Harmonic analysis and the Riemann-Roch theorem.

D.V. Osipov, A.N. Parshin *

1. Let D be a smooth projective curve over a finite field k. It is known (see, e.g., 6, $\S 3]$) that the Poisson summation formula applied to the discrete subgroup $k(D)$ of the adelic space \mathbb{A}_{D} implies the Riemann-Roch theorem on the curve D. In this note we will show how the two-dimensional Poisson formulas (see [3, §5.9] and [4, §13]) imply the Riemann-Roch theorem (without the Noether formula) on a projective smooth algebraic surface X over k.

First, we need some general proposition. Let $E=(I, F, V)$ be a C_{2}-space over the field k (see [2]). Recall that for any $i, j \in I$ we have constructed in [3, §5.2] a one-dimensional \mathbb{C}-vector space of virtual measures $\mu(F(i) \mid F(j))=\mu(F(i) / F(l))^{*} \otimes_{\mathbb{C}} \mu(F(l) / F(j))$, where $l \in I$ such that $l \leq i, l \leq j$, and $\mu(H)$ is the space of \mathbb{C}-valued Haar measures on a C_{1}-space H. The space $\mu(F(i) \mid F(j))$ does not depend on the choice of $l \in I$ up to a canonical isomorphism.

Let $0 \rightarrow A \rightarrow E \rightarrow B \rightarrow 0$ be an admissible triple of C_{2}-spaces over k. Let $A=(J, G, W)$ as a C_{2}-space, and $W=F(j)$ for some $j \in I$. Then A is a $c C_{2}$ space and B is a $d C_{2}$-space (see [3, §5.1]). Let $o \in I$ and $\mu \in \mu(W / F(o) \cap W)$, $\nu \in \nu(F(o) / F(o) \cap W)^{*}$. Then in [3, form. (164)] we have constructed the characteristic element $\delta_{A, \mu \otimes \nu} \in \mathcal{D}_{F(o)}^{\prime}(E)$. We note that $\mu \otimes \nu \in \mu(F(o) \mid W)$. Therefore we can replace $\mu \otimes \nu$ by $\eta \in \mu(F(o) \mid W)$ and write $\delta_{A, \eta} \in \mathcal{D}_{F(o)}^{\prime}(E)$ instead of the previous notation.

Let $0 \rightarrow L \rightarrow E \rightarrow M \rightarrow 0$ be an admissible triple of C_{2}-spaces over k such that L is a $c f C_{2}$-space and M is a $d f C_{2}$-space (see [3, §5.1]). In [3, form. (169)] we have constructed the characteristic element $\delta_{L} \in \mathcal{D}_{F(o)}(E)$. We note that for any $i, j \in I$ the space L defines a non-zero element $\mu_{L, F(i), F(j)} \in \mu(F(i) \mid F(j))$ in the following way. Let $L=(K, T, U)$ as a C_{2}-space. Choose some $l \in I$ such that $l \leq i, l \leq j$. Then $\mu_{L, F(i), F(j)}=\mu_{L, F(l), F(i)}^{-1} \otimes \mu_{L, F(l), F(j)}$, where for any $m \leq n \in I$ we define $\mu_{L, m, n} \in$ $\mu(F(n) / F(m))$ as $\mu_{L, m, n}(U \cap F(n) / U \cap F(m))=1$. The element $\mu_{L, F(i), F(j)}$ does not depend on the choice of $l \in I$.

There is a natural pairing $<\cdot \cdot>: \mathcal{D}_{F(o)}(E) \times D_{F(o)}^{\prime}(E) \rightarrow \mathbb{C}$. From the above definitions it is easy to prove the following proposition.

Proposition 1

$$
<\delta_{L}, \delta_{A, \eta}>=\frac{\eta}{\mu_{L, F(o), W}} .
$$

[^0]2. Let X be a smooth projective algebraic surface over a finite field k. Let $|k|=q$. For any quasicoherent sheaf \mathcal{F} on X there is an adelic complex $\mathcal{A}_{X}(\mathcal{F})$ such that $H^{*}\left(\mathcal{A}_{X}(\mathcal{F})\right)=H^{*}(X, \mathcal{F})$. Let $C \in \operatorname{Div}(X)$. For the sheaf $\mathcal{O}_{X}(C)$ on X we will write this complex in the following way:
$$
\mathbb{A}_{0, C} \oplus \mathbb{A}_{1, C} \oplus \mathbb{A}_{2, C} \longrightarrow \mathbb{A}_{01, C} \oplus \mathbb{A}_{02, C} \oplus \mathbb{A}_{12, C} \longrightarrow \mathbb{A}_{012, C}
$$
where $\mathbb{A}_{*, C}=\mathbb{A}_{X, *}\left(\mathcal{O}_{X}(C)\right)$ (see the corresponding notations and definitions in [4, §14.1]), and we have omitted indication on X in the notations of subgroups of the adelic complex, because we will work only with one algebraic surface X during this note. We note that that all the groups $\mathbb{A}_{*, C}$ are subgroups of the group $\mathbb{A}_{012, C}$. Besides, the following groups does not depend on $C \in \operatorname{Div}(X)$:
$$
\mathbb{A}_{0, C}=\mathbb{A}_{0}, \quad \mathbb{A}_{01, C}=\mathbb{A}_{01}, \quad \mathbb{A}_{02, C}=\mathbb{A}_{02}, \quad \mathbb{A}_{012, C}=\mathbb{A}_{012}=\mathbb{A}
$$

Moreover, $\mathbb{A} \subset \prod_{x \in D} K_{x, D}$, where $x \in D$ runs over all pairs with irreducible curve D on X and x is a point on D. The ring $K_{x, D}$ is a finite product of two-dimensional local fields with the last residue field $k(x)$.

We fix a rational differential form $\omega \in \Omega_{k(X) / k}^{2}$. Let $(\omega) \in \operatorname{Div}(X)$ be the corresponding divisor. The following pairing (which depends on ω) is well-defined, symmetric and non-degenerate:

$$
\begin{equation*}
\mathbb{A} \times \mathbb{A} \longrightarrow k \quad: \quad\left\{f_{x, D}\right\} \times\left\{g_{x, D}\right\} \mapsto \sum_{x \in D} \operatorname{Tr}_{k(x) / k} \circ \operatorname{res}_{x, D}\left(f_{x, D} g_{x, D} \omega\right) \tag{1}
\end{equation*}
$$

where $\operatorname{res}_{x, D}$ is the two-dimensional residue. For any k-subspace $V \subset \mathbb{A}$ we will denote by V^{\perp} the annihilator of V in \mathbb{A} with respect to the pairing (1). Using the reciprocity laws for the residues of differential forms on X (the reciprocity laws "around a point" and the reciprocity laws "along a curve") one can prove the following proposition.
Proposition 2 We have the following properties.

$$
\begin{gathered}
\mathbb{A}_{0}^{\perp}=\mathbb{A}_{01}+\mathbb{A}_{02}, \quad \mathbb{A}_{1, C}^{\perp}=\mathbb{A}_{01}+\mathbb{A}_{12,(\omega)-C}, \quad \mathbb{A}_{2, C}^{\perp}=\mathbb{A}_{02}+\mathbb{A}_{12,(\omega)-C} \\
\mathbb{A}_{01}^{\perp}=\mathbb{A}_{01}, \quad \mathbb{A}_{02}^{\perp}=\mathbb{A}_{02}, \quad \mathbb{A}_{12, C}^{\perp}=\mathbb{A}_{12,(\omega)-C} .
\end{gathered}
$$

We note that $\mathbb{A}=\underset{C \in \operatorname{Div}(X)}{\lim } \mathbb{A}_{12, C}$, and $\mathbb{A}_{12, C}=\underset{C^{\prime} \leq C}{\lim _{1}} \mathbb{A}_{12, C} / \mathbb{A}_{12, C^{\prime}}$. For any $C^{\prime} \leq C$ the
k-space $\mathbb{A}_{12, C} / \mathbb{A}_{12, C^{\prime}}$ has the natural structure of a complete C_{1}-space over the field k. Hence we obtain that the k-space \mathbb{A} has the following structure of a complete C_{2}-space over $k:(\operatorname{Div}(X), F, \mathbb{A})$, where $F(C)=\mathbb{A}_{12, C}$ for $C \in \operatorname{Div}(X)$. For simplicity we will use the same notation \mathbb{A} for this C_{2}-space, i.e. we will omit the partially ordered set $\operatorname{Div}(X)$ and the function F. The subspaces $\mathbb{A}_{*, C}$ of \mathbb{A} (and the factor-spaces by these subspaces) have induced structures of C_{2}-spaces, which we will also denote by the same notations $\mathbb{A}_{*, C}$ (by notations for factor-spaces).

From proposition 2 it follows that the C_{2}-dual space (see [3, §5.1]) $\check{\mathbb{A}}$ coincides with the C_{2}-space \mathbb{A} itself:
3. For any $E \in \operatorname{Div}(X)$ we denote $h^{i}(E)=\operatorname{dim}_{k} H^{i}\left(X, \mathcal{O}_{X}(E)\right)$, where $0 \leq i \leq 2$. We fix any $H, C \in \operatorname{Div}(X)$. We consider the following admissible triple of complete C_{2}-spaces over k :

$$
\begin{equation*}
0 \longrightarrow \mathbb{A}_{0} \longrightarrow \mathbb{A}_{01} \longrightarrow \mathbb{A}_{01} / \mathbb{A}_{0} \longrightarrow 0 \tag{2}
\end{equation*}
$$

The space \mathbb{A}_{0} is a $c f C_{2}$-space, and the space $\mathbb{A}_{01} / \mathbb{A}_{0}$ is a $d f C_{2}$-space. Therefore there is the characteristic element $\delta_{\mathbb{A}_{0}} \in \mathcal{D}_{\mathbb{A}_{1, H}}\left(\mathbb{A}_{01}\right)$.

Now we consider the following admissible triple of complete C_{2}-spaces over k :

$$
\begin{equation*}
0 \longrightarrow \mathbb{A}_{1, C} \longrightarrow \mathbb{A}_{01} \longrightarrow \mathbb{A}_{01} / \mathbb{A}_{1, C} \longrightarrow 0 \tag{3}
\end{equation*}
$$

We note that the space \mathbb{A}_{01} is a $d f C_{2}$-space. Therefore for any $H^{\prime}, C^{\prime} \in \operatorname{Div}(X)$ there is a natural element $\delta_{H^{\prime}, C^{\prime}} \in \mu\left(\mathbb{A}_{1, H^{\prime}} \mid \mathbb{A}_{1, C^{\prime}}\right)$ which is uniquely defined by the following two conditions: 1) $\delta_{H^{\prime}, M^{\prime}} \otimes \delta_{M^{\prime}, C^{\prime}}=\delta_{H^{\prime}, C^{\prime}}$ for any $H^{\prime}, M^{\prime}, C^{\prime} \in \operatorname{Div}(X)$, and 2) if $H^{\prime} \leq C^{\prime}$ then $\delta_{H^{\prime}, C^{\prime}} \in \mu\left(\mathbb{A}_{1, C^{\prime}} / \mathbb{A}_{1, H^{\prime}}\right)$ is defined as $\delta_{H^{\prime}, C^{\prime}}((0))=1$, where (0) is the zero subspace in the discrete C_{1}-space $\mathbb{A}_{1, C^{\prime}} / \mathbb{A}_{1, H^{\prime}}$. Besides, the space $\mathbb{A}_{1, C}$ is a $c C_{2}$-space, and the space $\mathbb{A}_{01} / \mathbb{A}_{1, C}$ is a $d C_{2}$-space. Hence there is the characteristic element $\delta_{\mathbb{A}_{1, C}, \delta_{H, C}} \in$ $\mathcal{D}_{\mathbb{A}_{1, H}}^{\prime}\left(\mathbb{A}_{01}\right)$.

Lemma 1 We have the following equality:

$$
<\delta_{\mathbb{A}_{0}}, \delta_{\mathbb{A}_{1, C}, \delta_{H, C}}>=q^{h^{0}(C)-h^{0}(H)}
$$

Proof We will use proposition 1. From this proposition it follows that it is enough to consider $H \leq C$. In this case, by this proposition again, we have $<\delta_{\mathbb{A}_{0}}, \delta_{\mathbb{A}_{1, C}, \delta_{H, C}}>=$ $q^{\operatorname{dim}_{k} V}$, where the k-vector space $V=\left(\mathbb{A}_{0} \cap \mathbb{A}_{1, C}\right) /\left(\mathbb{A}_{0} \cap \mathbb{A}_{1, H}\right)$. Now we use $\mathbb{A}_{0} \cap \mathbb{A}_{1, E}=$ $H^{0}\left(X, \mathcal{O}_{X}(E)\right)$ for any $E \in \operatorname{Div}(X)$. The lemma is proved.

Now we fix any $P, Q \in \operatorname{Div}(X)$. We consider the following admissible triple of complete C_{2}-spaces over k :

$$
\begin{equation*}
0 \longrightarrow \mathbb{A}_{02} / \mathbb{A}_{0} \longrightarrow \mathbb{A} / \mathbb{A}_{01} \longrightarrow \mathbb{A} /\left(\mathbb{A}_{02}+\mathbb{A}_{01}\right) \longrightarrow 0 \tag{4}
\end{equation*}
$$

where we use that $\mathbb{A}_{0}=\mathbb{A}_{01} \cap \mathbb{A}_{02}$. The space $\mathbb{A}_{02} / \mathbb{A}_{0}$ is a $c f C_{2}$-space, and the space $\mathbb{A} /\left(\mathbb{A}_{01}+\mathbb{A}_{02}\right)$ is a $d f C_{2}$-space. Therefore there is the characteristic element $\delta_{\mathbb{A}_{02} / \mathbb{A}_{0}} \in$ $\mathcal{D}_{\mathbb{A}_{12, P} / \mathbb{A}_{1, P}}\left(\mathbb{A} / \mathbb{A}_{01}\right)$.

Now we consider the following admissible triple of complete C_{2}-spaces over k :

$$
\begin{equation*}
0 \longrightarrow \mathbb{A}_{12, Q} / \mathbb{A}_{1, Q} \longrightarrow \mathbb{A} / \mathbb{A}_{01} \longrightarrow \mathbb{A} /\left(\mathbb{A}_{12, Q}+\mathbb{A}_{01}\right) \longrightarrow 0 \tag{5}
\end{equation*}
$$

where we use that $\mathbb{A}_{1, Q}=\mathbb{A}_{01} \cap \mathbb{A}_{12, Q}$. We note that the space $\mathbb{A} / \mathbb{A}_{01}$ is a $c f C_{2}$ space. Therefore for any $P^{\prime}, Q^{\prime} \in \operatorname{Div}(X)$ there is the following natural element $1_{P^{\prime}, Q^{\prime}} \in$ $\mu\left(\mathbb{A}_{12, P^{\prime}} / \mathbb{A}_{1, P^{\prime}} \mid \mathbb{A}_{1, Q^{\prime}} / \mathbb{A}_{1, Q^{\prime}}\right)$ which is uniquely defined by the following two conditions: 1) $1_{P^{\prime}, R^{\prime}} \otimes 1_{R^{\prime}, Q^{\prime}}=1_{P^{\prime}, Q^{\prime}}$ for any $P^{\prime}, R^{\prime}, Q^{\prime} \in \operatorname{Div}(X)$, and 2) if $P^{\prime} \leq Q^{\prime}$ then $1_{P^{\prime}, Q^{\prime}} \in$ $\mu\left(\left(\mathbb{A}_{12, Q^{\prime}} / \mathbb{A}_{1, Q^{\prime}}\right) /\left(\mathbb{A}_{12, P^{\prime}} / \mathbb{A}_{1, P^{\prime}}\right)\right)$ is defined as $1_{P^{\prime}, Q^{\prime}}\left(\left(\mathbb{A}_{12, Q^{\prime}} / \mathbb{A}_{1, Q^{\prime}}\right) /\left(\mathbb{A}_{12, P^{\prime}} / \mathbb{A}_{1, P^{\prime}}\right)\right)=1$, since $\left(\mathbb{A}_{12, Q^{\prime}} / \mathbb{A}_{1, Q^{\prime}}\right) /\left(\mathbb{A}_{12, P^{\prime}} / \mathbb{A}_{1, P^{\prime}}\right)$ is a compact C_{1}-space. Besides, the space $\mathbb{A}_{12, Q} / \mathbb{A}_{1, Q}$ is a $c C_{2}$-space, and the space $\mathbb{A} /\left(\mathbb{A}_{12, Q}+\mathbb{A}_{01}\right)$ is a $d C_{2}$-space. Hence there is the characteristic element $\delta_{\mathbb{A}_{12, Q} / \mathbb{A}_{1, Q}, 1_{P, Q}} \in \mathcal{D}_{\mathbb{A}_{12, P} / \mathbb{A}_{1, P}}^{\prime}\left(\mathbb{A} / \mathbb{A}_{01}\right)$.

Lemma 2 We have the following equality:

$$
<\delta_{\mathbb{A}_{02} / \mathbb{A}_{0}}, \delta_{\mathbb{A}_{12, Q} / \mathbb{A}_{1, Q}, 1_{P, Q}}>=q^{h^{2}(Q)-h^{2}(P)}
$$

Proof We will use proposition [1. By this proposition, it is enough to consider $P \geq Q$. In this case, by this proposition again, we have $<\delta_{\mathbb{A}_{02} / \mathbb{A}_{0}}, \delta_{\mathbb{A}_{12, Q} / \mathbb{A}_{1}, Q}, 1_{P, Q}>=q^{\operatorname{dim}_{k} W}$, where the k-vector space $W=\left(\mathbb{A}_{01}+\mathbb{A}_{02}+\mathbb{A}_{12, P}\right) /\left(\mathbb{A}_{01}+\mathbb{A}_{02}+\mathbb{A}_{12, Q}\right)$. Now we use that from the adelic complex $\mathcal{A}_{X}\left(\mathcal{O}_{X}(E)\right)$ we have $\mathbb{A} /\left(\mathbb{A}_{01}+\mathbb{A}_{02}+\mathbb{A}_{12, E}\right)=H^{2}\left(X, \mathcal{O}_{X}(E)\right)$ for any $E \in \operatorname{Div}(X)$. The lemma is proved.

Now we suppose that $Q=(\omega)-C$ and $P=(\omega)-H$. From proposition 2 it follows that triple (4) is a C_{2}-dual sequence to triple (2), and triple (5) is a C_{2}-dual sequence to triple (3). We have also the two-dimensional Fourier transforms $\mathbf{F}: \mathcal{D}_{\mathbb{A}_{1, H}}\left(\mathbb{A}_{01}\right) \rightarrow$ $\mathcal{D}_{\mathbb{A}_{12, P} / \mathbb{A}_{1, P}}\left(\mathbb{A} / \mathbb{A}_{01}\right)$ and $\mathbf{F}: \mathcal{D}_{\mathbb{A}_{1, H}}^{\prime}\left(\mathbb{A}_{01}\right) \rightarrow \mathcal{D}_{\mathbb{A}_{12, P} / \mathbb{A}_{1, P}}^{\prime}\left(\mathbb{A} / \mathbb{A}_{01}\right)$ (see [3, §5.4.2] and [4, $\S 8.2]$), which we denote by the same letter, although they act from various spaces. Now by the two-dimensional Poisson formula II (see [3, th. 3]) we have $\mathbf{F}\left(\delta_{\mathbb{A}_{0}}\right)=\delta_{\mathbb{A}_{02} / \mathbb{A}_{0}}$. By the two-dimensional Poisson formula I (see [3, th. 2]) we have $\mathbf{F}\left(\delta_{\mathbb{A}_{1, C}, \delta_{H, C}}\right)=\delta_{\mathbb{A}_{12, Q} / \mathbb{A}_{1, Q}, 1_{P, Q}}$. (We used that according to [3, form. (103)] we have $\mu\left(\mathbb{A}_{1, H} \mid \mathbb{A}_{1, C}\right)=\mu\left(\mathbb{A}_{12, P} / \mathbb{A}_{1, P} \mid\right.$ $\left.\mathbb{A}_{1, Q} / \mathbb{A}_{1, Q}\right)$, and $\delta_{H, C} \mapsto 1_{P, Q}$ under this isomorphism.) Now since $\mathbf{F} \circ \mathbf{F}(g)=g$ for $g=\delta_{\mathbb{A}_{0}}$ or $g=\delta_{\mathbb{A}_{1, C}, \delta_{H, C}}$, and the maps \mathbf{F} are conjugate with respect to each other (see [3, prop. 24]), we have that $<\delta_{\mathbb{A}_{0}}, \delta_{\mathbb{A}_{1, C}, \delta_{H, C}}>=<\mathbf{F}\left(\delta_{\mathbb{A}_{0}}\right), \mathbf{F}\left(\delta_{\mathbb{A}_{1}, C}, \delta_{H, C}\right)>$. Hence and from lemmas $1-2$ we obtain for any $H, C \in \operatorname{Div}(X)$ the following equality:

$$
\begin{equation*}
h^{0}(C)-h^{0}(H)=h^{2}((\omega)-C)-h^{2}((\omega)-H) \tag{6}
\end{equation*}
$$

4. For any $E \in \operatorname{Div}(X)$ we denote the Euler characteristic $\chi(E)=h^{0}(E)-h^{1}(E)+$ $h^{2}(E)$. We fix any $R, S \in \operatorname{Div}(X)$. We consider the following admissible triple of complete C_{2}-spaces over k :

$$
\begin{equation*}
0 \longrightarrow \mathbb{A}_{02} \longrightarrow \mathbb{A} \longrightarrow \mathbb{A} / \mathbb{A}_{02} \longrightarrow 0 \tag{7}
\end{equation*}
$$

The space \mathbb{A}_{02} is a $c f C_{2}$-space, and the space $\mathbb{A} / \mathbb{A}_{02}$ is a $d f C_{2}$-space. Therefore there is the characteristic element $\delta_{\mathbb{A}_{02}} \in \mathcal{D}_{\mathbb{A}_{12, R}}(\mathbb{A})$.

Now we consider the following admissible triple of complete C_{2}-spaces over k :

$$
\begin{equation*}
0 \longrightarrow \mathbb{A}_{12, S} \longrightarrow \mathbb{A} \longrightarrow \mathbb{A} / \mathbb{A}_{12, S} \longrightarrow 0 \tag{8}
\end{equation*}
$$

The subspace \mathbb{A}_{01} uniquely defines an element $\nu_{R^{\prime}, S^{\prime}} \in \mu\left(\mathbb{A}_{12, R^{\prime}} \mid \mathbb{A}_{12, S^{\prime}}\right)$ for any $R^{\prime}, S^{\prime} \in$ $\operatorname{Div}(X)$ in the following way. If $R^{\prime} \leq S^{\prime}$, then we consider the following admissible triple of C_{1}-spaces:

$$
0 \longrightarrow \mathbb{A}_{1, S^{\prime}} / \mathbb{A}_{1, R^{\prime}} \longrightarrow \mathbb{A}_{12, S^{\prime}} / \mathbb{A}_{12, R^{\prime}} \longrightarrow \mathbb{A}_{12, S^{\prime}} / \mathbb{A}_{1, S^{\prime}}+\mathbb{A}_{12, R^{\prime}} \longrightarrow 0,
$$

where $\mathbb{A}_{1, S^{\prime}} / \mathbb{A}_{1, R^{\prime}}$ is a discrete C_{1}-space, and $\mathbb{A}_{12, S^{\prime}} / \mathbb{A}_{1, S^{\prime}}+\mathbb{A}_{12, R^{\prime}}$ is a compact C_{1}-space. Now $\nu_{R^{\prime}, S^{\prime}} \in \mu\left(\mathbb{A}_{12, S^{\prime}} / \mathbb{A}_{12, R^{\prime}}\right)$ is equal to $\delta_{0} \otimes 1$, where $\delta_{0}((0))=1, \delta_{0} \in \mu\left(\mathbb{A}_{1, S^{\prime}} / \mathbb{A}_{1, R^{\prime}}\right)$, and $1\left(\mathbb{A}_{12, S^{\prime}} / \mathbb{A}_{1, S^{\prime}}+\mathbb{A}_{12, R^{\prime}}\right)=1,1 \in \mu\left(\mathbb{A}_{12, S^{\prime}} / \mathbb{A}_{1, S^{\prime}}+\mathbb{A}_{12, R^{\prime}}\right)$. For arbitrary R^{\prime}, S^{\prime} the element $\nu_{R^{\prime}, S^{\prime}}$ is defined by the following rule: $\nu_{R^{\prime}, S^{\prime}}=\nu_{R^{\prime}, T^{\prime}} \otimes \nu_{T^{\prime}, S^{\prime}}$, where $T^{\prime} \in \operatorname{Div}(X)$ is any. The space $\mathbb{A}_{12, S}$ is a $c C_{2}$-space, and the space $\mathbb{A} / \mathbb{A}_{12, S}$ is a $d C_{2}$-space. Hence there is the characteristic element $\delta_{\mathbb{A}_{12, S}, \nu_{R, S}} \in \mathcal{D}_{\mathbb{A}_{12, R}}^{\prime}(\mathbb{A})$.

Lemma 3 We have the following equality:

$$
<\delta_{\mathbb{A}_{02}}, \delta_{\mathbb{A}_{12, S}, \nu_{R, S}}>=q^{\chi(S)-\chi(R)}
$$

Proof We will use proposition 1. From this proposition it follows that it is enough to consider $R \leq S$. In this case, by this proposition again, we have $<\delta_{\mathbb{A}_{02}}, \delta_{\mathbb{A}_{12, S}, \nu_{R, S}}>=q^{a}$, where a is equal to the Euler characteristic of the following complex, which has the finitedimensional over k cohomology groups:

$$
\begin{equation*}
\mathbb{A}_{1, S} / \mathbb{A}_{1, R} \oplus \mathbb{A}_{2, S} / \mathbb{A}_{2, R} \longrightarrow \mathbb{A}_{12, S} / \mathbb{A}_{12, R} \tag{9}
\end{equation*}
$$

Complex (9) is the factor-complex of the adelic complex $\mathcal{A}_{X}\left(\mathcal{O}_{X}(S)\right)$ by the adelic complex $\mathcal{A}_{X}\left(\mathcal{O}_{X}(R)\right)$. Therefore the Euler characteristic of complex (9) is the difference of the Euler characteristics of corresponding adelic complexes. The lemma is proved.

From proposition 2 it follows that triple (7) itself is a C_{2}-dual sequence to triple (7), and triple (8) is a C_{2}-dual sequence to triple (8) when $S \mapsto(\omega)-S$. We have also the two-dimensional Fourier transforms $\mathbf{F}: \mathcal{D}_{\mathbb{A}_{12, R}}(\mathbb{A}) \rightarrow \mathcal{D}_{\mathbb{A}_{12,(\omega)-R}}(\mathbb{A})$ and $\mathbf{F}:$ $\mathcal{D}_{\mathbb{A}_{12, R}}^{\prime}(\mathbb{A}) \rightarrow \mathcal{D}_{\mathbb{A}_{12,(\omega)-R}}^{\prime}(\mathbb{A})$. By the two-dimensional Poisson formulas (see [3, th. 2th. 3]) we have $\mathbf{F}\left(\delta_{\mathbb{A}_{02}}\right)=\delta_{\mathbb{A}_{02}}$ and $\mathbf{F}\left(\delta_{\mathbb{A}_{12, S}, \nu_{R, S}}\right)=\delta_{\mathbb{A}_{12,(\omega)-S}, \nu_{(\omega)-R,(\omega)-S}}$. (We used that from proposition 2 it follows that $\nu_{R, S} \mapsto \nu_{(\omega)-R,(\omega)-S}$ under the natural isomorphism $\left.\mu\left(\mathbb{A}_{12, R} \mid \mathbb{A}_{12, S}\right)=\mu\left(\mathbb{A}_{12,(\omega)-R} \mid \mathbb{A}_{12,(\omega)-S}\right).\right)$ From [3, prop. 24] we have $<\delta_{\mathbb{A}_{02}}, \delta_{\mathbb{A}_{12, S}, \nu_{R, S}}>=<\mathbf{F}\left(\delta_{\mathbb{A}_{02}}\right), \mathbf{F}\left(\delta_{\mathbb{A}_{12, S}, \nu_{R, S}}\right)>$. Hence and from lemma 3 we have that $\chi(S)-\chi(R)=\chi((\omega)-S)-\chi((\omega)-R)$. If we put $R=(\omega)-S$, then for any $S \in \operatorname{Div}(X)$ we obtain from the previous formula the following equality:

$$
\begin{equation*}
\chi(S)=\chi((\omega)-S) \tag{10}
\end{equation*}
$$

5. In section 1 we introduced the element $\left.\mu_{L, F(i), F(j)} \in \mu(F(i), F(j))\right)$ for the admissible monomorphism of C_{2}-spaces $L \rightarrow E$. When $L=\mathbb{A}_{02}, E=\mathbb{A}, F(i)=\mathbb{A}_{12, R}, F(j)=$ $\mathbb{A}_{12, S}$ for $R, S \in \operatorname{Div}(X)$ we will denote this element by $\mu_{R, S}$. From the proof of lemma 3 it follows that

$$
\begin{equation*}
q^{\chi(S)-\chi(R)}=\frac{\nu_{R, S}}{\mu_{R, S}} . \tag{11}
\end{equation*}
$$

For any $g \in \mathbb{A}^{*}$ and any $R, S \in \operatorname{Div}(X)$ we have a natural action: $g^{*}: \mu\left(\mathbb{A}_{12, R} \mid\right.$ $\left.\mathbb{A}_{12, S}\right) \rightarrow \mu\left(g \mathbb{A}_{12, R} \mid g \mathbb{A}_{12, S}\right)$. Hence we obtain a central extension (see also [3, §5.5.3]):

$$
1 \longrightarrow \mathbb{C}^{*} \longrightarrow \widehat{\mathbb{A}^{*}} \xrightarrow{\pi} \mathbb{A}^{*} \longrightarrow 1
$$

where $\mathbb{A}^{*}=\left\{(g, \phi): g \in \mathbb{A}^{*}, \phi \in \mu\left(\mathbb{A}_{12,0} \mid g \mathbb{A}_{12,0}\right), \phi \neq 0\right\}$, and $\left(g_{1}, \phi_{1}\right)\left(g_{2}, \phi_{2}\right)=$ $\left(g_{1} g_{2}, \phi_{1} \otimes g_{1}^{*}\left(\phi_{2}\right)\right)$. (Here $\mathbb{A}_{12,0}$ is the group connected with the zero divisor on X.) For any $g_{1}, g_{2} \in \mathbb{A}^{*}$ we denote $\left\langle g_{1}, g_{2}\right\rangle=\left[\widehat{g_{1}}, \widehat{g_{2}}\right] \in \mathbb{C}^{*}$, where $\widehat{g_{i}} \in \widehat{\mathbb{A}^{*}}$ are any such that $\pi\left(\widehat{g_{i}}\right)=g_{i}$. The element $\left\langle g_{1}, g_{2}\right\rangle$ does not depend on the choice of appropriate elements \widehat{g}_{i}. From [1] it follows the following equality:

$$
\begin{equation*}
\left\langle g_{1}, g_{2}\right\rangle=\prod_{x \in D} q^{-[k(x): k]\left(g_{1 x, D}, g_{2 x, D}\right)_{x, D}} \tag{12}
\end{equation*}
$$

where $(\cdot, \cdot)_{x, D}$ is the composition of the maps: $K_{x, D}^{*} \times K_{x, D}^{*} \rightarrow K_{2}\left(K_{x, D}\right) \xrightarrow{\partial_{2}} \bar{K}_{x, D}^{*} \xrightarrow{\partial_{1}} \mathbb{Z}$.
For any $E \in \operatorname{Div}(X)$ we choose an element $j_{1, E} \in \mathbb{A}_{01}^{*}$ such that $\mathbb{A}_{1, E}=j_{1, E} \mathbb{A}_{1,0}$, and an element $j_{2, E} \in \mathbb{A}_{02}^{*}$ such that $\mathbb{A}_{2, E}=j_{2, E} \mathbb{A}_{2,0}$, where we take the product inside the ring \mathbb{A}. Now from [5, §2.2] and from (12) it follows the following formula for any $C, H \in \operatorname{Div}(X)((C, H)$ means the intersection index of divisors C and H on $X)$:

$$
\begin{equation*}
\left\langle j_{2, C}, j_{1, H}\right\rangle=q^{-(C, H)} \tag{13}
\end{equation*}
$$

Since we can take $j_{1, E_{1}+E_{2}}=j_{1, E_{1}} j_{2, E_{2}}$ and $j_{2, E_{1}+E_{2}}=j_{2, E_{1}} j_{2, E_{2}}$, we obtain $j_{1, E_{1}} \mathbb{A}_{1, E_{2}}=$ $\mathbb{A}_{1, E_{1}+E_{2}}$ and $j_{2, E_{1}} \mathbb{A}_{2, E_{2}}=\mathbb{A}_{2, E_{1}+E_{2}}$ for any $E_{1}, E_{2} \in \operatorname{Div}(X)$. Hence we have $j_{1, E}^{*}\left(\nu_{R, S}\right)=$ $\nu_{R+E, S+E}$ and $j_{2, E}^{*}\left(\mu_{R, S}\right)=\mu_{R+E, S+E}$ for any $R, S, E \in \operatorname{Div}(X)$. For any $C \in \operatorname{Div}(X)$ we choose $\widehat{j_{2, C}}=\left(j_{2, C}, \nu_{0, C}\right) \in \widehat{\mathbb{A}^{*}}$ and $\widehat{j_{1,(\omega)-C}}=\left(j_{1,(\omega)-C}, \mu_{0,(\omega)-C}\right) \in \widehat{\mathbb{A}^{*}}$. We have

$$
\begin{align*}
\left\langle j_{2, C}, j_{1,(\omega)-C}\right\rangle= & \widehat{j_{2, C}} \widehat{j_{1,(\omega)-C}} \\
\widehat{j_{1,(\omega)-C}} & \frac{\nu_{0, C} \otimes j_{2, C}^{*}\left(\mu_{0,(\omega)-C}\right)}{\mu_{0,(\omega)-C} \otimes j_{1,(\omega)-C}^{*}\left(\nu_{0, C}\right)}=\frac{\nu_{0, C} \otimes \mu_{C,(\omega)}}{\mu_{0,(\omega)-C} \otimes \nu_{(\omega)-C,(\omega)}}= \tag{14}\\
& =\frac{\nu_{0, C} \otimes \mu_{C,(\omega)-C} \otimes \mu_{(\omega)-C,(\omega)}}{\mu_{0, C} \otimes \mu_{C,(\omega)-C} \otimes \nu_{(\omega)-C,(\omega)}}=\frac{\nu_{0, C}}{\mu_{0, C}} \frac{\mu_{(\omega)-C,(\omega)}}{\nu_{(\omega)-C,(\omega)}} .
\end{align*}
$$

From (11) and (10) we obtain $\frac{\nu_{0, C}}{\mu_{0, C}}=\frac{\mu_{(\omega)-C,(\omega)}}{\nu_{(\omega)-C,(\omega)}}=q^{\chi(C)-\chi(0)}$. Therefore from (14) and (13) we have $2(\chi(C)-\chi(0))=-(C,(\omega)-C)$ for any $C \in \operatorname{Div}(X)$. From the last equality and formula (6) we obtain the Riemann-Roch theorem in the following form.
Theorem 1 For any $C \in \operatorname{Div}(X)$ and $\omega \in \Omega_{k(X)}^{2}$ we have the following equality

$$
h^{0}(C)-h^{1}(C)+h^{0}((\omega)-C)=h^{0}(0)-h^{1}(0)+h^{0}((\omega))-\frac{1}{2}(C,(\omega)-C) .
$$

References

[1] Osipov D.V., Central extensions and reciprocity laws on algebraic surfaces, (Russian) Mat. Sb. 196:10 (2005), 111-136; translation in Sb. Math. 196:10 (2005), 1503-1527.
[2] Osipov D., Adeles on n-dimensional schemes and categories C_{n}, International Journal of Mathematics, vol. 18, no. 3 (2007), 269-279.
[3] Osipov D.V., Parshin A.N., Harmonic analisys on local fields and adelic spaces. I, Izvestiya RAN: Ser. Mat., 2008, 72:5, pp. 77-140; english translation in Izvestiya: Mathematics, 2008, 72:5, pp. 915-976.
[4] Osipov D.V., Parshin A.N., Harmonic analisys on local fields and adelic spaces. II, to appear in Izvestiya RAN: Ser. Mat., 2011, 72:4, e-print arXiv:0912.1577.
[5] Parshin A.N., Chern classes, adeles and L-functions, Journal für die reine and angewandte Mathematik, Band 341, 1983, pp. 174-192.
[6] Parshin A. N., Higher-dimensional local fields and L-functions, Invitation to higher local fields (Münster, 1999), 199-213 (electronic), Geom. Topol. Monogr., 3, Geom. Topol. Publ., Coventry, 2000.

[^0]: *Both authors are supported by RFBR (grant no. 11-01-00145-a) and by a program of President of RF for supporting of Leading Scientific Schools (grant no. NSh-4713.2010.1).
 ${ }^{\dagger}$ Steklov Mathematical Institute RAS, d_osipov@mi.ras.ru, parshin@mi.ras.ru

