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Harmonic analysis and the Riemann-Roch theorem.

D.V. Osipov, A.N. Parshin ∗†

1. Let D be a smooth projective curve over a finite field k . It is known (see, e.g., [6,
§3]) that the Poisson summation formula applied to the discrete subgroup k(D) of the
adelic space AD implies the Riemann-Roch theorem on the curve D . In this note we
will show how the two-dimensional Poisson formulas (see [3, §5.9] and [4, §13]) imply the
Riemann-Roch theorem (without the Noether formula) on a projective smooth algebraic
surface X over k .

First, we need some general proposition. Let E = (I, F, V ) be a C2 -space over the field
k (see [2]). Recall that for any i, j ∈ I we have constructed in [3, §5.2] a one-dimensional
C -vector space of virtual measures µ(F (i) | F (j)) = µ(F (i)/F (l))∗ ⊗C µ(F (l)/F (j)) ,
where l ∈ I such that l ≤ i , l ≤ j , and µ(H) is the space of C -valued Haar measures
on a C1 -space H . The space µ(F (i) | F (j)) does not depend on the choice of l ∈ I up
to a canonical isomorphism.

Let 0 → A → E → B → 0 be an admissible triple of C2 -spaces over k . Let
A = (J,G,W ) as a C2 -space, and W = F (j) for some j ∈ I . Then A is a cC2 -
space and B is a dC2 -space (see [3, §5.1]). Let o ∈ I and µ ∈ µ(W/F (o) ∩ W ) ,
ν ∈ ν(F (o)/F (o) ∩W )∗ . Then in [3, form. (164)] we have constructed the characteristic
element δA,µ⊗ν ∈ D′F (o)(E) . We note that µ⊗ν ∈ µ(F (o) | W ) . Therefore we can replace

µ⊗ ν by η ∈ µ(F (o) | W ) and write δA,η ∈ D′F (o)(E) instead of the previous notation.
Let 0 → L → E → M → 0 be an admissible triple of C2 -spaces over k such that

L is a cfC2 -space and M is a dfC2 -space (see [3, §5.1]). In [3, form. (169)] we have
constructed the characteristic element δL ∈ DF (o)(E) . We note that for any i, j ∈ I
the space L defines a non-zero element µL,F (i),F (j) ∈ µ(F (i) | F (j)) in the following
way. Let L = (K, T, U) as a C2 -space. Choose some l ∈ I such that l ≤ i , l ≤ j .
Then µL,F (i),F (j) = µ−1L,F (l),F (i) ⊗ µL,F (l),F (j) , where for any m ≤ n ∈ I we define µL,m,n ∈

µ(F (n)/F (m)) as µL,m,n(U ∩ F (n)/U ∩ F (m)) = 1 . The element µL,F (i),F (j) does not
depend on the choice of l ∈ I .

There is a natural pairing < ·, · >: DF (o)(E) × D′F (o)(E) → C . From the above
definitions it is easy to prove the following proposition.

Proposition 1

< δL, δA,η >=
η

µL,F (o),W

.
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2. Let X be a smooth projective algebraic surface over a finite field k . Let | k |= q .
For any quasicoherent sheaf F on X there is an adelic complex AX(F) such that
H∗(AX(F)) = H∗(X,F) . Let C ∈ Div(X) . For the sheaf OX(C) on X we will write
this complex in the following way:

A0,C ⊕ A1,C ⊕ A2,C −→ A01,C ⊕ A02,C ⊕ A12,C −→ A012,C ,

where A∗, C = AX,∗(OX(C)) (see the corresponding notations and definitions in [4, §14.1]),
and we have omitted indication on X in the notations of subgroups of the adelic complex,
because we will work only with one algebraic surface X during this note. We note that
that all the groups A∗,C are subgroups of the group A012,C . Besides, the following groups
does not depend on C ∈ Div(X) :

A0,C = A0, A01,C = A01, A02,C = A02, A012,C = A012 = A.

Moreover, A ⊂
∏

x∈D Kx,D , where x ∈ D runs over all pairs with irreducible curve D
on X and x is a point on D . The ring Kx,D is a finite product of two-dimensional local
fields with the last residue field k(x) .

We fix a rational differential form ω ∈ Ω2
k(X)/k . Let (ω) ∈ Div(X) be the correspond-

ing divisor. The following pairing (which depends on ω ) is well-defined, symmetric and
non-degenerate:

A× A −→ k : {fx,D} × {gx,D} 7→
∑

x∈D

Trk(x)/k ◦ resx,D(fx,D gx,D ω), (1)

where resx,D is the two-dimensional residue. For any k -subspace V ⊂ A we will denote
by V ⊥ the annihilator of V in A with respect to the pairing (1). Using the reciprocity
laws for the residues of differential forms on X (the reciprocity laws ”around a point”
and the reciprocity laws ”along a curve”) one can prove the following proposition.

Proposition 2 We have the following properties.

A
⊥
0 = A01 + A02, A

⊥
1,C = A01 + A12,(ω)−C , A

⊥
2,C = A02 + A12,(ω)−C

A
⊥
01 = A01, A

⊥
02 = A02, A

⊥
12,C = A12,(ω)−C .

We note that A = lim
−→

C∈Div(X)

A12,C , and A12,C = lim
←−

C′≤C

A12,C/A12,C′ . For any C ′ ≤ C the

k -space A12,C/A12,C′ has the natural structure of a complete C1 -space over the field k .
Hence we obtain that the k -space A has the following structure of a complete C2 -space
over k : (Div(X), F,A) , where F (C) = A12,C for C ∈ Div(X) . For simplicity we will
use the same notation A for this C2 -space, i.e. we will omit the partially ordered set
Div(X) and the function F . The subspaces A∗,C of A (and the factor-spaces by these
subspaces) have induced structures of C2 -spaces, which we will also denote by the same
notations A∗,C (by notations for factor-spaces).

From proposition 2 it follows that the C2 -dual space (see [3, §5.1]) Ǎ coincides with
the C2 -space A itself:

Ǎ = lim
←−

C∈Div(X)

lim
−→

C′≤C

A
⊥
12,C′/A⊥12,C = lim

−→

C′∈Div(X)

lim
←−

C≥C′

A12,(ω)−C′/A12,(ω)−C = A.
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3. For any E ∈ Div(X) we denote hi(E) = dimk H
i(X,OX(E)) , where 0 ≤ i ≤ 2 .

We fix any H,C ∈ Div(X) . We consider the following admissible triple of complete
C2 -spaces over k :

0 −→ A0 −→ A01 −→ A01/A0 −→ 0. (2)

The space A0 is a cfC2 -space, and the space A01/A0 is a dfC2 -space. Therefore there
is the characteristic element δA0 ∈ DA1,H

(A01) .
Now we consider the following admissible triple of complete C2 -spaces over k :

0 −→ A1,C −→ A01 −→ A01/A1,C −→ 0. (3)

We note that the space A01 is a dfC2 -space. Therefore for any H ′, C ′ ∈ Div(X) there is
a natural element δH′,C′ ∈ µ(A1,H′ | A1,C′) which is uniquely defined by the following two
conditions: 1) δH′,M ′ ⊗ δM ′,C′ = δH′,C′ for any H ′,M ′, C ′ ∈ Div(X) , and 2) if H ′ ≤ C ′

then δH′,C′ ∈ µ(A1,C′/A1,H′) is defined as δH′,C′((0)) = 1 , where (0) is the zero subspace
in the discrete C1 -space A1,C′/A1,H′ . Besides, the space A1,C is a cC2 -space, and the
space A01/A1,C is a dC2 -space. Hence there is the characteristic element δA1,C , δH,C

∈
D′A1,H

(A01) .

Lemma 1 We have the following equality:

< δA0 , δA1,C , δH,C
>= qh

0(C)−h0(H).

Proof We will use proposition 1. From this proposition it follows that it is enough to
consider H ≤ C . In this case, by this proposition again, we have < δA0 , δA1,C , δH,C

>=
qdimk V , where the k -vector space V = (A0∩A1,C)/(A0∩A1,H) . Now we use A0∩A1,E =
H0(X,OX(E)) for any E ∈ Div(X) . The lemma is proved.

Now we fix any P,Q ∈ Div(X) . We consider the following admissible triple of complete
C2 -spaces over k :

0 −→ A02/A0 −→ A/A01 −→ A/(A02 + A01) −→ 0, (4)

where we use that A0 = A01 ∩ A02 . The space A02/A0 is a cfC2 -space, and the space
A/(A01 + A02) is a dfC2 -space. Therefore there is the characteristic element δA02/A0 ∈
DA12,P /A1,P

(A/A01) .
Now we consider the following admissible triple of complete C2 -spaces over k :

0 −→ A12,Q/A1,Q −→ A/A01 −→ A/(A12,Q + A01) −→ 0, (5)

where we use that A1,Q = A01 ∩ A12,Q . We note that the space A/A01 is a cfC2 -
space. Therefore for any P ′, Q′ ∈ Div(X) there is the following natural element 1P ′,Q′ ∈
µ(A12,P ′/A1,P ′ | A1,Q′/A1,Q′) which is uniquely defined by the following two conditions:
1) 1P ′,R′ ⊗ 1R′,Q′ = 1P ′,Q′ for any P ′, R′, Q′ ∈ Div(X) , and 2) if P ′ ≤ Q′ then 1P ′,Q′ ∈
µ((A12,Q′/A1,Q′)/(A12,P ′/A1,P ′)) is defined as 1P ′,Q′((A12,Q′/A1,Q′)/(A12,P ′/A1,P ′)) = 1 ,
since (A12,Q′/A1,Q′)/(A12,P ′/A1,P ′) is a compact C1 -space. Besides, the space A12,Q/A1,Q

is a cC2 -space, and the space A/(A12,Q + A01) is a dC2 -space. Hence there is the char-
acteristic element δA12,Q/A1,Q, 1P,Q

∈ D′
A12,P /A1,P

(A/A01) .
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Lemma 2 We have the following equality:

< δA02/A0
, δA12,Q/A1,Q, 1P,Q

>= qh
2(Q)−h2(P ).

Proof We will use proposition 1. By this proposition, it is enough to consider P ≥ Q . In
this case, by this proposition again, we have < δA02/A0

, δA12,Q/A1,Q, 1P,Q
>= qdimk W , where

the k -vector space W = (A01 +A02 +A12,P )/(A01 +A02 +A12,Q) . Now we use that from
the adelic complex AX(OX(E)) we have A/(A01 + A02 + A12,E) = H2(X,OX(E)) for
any E ∈ Div(X) . The lemma is proved.

Now we suppose that Q = (ω)− C and P = (ω)−H . From proposition 2 it follows
that triple (4) is a C2 -dual sequence to triple (2), and triple (5) is a C2 -dual sequence
to triple (3). We have also the two-dimensional Fourier transforms F : DA1,H

(A01) →
DA12,P /A1,P

(A/A01) and F : D′A1,H
(A01) → D′

A12,P /A1,P
(A/A01) (see [3, §5.4.2] and [4,

§8.2]), which we denote by the same letter, although they act from various spaces. Now
by the two-dimensional Poisson formula II (see [3, th. 3]) we have F(δA0) = δA02/A0 . By the
two-dimensional Poisson formula I (see [3, th. 2]) we have F(δA1,C , δH,C

) = δA12,Q/A1,Q, 1P,Q
.

(We used that according to [3, form. (103)] we have µ(A1,H | A1,C) = µ(A12,P/A1,P |
A1,Q/A1,Q) , and δH,C 7→ 1P,Q under this isomorphism.) Now since F ◦ F(g) = g for
g = δA0 or g = δA1,C , δH,C

, and the maps F are conjugate with respect to each other
(see [3, prop. 24]), we have that < δA0 , δA1,C , δH,C

>=< F(δA0),F(δA1,C , δH,C
) > . Hence and

from lemmas 1-2 we obtain for any H,C ∈ Div(X) the following equality:

h0(C)− h0(H) = h2((ω)− C)− h2((ω)−H). (6)

4. For any E ∈ Div(X) we denote the Euler characteristic χ(E) = h0(E) − h1(E) +
h2(E) . We fix any R, S ∈ Div(X) . We consider the following admissible triple of complete
C2 -spaces over k :

0 −→ A02 −→ A −→ A/A02 −→ 0. (7)

The space A02 is a cfC2 -space, and the space A/A02 is a dfC2 -space. Therefore there
is the characteristic element δA02 ∈ DA12,R

(A) .
Now we consider the following admissible triple of complete C2 -spaces over k :

0 −→ A12,S −→ A −→ A/A12,S −→ 0. (8)

The subspace A01 uniquely defines an element νR′,S′ ∈ µ(A12,R′ | A12,S′) for any R′, S ′ ∈
Div(X) in the following way. If R′ ≤ S ′ , then we consider the following admissible triple
of C1 -spaces:

0 −→ A1,S′/A1,R′ −→ A12,S′/A12,R′ −→ A12,S′/A1,S′ + A12,R′ −→ 0,

where A1,S′/A1,R′ is a discrete C1 -space, and A12,S′/A1,S′+A12,R′ is a compact C1 -space.
Now νR′,S′ ∈ µ(A12,S′/A12,R′) is equal to δ0 ⊗ 1 , where δ0((0)) = 1 , δ0 ∈ µ(A1,S′/A1,R′) ,
and 1(A12,S′/A1,S′ + A12,R′) = 1 , 1 ∈ µ(A12,S′/A1,S′ + A12,R′) . For arbitrary R′, S ′ the
element νR′,S′ is defined by the following rule: νR′,S′ = νR′,T ′ ⊗νT ′,S′ , where T ′ ∈ Div(X)
is any. The space A12,S is a cC2 -space, and the space A/A12,S is a dC2 -space. Hence
there is the characteristic element δA12,S , νR,S

∈ D′A12,R
(A) .
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Lemma 3 We have the following equality:

< δA02 , δA12,S , νR,S
>= qχ(S)−χ(R).

Proof We will use proposition 1. From this proposition it follows that it is enough to
consider R ≤ S . In this case, by this proposition again, we have < δA02 , δA12,S , νR,S

>= qa ,
where a is equal to the Euler characteristic of the following complex, which has the finite-
dimensional over k cohomology groups:

A1,S/A1,R ⊕ A2,S/A2,R −→ A12,S/A12,R. (9)

Complex (9) is the factor-complex of the adelic complex AX(OX(S)) by the adelic com-
plex AX(OX(R)) . Therefore the Euler characteristic of complex (9) is the difference of
the Euler characteristics of corresponding adelic complexes. The lemma is proved.

From proposition 2 it follows that triple (7) itself is a C2 -dual sequence to triple (7),
and triple (8) is a C2 -dual sequence to triple (8) when S 7→ (ω) − S . We have al-
so the two-dimensional Fourier transforms F : DA12,R

(A) → DA12,(ω)−R
(A) and F :

D′A12,R
(A) → D′A12,(ω)−R

(A) . By the two-dimensional Poisson formulas (see [3, th. 2-

th. 3]) we have F(δA02) = δA02 and F(δA12,S , νR,S
) = δA12,(ω)−S , ν(ω)−R, (ω)−S

. (We used
that from proposition 2 it follows that νR,S 7→ ν(ω)−R, (ω)−S under the natural iso-
morphism µ(A12,R | A12,S) = µ(A12,(ω)−R | A12,(ω)−S) .) From [3, prop. 24] we have
< δA02 , δA12,S , νR,S

>=< F(δA02) , F(δA12,S , νR,S
) > . Hence and from lemma 3 we have

that χ(S) − χ(R) = χ((ω) − S) − χ((ω) − R) . If we put R = (ω) − S , then for any
S ∈ Div(X) we obtain from the previous formula the following equality:

χ(S) = χ((ω)− S). (10)

5. In section 1 we introduced the element µL,F (i),F (j) ∈ µ(F (i), F (j))) for the admissible
monomorphism of C2 -spaces L → E . When L = A02 , E = A , F (i) = A12,R , F (j) =
A12,S for R, S ∈ Div(X) we will denote this element by µR,S . From the proof of lemma 3
it follows that

qχ(S)−χ(R) =
νR,S

µR,S
. (11)

For any g ∈ A∗ and any R, S ∈ Div(X) we have a natural action: g∗ : µ(A12,R |
A12,S) → µ(gA12,R | gA12,S) . Hence we obtain a central extension (see also [3, §5.5.3]):

1 −→ C
∗ −→ Â∗

π
−→ A

∗−→1,

where A∗ = {(g, φ) : g ∈ A∗, φ ∈ µ(A12,0 | gA12,0), φ 6= 0} , and (g1, φ1)(g2, φ2) =
(g1g2, φ1 ⊗ g∗1(φ2)) . (Here A12,0 is the group connected with the zero divisor on X .) For

any g1, g2 ∈ A∗ we denote 〈g1, g2〉 = [ĝ1, ĝ2] ∈ C∗ , where ĝi ∈ Â∗ are any such that
π(ĝi) = gi . The element 〈g1, g2〉 does not depend on the choice of appropriate elements
ĝi . From [1] it follows the following equality:

〈g1, g2〉 =
∏

x∈D

q−[k(x) : k] (g1x,D, g2x,D)x,D , (12)

5



where (·, ·)x,D is the composition of the maps: K∗x,D ×K∗x,D → K2(Kx,D)
∂2→ K

∗

x,D
∂1→ Z .

For any E ∈ Div(X) we choose an element j1,E ∈ A∗01 such that A1,E = j1,EA1,0 ,
and an element j2,E ∈ A∗02 such that A2,E = j2,EA2,0 , where we take the product inside
the ring A . Now from [5, §2.2] and from (12) it follows the following formula for any
C,H ∈ Div(X) ( (C,H) means the intersection index of divisors C and H on X ):

〈j2,C , j1,H〉 = q−(C,H). (13)

Since we can take j1,E1+E2 = j1,E1j2,E2 and j2,E1+E2 = j2,E1j2,E2 , we obtain j1,E1A1,E2 =
A1,E1+E2 and j2,E1A2,E2 = A2,E1+E2 for any E1, E2 ∈ Div(X) . Hence we have j ∗1,E(νR,S) =
νR+E, S+E and j ∗2,E(µR,S) = µR+E,S+E for any R, S, E ∈ Div(X) . For any C ∈ Div(X)

we choose ĵ2,C = (j2,C , ν0,C) ∈ Â∗ and ̂j1,(ω)−C = (j1,(ω)−C , µ0,(ω)−C) ∈ Â∗ . We have

〈j2,C , j1,(ω)−C〉 =
ĵ2,C ̂j1,(ω)−C

̂j1,(ω)−C ĵ2,C
=

ν0,C ⊗ j∗2,C(µ0,(ω)−C)

µ0,(ω)−C ⊗ j∗1,(ω)−C(ν0,C)
=

ν0,C ⊗ µC,(ω)

µ0,(ω)−C ⊗ ν(ω)−C,(ω)

=

=
ν0,C ⊗ µC,(ω)−C ⊗ µ(ω)−C,(ω)

µ0,C ⊗ µC,(ω)−C ⊗ ν(ω)−C,(ω)

=
ν0,C
µ0,C

µ(ω)−C,(ω)

ν(ω)−C,(ω)

. (14)

From (11) and (10) we obtain
ν0,C
µ0,C

=
µ(ω)−C,(ω)

ν(ω)−C,(ω)
= qχ(C)−χ(0) . Therefore from (14) and (13)

we have 2(χ(C) − χ(0)) = −(C, (ω)− C) for any C ∈ Div(X) . From the last equality
and formula (6) we obtain the Riemann-Roch theorem in the following form.

Theorem 1 For any C ∈ Div(X) and ω ∈ Ω2
k(X) we have the following equality

h0(C)− h1(C) + h0((ω)− C) = h0(0)− h1(0) + h0((ω))−
1

2
(C, (ω)− C).
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