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Abstract

Let P be a probability distribution onq-dimensional space. The so-called Diaconis-
Freedman effect means that for a fixed dimensiond << q, mostd-dimensional projections
of P look like a scale mixture of spherically symmetric Gaussiandistributions. The present
paper provides necessary and sufficient conditions for thisphenomenon in a suitable asymp-
totic framework with increasing dimensionq. It turns out, that the conditions formulated by
Diaconis and Freedman (1984) are not only sufficient but necessary as well. Moreover, letting
P̂ be the empirical distribution ofn independent random vectors with distributionP , we inves-
tigate the behavior of the empirical process

√
n(P̂−P ) under random projections, conditional

on P̂ .

1 Introduction

A standard method of exploring high-dimensional datasets is to examine various low-

dimensional projections thereof. In fact, many statistical procedures are based explicitly

or implicitly on a “projection pursuit”, cf. Huber (1985). Diaconis and Freedman (1984)

showed that under weak regularity conditions on a distribution P = P (q) onRq, “most”

d-dimensional orthonormal projections ofP are similar (in the weak topology) to a mix-

ture of centered, spherically symmetric Gaussian distribution onRd if q tends to infinity

while d is fixed. A graphical demonstration of this disconcerting phenomenon is given

by Bujaet al. (1996). It should be pointed out that it isnot a simple consequence of

Poincaré’s (1912) Lemma, although the latter is at the heart of the proof. The present

paper provides further insight into this phenomenon. We extend Diaconis and Freed-

man’s (1984) results in two directions.

1

http://arxiv.org/abs/1107.0417v1


Section 2 gives necessary and sufficient conditions on the sequence(P (q))q≥d such

that “most”d-dimensional projections ofP are similar to some distributionQ onRd. It

turns out that these conditions are essentially the conditions of Diaconis and Freedman

(1984). The novelty here is necessity. The limit distributionQ is automatically a mixture

of centered, spherically symmetric Gaussian distributions. The family of such measures

arises in Eaton (1981) in another, related context.

More precisely, letΓ = Γ(q) be uniformly distributed on the set of column-wise or-

thonormal matrices inRq×d (cf. Section 4.2). Defining

γ⊤P := LX∼P (γ
⊤X)

for γ ∈ R
d×q, we investigate under what conditions the random distribution Γ⊤P con-

verges weakly in probability to an arbitrary fixed distribution Q asq → ∞, while d is

fixed.

Section 3 studies the difference betweenP and the empirical distribution̂P = P̂ (q,n)

of n independent random vectors with distributionP . Suppose that(P (q))q≥d satisfies the

conditions of Section 2 andΓ is independent from̂P . Then, asq andn tend to infinity, the

standardized empirical measuren1/2
(
Γ⊤P̂ − Γ⊤P

)
satisfies a conditional Central Limit

Theoremgiven the datâP .

Proofs are deferred to Section 4. The main ingredients are Poincaré’s (1912) Lemma

and a method invented by Hoeffding (1952) in order to prove weak convergence of con-

ditional distributions. Further we utilize standard results from weak convergence and

empirical process theory.

2 The Diaconis-Freedman Effect

Let us first settle some terminology. A random distributionQ̂ on a separable metric space

(M, ρ) is a mapping from some probability space into the set of Borelprobability mea-

sures onM such that
∫
f dQ̂ is measurable for any functionf ∈ Cb(M), the space of

bounded, continuous functions onM. We say that a sequence(Q̂k)k of random distri-

butions onM converges weakly in probability to some fixed distributionQ if for each

f ∈ Cb(M), ∫
f dQ̂k →p

∫
f dQ ask → ∞.
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In symbols,Q̂k →w,p Q ask → ∞. Standard arguments show that(Q̂k)k converges in

probability toQ if, and only if,

DBL(Q̂k, Q) := sup
f∈FBL

∣∣∣
∫

f dQ̂k −
∫

f dQ
∣∣∣ →p 0 (k → ∞),

whereFBL stands for the class of functionsf : M → [−1, 1] such that|f(x) − f(y)| ≤
ρ(x, y) for all x, y ∈ M.

Now we can state the first result. Here and throughout,‖ · ‖ denotes Euclidean norm

andNd,σ2 stands for the Gaussian distribution onRd with mean vector0 and covariance

matrixσ2Id.

Theorem 2.1 The following two assertions on the sequence(P (q))q≥d are equivalent:

(A1) There exists a probability measureQ onRd such that

Γ⊤P →w,p Q asq → ∞.

(A2) If X = X(q), X̃ = X̃(q) are independent random vectors with distributionP , then

L(‖X‖2/q) →w R and X⊤X̃/q →p 0 asq → ∞

for some probability measureR on [0,∞).

The limit distributionQ in (A1) is a normal mixture, precisely,

Q =

∫
Nd,σ2 R(dσ2).

Corollary 2.2 The random probability measureΓ⊤P converges weakly in probability to

the standard Gaussian distributionNd,1 if, and only if, the following condition is satisfied:

(B) For independent random vectorsX = X(q), X̃ = X̃(q) with distributionP ,

‖X‖2/q →p 1 and X⊤X̃/q →p 0 asq → ∞. ✷

The implication “(A2)=⇒ (A1)” in Theorem 2.1 as well as sufficiency of condi-

tion (B) in Corollary 2.2 are due to Diaconis and Freedman (1984, Theorem 1.1 and

Proposition 4.2). They considered only (deterministic) empirical distributionsP , but the

extension to arbitrary distributionsP is straightforward.

Example 2.3 Condition (A2) is not a very restrictive requirement. For instance, suppose

thatP = L
(
(µk + σkZk)1≤k≤q

)
, where(Zk)k≥1 is a sequence of independent, identically
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distributed random variables with mean zero and variance one, andµ = µ(q) ∈ R
q,

σ = σ(q) ∈ [0,∞)q. Then condition (A2) is satisfied if, and only if,

(A3) ‖µ‖2/q → 0, ‖σ‖2/q → r ≥ 0 and max
1≤k≤q

σ2
k/q → 0

asq → ∞, whereR = δr; see Section 4.

Example 2.4 Suppose thatX ∼ P (q) has independent, identically distributed compo-

nents such that

IP(Xi =
√
q) = 1− IP(Xi = 0) = πq,

where

lim
q→∞

qπq = λ > 0.

ThenL(‖X‖2/q) = Bin(q, πq) →w Poiss(λ) andL(X⊤X̃/q) = Bin(q, π2
q ) →w δ0 as

q → ∞. Hence (A2) is satisfied withR = Poiss(λ).

3 Empirical Distributions

In some sense Theorem 2.1 is a negative, though mathematically elegant result. It warns

us against hasty conclusions about high-dimensional data sets after examining a couple

of low-dimensional projections. In particular, one shouldnot believe in multivariate nor-

mality only because several projections of the data “look normal”. On the other hand,

even small differences between different low-dimensionalprojections ofP̂ may be in-

triguing. Therefore in the present section we study the relationship between projections

of the empirical distribution̂P and corresponding projections ofP .

In particular, we are interested in the halfspace norm

‖Γ⊤P̂ − Γ⊤P‖KS := sup
closed halfspacesH⊂Rd

|Γ⊤P̂ (H)− Γ⊤P (H)|

of Γ⊤P̂ − Γ⊤P . In case ofd = 1 this is the usual Kolmogorov-Smirnov norm of

Γ⊤P̂ − Γ⊤P . In what follows we use several well-known results from empirical process

theory. Instead of citing original papers in various placeswe simply refer to the excellent

monographs of Pollard (1984) and van der Vaart and Wellner (1996). It is known that

(1) IE sup
γ∈Rq×d

‖γ⊤P̂ − γ⊤P‖KS ≤ C
√
q/n
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for some universal constantC. For the latter supremum is just the halfspace norm of

P̂ − P , and generally the set of closed halfspaces inRk is a Vapnik-Cervonenkis class

with Vapnik-Cervonenkis indexk+1. Inequality (1) does not capture thetypicaldeviation

betweend-dimensional projections of̂P andP . In fact,

sup
γ∈Rq×d

IE ‖γ⊤P̂ − γ⊤P‖KS ≤ C
√

d/n.

This implies that

(2) IE ‖Γ⊤P̂ − Γ⊤P‖KS ≤ C
√

d/n,

where the random projectorΓ andP̂ are always assumed to be stochastically independent.

The subsequent results imply precise information about theconditionaldistribution of

n1/2‖Γ⊤P̂ − Γ⊤P‖KS given the datâP . This point of view is natural in connection with

exploratory projection pursuit. It turns out that under condition (B) of Corollary 2.2, this

conditional distribution converges weakly in probabilityto a fixed distribution. Under the

weaker conditions (A1-2) of Theorem 2.1 it converges weaklyin distribution to a specific

random distribution on the real line.

More generally, letH be a class of measurable functions fromRd into [−1, 1]. Any

finite signed measureν onRd defines an elementh 7→ ν(h) :=
∫
h dν of the spaceℓ∞(H)

of all bounded functions onH equipped with supremum norm‖z‖H := suph∈H |z(h)|.
We shall impose the following three conditions on the classH and some distributionQ

onRd:

(C1) There exists a countable subsetHo of H auch that eachh ∈ H can be represented

as pointwise limit of some sequence inHo.

(C2) The setH satisfies the uniform entropy condition

∫ 1

0

√
log(N(u,H) du < ∞.

HereN(u,H) is the supremum ofN(u,H, Q̃) over all probability measures̃Q onRd, and

N(u,H, Q̃) is the smallest numberm such thatH can be covered withm balls having

radiusu with respect to the pseudodistance

ρQ̃(g, h) :=

√
Q̃((g − h)2).
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(C3) For any sequence(Qk)k of probability measures converging weakly toQ,

‖Qk −Q‖H → 0 ask → ∞.

An example for conditions (C1-3) is the setH of (indicators of) closed halfspaces in

R
d and any distributionQ onR

d such thatQ(E) = 0 for any hyperplaneE in R
d. Here

condition (C3) is a consequence of general results by Billingsley and Topsoe (1967).

Condition (C1) ensures that random elements such as‖Γ⊤P̂ − Γ⊤P‖H are measur-

able. A particular consequence of (C2) is existence of a centered Gaussian processBQ,

a so-calledQ-bridge, having uniformly continuous sample paths with respect toρQ and

covariances

IE
(
BQ(g)BQ(h)

)
= Q(gh)−Q(g)Q(h),

which can be proved via a Chaining argument.

In the subsequent results we consider the special distribution Q =
∫
Nd,σ2 R(dσ2)

appearing in Theorem 2.1 and a particular decomposition of the correspondingQ-Brigde

BQ. Namely,

BQ = B′
Q +B′′

Q

with stochastically independent and centered Gaussian processesB′
Q, B

′′
Q onH, where

IE
(
B′

Q(g)B
′
Q(h)

)
= Q(gh)−

∫
Nd,σ2(g)Nd,σ2(h)R(dσ2)

=

∫ (
Nd,σ2(gh)−Nd,σ2(g)Nd,σ2(h)

)
R(dσ2)

IE
(
B′′

Q(g)B
′′
Q(h)

)
=

∫
Nd,σ2(g)Nd,σ2(h)R(dσ2)−Q(g)Q(h).

By means of Anderson’s (1955) Lemma or a further applicationof Chaining one can show

that bothB′
Q andB′′

Q admit versions with uniformly continuous sample paths.

Theorem 3.1 Suppose that the sequence(P (q))q≥d satisfies conditions (A1-2) of Theo-

rem 2.1, and suppose that conditions (C1-3) are satisfied with Q being the corresponding

limit measure
∫
Nd,σ2 R(dσ2). Let Γℓ = Γ

(a)
ℓ , ℓ ≥ 1, be independent copies ofΓ and

independent from̂P . Define

B
(q,n)
ℓ :=

(
n1/2

(
Γ⊤
ℓ P̂ − Γ⊤

ℓ P
)
(h)

)
h∈H

.

Further letB′
Q,1, B

′
Q,2, B

′
Q,3, . . . be independent copies ofB′

Q and independent fromB′′
Q.

Then for any fixed integerL ≥ 1 andΛ := {1, . . . , L},

B(q,n) :=
(
B

(q,n)
ℓ (h)

)
(ℓ,h)∈Λ×H
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converges in distribution inℓ∞(Λ×H) to

B :=
(
B′

Q,ℓ(h) +B′′
Q(h)

)
(ℓ,h)∈Λ×H

asmin(q, n) → ∞.

One can interpret this theorem as follows: Let

B(q,n) :=
(
n1/2

(
Γ⊤P̂ − Γ⊤P

)
(h)

)
h∈H

.

Then

L
(
B(q,n)

∣∣ P̂
)
≈ L

(
B′

Q +B′′
Q

∣∣B′′
Q

)

for largeq andn. In case of the stronger condition (B) as in Corollary 2.2,B′′
Q ≡ 0, and

L
(
B(q,n)

∣∣ P̂
)
≈ L(BQ).

For a precise statement, see Corollary 3.2 below. The processB′′
Q in Theorem 3.1 may be

interpreted as the limiting process of the empirical process
(
n1/2

∫
Nd,‖x‖2/q(h) (P̂ − P )(dx)

)
h∈H

.

Corollary 3.2 Suppose that the conditions of Theorem 3.1 are satisified. Let F be any

bounded and continuous functional onℓ∞(H) such thatF (B(q,n)) is measurable for all

q ≥ d andn ≥ 1. Then

IE
(
F (B(q,n))

∣∣ P̂
)
→L IE

(
F (B′

Q +B′′
Q)

∣∣B′′
Q

)

asmin(q, n) → ∞. In case of a degenerate distributionR, asmin(q, n) → ∞,

IE
(
F (B(q,n))

∣∣ P̂
)
→p IEF (BQ)

asmin(q, n) → ∞.

Example 3.3 Suppose thatd = 1, and letH consist of all indicator functions1(−∞,t],

t ∈ R. Then Theorem 3.1 is applicable wheneverR({0}) = 0. Writing ν(t) instead of

ν(1(−∞,t]), the covariance functions ofBQ, B′
Q andB′′

Q are given by

IE
(
BQ(s)BQ(t)

)
= Q(s)−Q(s)Q(t),

IE
(
B′

Q(s)B
′
Q(t)

)
= Q(s)−

∫
Φ(s/σ)Φ(t/σ)R(dσ2),

IE
(
B′′

Q(s)B
′′
Q(t)

)
=

∫
Φ(s/σ)Φ(t/σ)R(dσ2)−Q(s)Q(t)

for s ≤ t, whereQ(u) =
∫
Φ(u/σ)R(dσ2), andΦ denotes the standard Gaussian distri-

bution function.
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4 Proofs

4.1 Hoeffding’s (1952) trick

In connection with randomization tests, Hoeffding (1952) observed that weak conver-

gence of conditional distributions of test statistics is equivalent to the weak convergence

of the unconditionaldistribution of suitable statistics inR2. His result can be extended

straightforwardly as follows.

Lemma 4.1 (Hoeffding) For k ≥ 1 let Xk, X̃k ∈ Xk andGk ∈ Gk be independent

random variables, whereXk, X̃k are identically distributed. Further letmk be some mea-

surable mapping fromXk × Gk into the separable metric space(M, ρ), and letQ be a

fixed Borel probability measure onM. Then, ask → ∞, the following two assertions are

equivalent:

(D1) L
(
mk(Xk, Gk)

∣∣Gk

)
→w,p Q.

(D2) L
(
mk(Xk, Gk), mk(X̃k, Gk)

)
→w Q⊗Q.

Applications of this equivalence with non-Euclidean spacesM are presented by Romano

(1989). We shall utilize Lemma 4.1 in order to prove Theorem 2.1.

Proof of Lemma 4.1. DefineYk := mk(Xk, Gk) andỸk := mk(X̃k, Gk). Suppose first

that (D2) ist true, i.e.L(Yk, Ỹk) →w Q⊗Q. Then for anyf ∈ Cb(M),

IE
((
IE(f(Yk) |Gk)−Q(f)

)2)

= IE
(
IE(f(Yk) |Gk)

2
)
− 2Q(f) IE IE(f(Yk) |Gk) +Q(f)2

= IE IE
(
f(Yk)f(Ỹk)

∣∣Gk

)
− 2Q(f) IE IE(f(Yk) |Gk) +Q(f)2

= IE
(
f(Yk)f(Ỹk)

)
− 2Q(f) IE f(Yk) +Q(f)2

→
∫

f(y)f(ỹ)Q(dy)Q(dỹ)−Q(f)2

= 0.

ThusL(Yk |Gk) →w,p Q.

On the other hand, suppose that (D1) is satisfied, i.e.L(Yk |Gk) →w,p Q. Then for
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arbitraryf, g ∈ Cb(M),

IE
(
f(Yk)g(Ỹk)

)
= IE IE

(
f(Yk)g(Ỹk)

∣∣Gk

)

= IE
(
IE(f(Yk) |Gk) IE(f(Ỹk) |Gk)

)

→ Q(f)Q(g),

becauseIE(h(Yk) |Gk) →p

∫
h dQ and

∣∣ IE(h(Yk) |Gk)
∣∣ ≤ ‖h‖∞ < ∞ for eachh ∈

Cb(M). Thus we know thatIEF (Yk, Ỹk) →
∫
F dQ⊗Q for arbitrary functionsF (y, ỹ) =

f(y)g(ỹ) with f, g ∈ Cb(M). But this is known to be equivalent to weak convergence of

L(Yk, Ỹk) toQ⊗Q; see van der Vaart and Wellner (1996, Chapter 1.4).

Here is an alternative argument: WitĥQk := L(Yk |Gk), Assumption (D1) is equiv-

alent toDBL(Q̂k, Q) →p 0. To prove thatL(Yk, Ỹk) → Q ⊗ Q, it suffices to show that

IE
(
F (Yk, Ỹk)

∣∣Gk

)
→p

∫
F dQ ⊗ Q for any functionF : M × M → [−1, 1] such that

∣∣F (y, ỹ) − F (z, z̃)
∣∣ ≤ ρ(y, z) + ρ(ỹ, z̃) for arbitraryy, ỹ, z, z̃ ∈ M. But this entails that

F (y, ·), F (·, ỹ) ∈ FBL for arbitraryy, ỹ ∈ M. Consequently,
∣∣∣∣IE

(
F (Yk, Ỹk)

∣∣Gk

)
−
∫

F dQ⊗Q

∣∣∣∣

=

∣∣∣∣
∫

F d
(
Q̂k ⊗ Q̂k −Q⊗Q

)∣∣∣∣

≤
∫ ∣∣∣∣

∫
F (·, ỹ) d

(
Q̂k −Q

)∣∣∣∣ Q̂k(dỹ) +

∫ ∣∣∣∣
∫

F (y, ·) d
(
Q̂k −Q

)∣∣∣∣Q(dy)

≤ 2DBL(Q̂k, Q).

4.2 Proofs for Section 2

ThatΓ = Γ(q) is “uniformly” distributed on the set of column-wise orthonormal matrices

in Rq×d means thatL(UΓ) = L(Γ) for any fixed orthonormal matrixU ∈ Rq×q. For

existence and uniqueness of the latter distribution we refer to Eaton (1989, Chapters 1-2).

For the present purposes the following explicit construction ofΓ described in Eaton (1989,

Chapter 7) is sufficient. LetZ = Z(q) := (Z1, Z2, . . . , Zd) be a random matrix inRq×d

with independent, standard Gaussian column vectorsZj ∈ R
q. Then

Γ := Z(Z⊤Z)−1/2

has the desired distribution, and

(3) Γ = q−1/2Z (I +Op(q
−1/2)) asq → ∞.
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This equality can be viewed as an extension of Poincaré’s (1912) Lemma.

Proof of Theorem 2.1. Let Γ = Γ(Z) as above. Suppose thatZ = Z(q), X = X(q) and

X̃ = X̃(q) are independent withL(X) = L(X̃) = P , and letY, Ỹ be two independent

random vectors inRd with distributionQ. According to Lemma 4.1, condition (A1) is

equivalent to

(A1
′)

(
Γ⊤X

Γ⊤X̃

)
→L

(
Y

Ỹ

)
.

Because of equation (3) this can be rephrased as

(A1
′′)

(
Y (q)

Ỹ (q)

)
:=

(
q−1/2Z⊤X

q−1/2Z⊤X̃

)
→L

(
Y

Ỹ

)
.

Now we prove equivalence of (A1”) and (A2) starting from the observation that

L
((

Y (q)

Ỹ (q)

))
= IE L

((
Y (q)

Ỹ (q)

) ∣∣∣X, X̃

)
= IE N2d(0,Σ

(q)),

where

Σ(q) :=

(
q−1‖X‖2 Id q−1X⊤X̃ Id
q−1X⊤X̃ Id q−1‖X̃‖2 Id

)
∈ R

2d×2d.

Suppose that condition (A2) holds. ThenΣ(q) converges in distribution to a random

diagonal matrix

Σ :=

(
S2 Id 0

0 S̃2 Id

)

with independent random variablesS2, S̃2 having distributionR. Clearly this implies that

IE N2d(0,Σ
(q)) →w IE N2d(0,Σ) = L

((
Y

Ỹ

))

with Q = IE Nd(0, S
2Id). Hence (A1”) holds.

On the other hand, suppose that (A1”) holds. For anyt = (t⊤1 , t
⊤
2 )

⊤ ∈ R2d, the Fourier

transform ofL
(
(Y (q)⊤, Ỹ (q)⊤)⊤

)
at t equals

IE exp
(
i (t⊤1 Y

(q) + t⊤2 Ỹ
(q))

)
= IE exp(−t⊤Σ(q)t/2) = H(q)(a(t)),

wherei stands for
√
−1, a(t) :=

(
‖t1‖2/2, ‖t2‖2/2, t⊤1 t2

)⊤ ∈ R3, and

H(q)(a) := IE exp
(
−a1‖X‖2/q − a2‖X̃‖2/q − a3X

⊤X̃/q
)

10



denotes the Laplace transform ofL
((
‖X‖2/q, ‖X̃‖2/q,X⊤X̃/q

)⊤)
at a ∈ R3. By as-

sumption, the Fourier transform att converges to

IE exp(i t⊤1 Y ) IE exp(i t⊤2 Y ).

Settingt2 = 0 and varyingt1 shows that the Laplace transform ofL(‖X‖2/q) converges

pointwise on[0,∞) to a continuous function. Hence‖X‖2/q converges in distribution to

some random variableS2 ≥ 0, andQ = IENd,S2. Therefore, ifS̃2 denotes an independent

copy ofS2, we know thatH(q)(a(t)) converges to

IE exp(−a1(t)S
2) IE exp(−a2(t)S

2) = IE exp
(
−a1(t)S

2 − a2(t)S̃
2 − a3(t) · 0

)
.

A problem at this point is that for dimensiond = 1 the set{a(t) : t ∈ R2d} ⊂ R3 has

empty interior. Thus we cannot apply the standard argument about weak convergence and

convergence of Laplace transforms. However, lettingt2 = ±t1 with ‖t1‖2/2 = 1, one

may conclude that

0 = lim
q→∞

(
H(q)(1, 1, 2) +H(q)(1, 1,−2)− 2H(q)(1, 0, 0)2

)

= lim
q→∞

(
H(q)(1, 1, 2) +H(q)(1, 1,−2)− 2 IE exp(−‖X‖2/q − ‖X̃‖2/q)

)

= 2 lim
q→∞

IE
(
exp

(
−‖X‖2/q − ‖X̃‖2/q

)(
cosh(2X⊤X̃/q)− 1

))
.

But for arbitrary smallǫ > 0 and larger > 0,

IE
(
exp

(
−‖X‖2/q − ‖X̃‖2/q

)(
cosh(2X⊤X̃/q)− 1

))

≥ exp(−2r)(cosh(2ǫ)− 1) IP
(
‖X‖2/q < r, ‖X̃‖2/q < r, |X⊤X̃/q| ≥ ǫ

)

≥ exp(−2r)(cosh(2ǫ)− 1)
(
IP
(
|X⊤X̃/q| ≥ ǫ

)
− 2 IP(‖X‖2/q ≥ r)

)

≥ exp(−2r)(cosh(2ǫ)− 1)
(
IP
(
|X⊤X̃/q| ≥ ǫ

)
− 2 IP(S2 ≥ r) + o(1)

)
.

Hence

lim sup
q→∞

IP
(
|X⊤X̃/q| ≥ ǫ

)
≤ 2 IP(S2 ≥ r).

Lettingr → ∞ shows thatX⊤X̃/q →p 0.

Proof of equivalence of (A2) and (A3). Proving that (A3) implies (A2) is elementary.

In order to show that (A2) implies (A3) note first that conditions (A2) for the distributions

P (q) imply the same conditions for the symmetrized distributions

Po = P (q)
o := L(X − X̃) = L

((
σk(Zk − Zq+k)

)
1≤k≤q

)
.

11



Condition (A2) for these distributions reads as follows.

L
( q∑

k=1

(Zk − Zq+k)
2σ2

k/q
)

→w Ro = R ⋆ R and(4)

q∑

k=1

(Zk − Zq+k)(Z2q+k − Z3q+k)σ
2
k/q →p 0.(5)

The factors(Zk−Zq+k)(Z2q+k−Z3q+k), 1 ≤ k ≤ q, in (5) are independent, identically and

symmetrically distributed. By conditioning on any one of these factors one can deduce

from (5) thatmax1≤k≤q σ
2
k/q → 0. But then

q∑

k=1

σ2
k(Zk − Zq+k)

2/q = 2‖σ‖2/q + op(1 + ‖σ‖2/q),

and one can deduce from (4) that‖σ‖2/q converges to some fixed numberr; in particular,

R = δr. Now we return to the original distributionsP . Here the second half of (A2)

means that

k∑

k=1

(µk + σkZk)(µk + σkZq+k)/q

= ‖µ‖2/q +
q∑

k=1

µkσk(Zk + Zq+k)/q +

q∑

k=1

σ2
kZkZq+k/q

= op(1).

Since

IE

(( q∑

k=1

µkσk(Zk + Zq+k)/q
)2
)

=

q∑

k=1

µ2
kσ

2
k/q

2 = o(‖µ‖2/q),

IE

(( q∑

k=1

σ2
kZkZq+k/q

)2
)

=

q∑

k=1

σ4
k/q

2 → 0,

it follows that‖µ‖2/q → 0.

4.3 Proofs for Section 3

Proof of Theorem 3.1. It suffices to verify the following two claims:

(F1) As q → ∞ andn → ∞, the finite-dimensional marginal distributions of the process

B(q,n) converge to the corresponding finite-dimensional distributions ofB.
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(F2) As q → ∞, n → ∞ andδ ↓ 0,

max
ℓ∈Λ

sup
g,h∈H:ρQ(g,h)<δ

∣∣∣B(q,n)
ℓ (g)− B

(q,n)
ℓ (h)

∣∣∣ →p 0.

The second condition, (F2), means that the processesB(q,n) are asymptotically equicon-

tinuous with respect to the pseudodistance

ρQ

(
(ℓ, g), (m, h)

)
:= 1{ℓ 6= m}+ ρQ(g, h)

onΛ×H.

In order to verify assertions (F1-2) we consider the conditional distribution ofB(q,n)

given the random matrix

Γ = Γ
(q) := (Γ1,Γ2, . . . ,ΓL) ∈ R

q×Ld.

In fact, if we define

fℓ,h(v) := h(vℓ) for v = (v⊤1 , . . . , v
⊤
L )

⊤ ∈ R
Ld,

then

B
(q,n)
ℓ (h) = n1/2(Γ⊤P̂ − Γ

⊤P )(fℓ,h).

ThusL(B(q,n) |Γ) is essentially the distribution of an empirical process based onn in-

dependent random vectors with distributionΓ⊤P on RLd and indexed by the family

H̃ := {fℓ,h : ℓ ∈ Λ, h ∈ H}.

The multivariate version of Lindeberg’s Central Limit Theorem entails that for largeq

andn, the finite-dimensional marginal distributions ofB(q,n), conditional onΓ, can be ap-

proximated by the corresponding finite-dimensional distributions of a centered Gaussian

process onΛ×H with the same covariance function, namely,

Σ(q)
(
(ℓ, g), (m, h)

)
:= Cov

(
B

(q,n)
ℓ (g), B(q,n)

m (h)
∣∣Γ

)

= Γ
⊤P (fℓ,gfm,h)− Γ

⊤P (fℓ,g)Γ
⊤P (fm,h).

It follows from equality (3) and the proof of Theorem 2.1 that

Γ
⊤P →w,p Q :=

∫
NLd,σ2 R(dσ2) asq → ∞,

13



and this should imply convergence ofΣ(q) to some limiting function as well. It was shown

by Billingsley and Topsoe (1967) that condition (C3) is equivalent to

(6) lim
δ↓0

sup
h∈H

Q
{
y ∈ R

d : sup
z:‖z−y‖<δ

|h(z)− h(y)| > ǫ
}

= 0 for anyǫ > 0.

Note that thed-dimensional marginal distributions ofQ are justQ. Therefore one can

easily deduce from (6) that for any fixedǫ > 0,

lim
δ↓0

sup
f ′,f ′′∈H̃∪{1}

Q
{
v ∈ R

Ld : sup
w:‖w−v‖<δ

|f ′f ′′(w)− f ′f ′′(v)| > ǫ
}

= 0.

Hence a second application of Billingsley and Topsoe (1967)shows that

(7) sup
f ′,f ′′∈H̃∪{1}

|Γ⊤P (f ′f ′′)−Q(f ′f ′′)| → 0 asq → ∞.

In particular, the conditional covariance functionΣ(q) converges uniformly in probability

to the covariance functionΣ, where

Σ
(
(ℓ, g), (m, h)

)
:= Q(fℓ,gfm,h)−Q(fℓ,g)Q(fm,h)

=

∫
NLd,σ2(fℓ,gfm,h)R(dσ2)−Q(g)Q(h)

=





∫
Nd,σ2(gh)R(dσ2)−Q(g)Q(h) if ℓ = m,

∫
Nd,σ2(g)Nd,σ2(h)R(dσ2)−Q(g)Q(h) if ℓ 6= m,

= Cov
(
B′

Q,ℓ(g) +B′′
Q(g), B

′
Q,m(h) +B′′

Q(h)
)

asq → ∞. This proves assertion (F1).

As for assertion (F2), it is well-known from empirical process theory that condi-

tions (C1-2) imply that for arbitrary fixedǫ > 0,

(8) max
ℓ∈Λ

IP
(

sup
g,h∈H:ρ

(q)
ℓ

(g,h)<δ

∣∣∣B(q,n)
ℓ (g)− B

(q,n)
ℓ (h)

∣∣∣ ≥ ǫ
∣∣Γ

)
→p 0

asmin(q, n) → ∞ andδ ↓ 0. Here

ρ
(q)
ℓ (g, h) :=

√
Γ

⊤P ((fℓ,g − fℓ,h)2) =
√
Γ⊤
ℓ P ((g − h)2).

But it follows from (7) that

max
ℓ∈Λ

sup
g,h∈H

|ρ(q)ℓ (g, h)2 − ρQ(g, h)
2| →p 0

asq → ∞. Hence one may replaceρ(q)ℓ in (8) with ρQ and obtains assertion (F2).
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Proof of Corollary 3.2. Note that for any fixed integerL ≥ 1,

IE

((
IE
(
F (B(q,n))

∣∣ P̂
)
− L−1

L∑

ℓ=1

F (B
(q,n)
ℓ )

)2
)

≤ L−1‖F‖2∞,

IE

((
IE
(
F (B′

Q +B′′
Q)

∣∣B′′
Q

)
− L−1

L∑

ℓ=1

F (B′
Q,ℓ +B′′

Q)
)2
)

≤ L−1‖F‖2∞.

Note also, that

b =
(
bℓ(h)

)
(ℓ,h)∈Λ×H

7→ L−1
L∑

ℓ=1

F (bℓ)

defines a continuous mapping fromℓ∞(Λ×H) toR. Hence Corollary 3.2 follows essen-

tially from Theorem 3.1 and the continuous mapping theorem.

Acknowledgement. Part of this work is contained in the diploma thesis of Perla Zerial

(1995, Univ. of Heidelberg). We are grateful to Jon Wellner for his interest in this work

and stimulating discussions about possible extensions andconnections.

References

ANDERSON, T.W. (1955). The integral of a symmetric unimodal functionover a symmet-

ric convex set and some probability inequalities.Proc. Amer. Math. Soc.6, 170-176.

BILLINGSLEY, P. and F. TOPSOE(1967). Uniformity in weak convergence.Z. Wahr-

schein. verw. Geb.7, 1-16.

BUJA, A., D. COOK and D.F. SWAYNE (1996). Interactive High-Dimensional Data Vi-

sualization.J. Comp. Graph. Statist.5, 78-99.

DIACONIS, P. and D. FREEDMAN (1984). Asymptotics of graphical projection pursuit.

Ann. Statist.12, 793-815.

EATON, M.L. (1981). On the projections of isotropic distributions. Ann. Statist.9, 391-

400.

EATON, M.L. (1989).Group Invariance Applications in Statistics.Regional Conf. Series

Prob. Statist.1, IMS.

15



HOEFFDING, W. (1952). The large-sample power of tests based on random permutations.

Ann. Math. Statist.23, 169-192.

HUBER, P.J. (1985). Projection pursuit (with discussion).Ann. Statist.13, 435-475.
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