equality:

(91,92) = [[ ¢ *@H 01200 9200)e0, (12)
zeD



where (-,-),,p is the composition of the maps: K, x K , = Ky(K, p) L F;D A7
For any E € Div(X) we choose an element j; g € Af; such that Ay g = j1 gAip,
and an element j, p € Aj, such that Ay g = jo pAs, where we take the product inside
the ring A. Now from [5, §2.2] and from (I2]) it follows the following formula for any
C,H € Div(X) ((C, H) means the intersection index of divisors C' and H on X ):

(jo.cv jrm) = g~ G, (13)

SiIlCG we can take j17E1+E2 = j17E1j27E2 and j2,E1+E2 = j27E1j27E2 , We obtain j17E1A17E2 =
Ay pyye, and jJo g Ag p, = Ay gy g, forany Ey, By € Div(X). Hence we have j"z(vgs) =
VR{E,S+E and .jz*,E(,U/R,S) = WUR4E,S+E for any R, S,E - DlV(X) For any C c DIV(X)
we choose joco = (Jo.c, vo,0) € A* and ji w)—c = (J1,w)-C» Ho,w)—c) € A*. We have

—

- J2.c Jiw-c _ Ve ® Jsc(bow-c) Y0, @ e (w)

S e How-c ® i o) How-c ® Vw)-cw)

_ V0,0 @ Heyw)-C @ w)—Cw) _ V0,0 Hw)=C(w) (14)
Ho,c @ pey(w)—c @ V(w)—C’ W)  H0,C V(w)—Cyw)
From (II)) and (I0) we obtain 22¢ = =G — (x(©)=x(0) Therefore from (I4) and (I3)

Ho,Cc V(w)—C,(w)

we have 2(x(C) — x(0)) = —(C,(w) — C) for any C € Dlv(X). From the last equality
and formula (G) we obtain the Riemann-Roch theorem in the following form.

(J2.05 J1,(w)—C

Theorem 1 For any C € Div(X) and w € Qi(x) we have the following equality

h(C) = (C) + h((w) = C) = h*(0) = h'(0) + A*((w)) — 5 (C, (w) = C).
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