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Abstract

Let P be a probability distribution om-dimensional space. The so-called Diaconis-
Freedman effect means that for a fixed dimensioa< ¢, mostd-dimensional projections
of P look like a scale mixture of spherically symmetric Gaussiastributions. The present
paper provides necessary and sufficient conditions forpésomenon in a suitable asymp-
totic framework with increasing dimensian It turns out, that the conditions formulated by
Diaconis and Freedman (1984) are not only sufficient butsssrg as well. Moreover, letting
Pbethe empirical distribution of independent random vectors with distributiBnwe inves-
tigate the behavior of the empirical proceﬁﬁ(ﬁ—P) under random projections, conditional
onP.

1 Introduction

A standard method of exploring high-dimensional dataset® iexamine various low-
dimensional projections thereof. In fact, many stati$ficacedures are based explicitly
or implicitly on a “projection pursuit”, cf. Huber (1985). iconis and Freedman (1984)
showed that under weak regularity conditions on a distigiouP = P onR¢?, “most”
d-dimensional orthonormal projections Bfare similar (in the weak topology) to a mix-
ture of centered, spherically symmetric Gaussian digiobwonRR? if ¢ tends to infinity
while d is fixed. A graphical demonstration of this disconcertingmpdmenon is given
by Bujaet al. (1996). It should be pointed out that it it a simple consequence of
Poincaré’s (1912) Lemma, although the latter is at thethefathe proof. The present
paper provides further insight into this phenomenon. WerktDiaconis and Freed-

man’s (1984) results in two directions.
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Section 2 gives necessary and sufficient conditions on theesee(P?) >, such
that “most” d-dimensional projections af are similar to some distributio onR?. It
turns out that these conditions are essentially the camditof Diaconis and Freedman
(1984). The novelty here is necessity. The limit distribati) is automatically a mixture
of centered, spherically symmetric Gaussian distribgtiorhe family of such measures
arises in_ Eaton (1981) in another, related context.

More precisely, lel” = I'9 be uniformly distributed on the set of column-wise or-

thonormal matrices iiR?*? (cf. Sectiori4.R). Defining
VTP = Lxp(y'X)

for v € R?*¢, we investigate under what conditions the random distidiout " P con-
verges weakly in probability to an arbitrary fixed distrilout () asqg — oo, while d is
fixed.

Sectior B studies the difference betwdeand the empirical distributioff = P@n)
of n independent random vectors with distributiBn Suppose thatP@) -, satisfies the
conditions of Sectiohl2 anidis independent fron®. Then, ag; andn tend to infinity, the
standardized empirical measmé/z(FTJ3 — I'T P) satisfies a conditional Central Limit
Theoremgiven the datd.

Proofs are deferred to Sectibh 4. The main ingredients are®@'’s (1912) Lemma
and a method invented by Hoeffding (1952) in order to provakneonvergence of con-
ditional distributions. Further we utilize standard résdtom weak convergence and

empirical process theory.

2 TheDiaconis-Freedman Effect

Let us first settle some terminology. A random distribut{i@nn a separable metric space
(M, p) is a mapping from some probability space into the set of Bprebability mea-
sures onMl such thatffd@ is measurable for any functioh € C,(M), the space of
bounded, continuous functions &fi. We say that a sequen¢é,), of random distri-
butions onM converges weakly in probability to some fixed distribut@nf for each
f € C(M),

/fd@k —, /fdQ ask — co.



In symbols,@k —wp @ @Sk — oo. Standard arguments show tmé&k)k converges in
probability toQ if, and only if,

DBL(@R; Q) ‘= sup
feFBL

[ratu= [1a0] 5, 0 (k= o0),

whereFg;, stands for the class of functiorfs: M — [—1, 1] such that f(z) — f(y)| <

p(x,y) forall z,y € M.
Now we can state the first result. Here and throughiput, denotes Euclidean norm
andN,,,: stands for the Gaussian distribution BA with mean vectof and covariance

matrix o21,.
Theorem 2.1 The following two assertions on the sequeqB&)) .-, are equivalent:

(A1) There exists a probability measupeonR¢ such that
I'"'P —,, Q asq— co.
(A2) If X = X@ X = X are independent random vectors with distributidrthen
L(IXI?/q) -w R and X'X/q =, 0 asq— oo

for some probability measutie on |0, o).

The limit distribution() in (A1) is a normal mixture, precisely,

Q = /Nd’02 R(dO’z)
Corollary 2.2 The random probability measure P converges weakly in probability to
the standard Gaussian distributiiy; if, and only if, the following condition is satisfied:

(B) For independent random vectors= X @ X = X with distributionP,
IX|?°/q =, 1 and X'X/q —, 0 asq — oo. O

The implication “(A2) = (Al)” in Theorem[2.1 as well as sufficiency of condi-
tion (B) in Corollary[2.2 are due to Diaconis and Freedmar8{l9rheorem 1.1 and
Proposition 4.2). They considered only (deterministicpaioal distributionsP, but the
extension to arbitrary distribution is straightforward.

Example 2.3 Condition (A2) is not a very restrictive requirement. Fagtemce, suppose

thatP = L((uk + O'ka)lSkSq), where(Z;),>1 is a sequence of independent, identically
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distributed random variables with mean zero and varianeg andy = ;@ € RY,
o = 0@ € [0,00)?. Then condition (A2) is satisfied if, and only if,

(A3) Iul*/a = 0. llol*/q = r>0 and max of/g — 0

asq — oo, WhereR = §,; see Sectiohl4.

Example 2.4 Suppose thak ~ P has independent, identically distributed compo-
nents such that

where

lim gmy, = A > 0.

q—00
Then£(||X||?/q) = Bin(g,m,) — Poiss(\) andL(XTX /q) = Bin(q, 7)) —w d @s
q — oo. Hence (A2) is satisfied witl® = Poiss(\).

3 Empirical Distributions

In some sense TheorémP.1 is a negative, though matherhagtzdant result. It warns
us against hasty conclusions about high-dimensional ddasaagter examining a couple
of low-dimensional projections. In particular, one shondi believe in multivariate nor-
mality only because several projections of the data “lookmad”. On the other hand,
even small differences between different low-dimensigrajections ofP may be in-
triguing. Therefore in the present section we study theticelahip between projections
of the empirical distributior” and corresponding projections Bt
In particular, we are interested in the halfspace norm
IPTP —TTP|s = sup ICTP(H)—T"P(H)|
closed halfspacescre
of TP — I'"P. In case ofd = 1 this is the usual Kolmogorov-Smirnov norm of
I'TP — I'"P. In what follows we use several well-known results from enapl process
theory. Instead of citing original papers in various plasessimply refer to the excellent
monographs of Pollard (1984) and van der Vaart and Wellr@9¢). It is known that
(1) E sup |7"P—+4"Plks < CV/a/n
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for some universal constadt. For the latter supremum is just the halfspace norm of
P — P, and generally the set of closed halfspaceRfnis a Vapnik-Cervonenkis class
with Vapnik-Cervonenkis indek+1. Inequality (1) does not capture thgicaldeviation
betweeni-dimensional projections aP and P. In fact,

sup E|yTP—~TP|ks < C\/d/n.

~vyeRaxd

This implies that
) E|ITP-T"P|ks < C\/d/n,

where the random projectﬁrandf’ are always assumed to be stochastically independent.
The subsequent results imply precise information aboutcthitionaldistribution of
n'/2|TTP — I'T P||ks given the dataP. This point of view is natural in connection with
exploratory projection pursuit. It turns out that underdition (B) of Corollary[2.2, this
conditional distribution converges weakly in probabilitya fixed distribution. Under the
weaker conditions (A1-2) of Theordm .1 it converges weakhjistribution to a specific
random distribution on the real line.

More generally, lef{ be a class of measurable functions fréfinto [—1,1]. Any
finite signed measureonR? defines an element— v(h) := [ hdv of the spacé..(H)
of all bounded functions oft{ equipped with supremum norix||; := sup,ecy |2(h)].
We shall impose the following three conditions on the cl&sand some distributio®
onR¢:
(C1) There exists a countable subgés of H auch that each € H can be represented

as pointwise limit of some sequencetify.

(C2) The setH satisfies the uniform entropy condition

/01 V01og(N(u,H)du < oo.

HereN (u, ) is the supremum oW (u, H, Q) over all probability measureg onRR?, and
N(u,,Q) is the smallest number such thatH can be covered withn balls having
radiusu with respect to the pseudodistance

pa(g.h) == 1/ Q((g — h)?).



(C3) For any sequencg);, ), of probability measures converging weakly@o
|IQr — Qllx — 0 ask — co.

An example for conditions (C1-3) is the sktof (indicators of) closed halfspaces in
R? and any distributiorf) on R? such thait)(E) = 0 for any hyperplané” in R?. Here
condition (C3) is a consequence of general results by Bsliey and Topsoe (1967).

Condition (C1) ensures that random elements sudiras® — I'" P||;; are measur-
able. A particular consequence of (C2) is existence of aecedtGaussian process,,
a so-called)-bridge, having uniformly continuous sample paths witlpees top, and
covariances

E(Bq(9)Bo(h)) = Q(gh) — Q(g)Q(h),
which can be proved via a Chaining argument.

In the subsequent results we consider the special disoib@ = [ N,z R(do?)
appearing in Theorem 2.1 and a particular decompositione€brrespondin@-Brigde
Bg. Namely,

By = By + Bp

with stochastically independent and centered Gaussiarepsess,, 3, on#, where
E(Bylo)Bolh)) = Qloh)~ [ Naalo) N () Rldor)
— [ Naorlgh) — N 9) N () (o)

B(By(0)B41) = [ Nawelg)Na(h) Rldo?) - Qo))
By means of Anderson’s (1955) Lemma or a further applicadid@haining one can show
that bothB;, and B, admit versions with uniformly continuous sample paths.

Theorem 3.1 Suppose that the sequer(d&?),, satisfies conditions (A1-2) of Theo-
rem2.1, and suppose that conditions (C1-3) are satisfigoviteing the corresponding
limit measure[ N » R(do?). LetT, = T\, ¢ > 1, be independent copies bfand
independent fronP. Define

B = (W2 (0[P =T]P)() .

Further letBy, |, By, 5, By, 5, - - - be independent copies 8, and independent froif;,.
Then for any fixed integet > 1 andA := {1,..., L},

n) __ ( 7”)
B = (B (1)) mersn
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converges in distribution if,, (A x H) to

B = (B/Q,E(h) _'_B/Q/?(h))(é,h)e/xx%
asmin(q,n) — oo.
One can interpret this theorem as follows: Let

B = (a!2(CTP =TT P)(n)) .
heH

Then
L(BY@™ | P) ~ L(Bj+ B}|BY)
for largeq andn. In case of the stronger condition (B) as in Corollary 232, = 0, and
L(B@™ | P) ~ L(Bg).
For a precise statement, see Corollary 3.2 below. The psdggsn Theoreni 3.1 may be

interpreted as the limiting process of the empirical preces

n /Q/Ndwu?/q(h) (P - P)(d:r)>
Corollary 3.2 Suppose that the conditions of Theorend 3.1 are satisifietlFLise any

heM

bounded and continuous functional bg(#) such thatF(B¢™) is measurable for all
g >dandn > 1. Then

E(F(B")| P) —, E(F(B,+ BY) | BY)
asmin(q,n) — oo. In case of a degenerate distributiBnasmin(q, n) — oo,
E(F(B“™)|P) —, IEF(By)
asmin(gq,n) — oo.

Example 3.3 Suppose that = 1, and letH consist of all indicator function_ 4,
t € R. Then Theorerh 3|1 is applicable wheney&{0}) = 0. Writing v(¢) instead of
v(1(—s,), the covariance functions @, B;, and By, are given by

IE(BQ<s>BQ<t>> = Q(s) — Q(s)Q(t),

B(By(s)B(t) = Q) ~ [ 0s/o)0t/o) Rido?),
IE(B(s Bg) ) = ®(s/0)®(t/o) R(do?) — Q(s)Q(2)
for s < ¢, whereQ(u) = [ ®(u/o) R(do?), and® denotes the standard Gaussian distri-

bution function.



4 Proofs

4.1 Hoeffding's (1952) trick

In connection with randomization tests, Hoeffding (195Bs@rved that weak conver-
gence of conditional distributions of test statistics isigglent to the weak convergence
of the unconditionaldistribution of suitable statistics iR2. His result can be extended
straightforwardly as follows.

Lemma 4.1 (Hoeffding) Fork > 1 let X;, X, € X, andG, € G, be independent
random variables, whes,, X, are identically distributed. Further let, be some mea-
surable mapping frorX, x Gy into the separable metric spa@¥, p), and let() be a

fixed Borel probability measure avi. Then, as: — oo, the following two assertions are

equivalent:
(D1) L(my( Xy, Gi) | Gr) —wp Q-
(D2) L(my( Xy, Gr), mi(Xi, Gr)) =0 Q®Q.

Applications of this equivalence with non-Euclidean spddeare presented by Romano
(1989). We shall utilize Lemma 4.1 in order to prove Theorefh 2

Proof of Lemma@dl DefineYj, := my (X, Gi) andYy := my(X;, Gi). Suppose first
that (D2) ist true, i.eL(Y, Y3,) = Q ® Q. Then for anyf € C,(M),

(Vi) | Gr) = Q()")

= E(E(f(Y)|G)?) —20(f) EE(f(Y) |Gy + Q)

= EE(fY)fYe)|Gr) —2Q(f) EE(f(Yx) | Gr) + Q(f)?
E(f(Y)f(Yy) —2Q(f) E (Vi) + Q(f)*

> [ f0)1@ Qs - QP
0

ThUS,C(Yk | Gk) —w.,p Q.
On the other hand, suppose that (D1) is satisfied [i(&}; | Gx) —w, . Then for



arbitrary f, g € C,(M),

E(f(Y)g(Ys)) = EE(f(Y)g(Ye)|Gr)
= E(E(f(Y)|Gr) E(f(Yx)|Gr))
— Q(f)Q(9),

becausdE(h(Y;) | Gr) —, [hdQ and |IE(h(Yy) | Gi)| < [|h]|w < oo for eachh €
C,(M). Thus we know thalE F (Y}, Y,) — [ FdQ®Q for arbitrary functions'(y, j) =
fy)g(g) with f, g € C,(M). But this is known to be equivalent to weak convergence of
L(Y;,Y;) to Q ® Q; see van der Vaart and Wellner (1996, Chapter 1.4).

Here is an alternative argument: Wi, := LY | Gr), Assumption (D1) is equiv-
alent toDBL(@k,Q) —, 0. To prove thatl(Y;, Yi) — Q ® Q, it suffices to show that
E(F(Yi,Y2) | Gr) —, [ FdQ ® Q for any functionF : M x M — [—1, 1] such that
|F(y,7) — F(z,2)| < ply, 2) + p(g, ?) for arbitraryy, 7, 2, Z € M. But this entails that
F(y,-), F(-,9) € FgL for arbitraryy, 7 € M. Consequently,

‘]E(F(Yk,ffk) | Gr) — /FdQ® Q’

= ‘/Fd @@@—Q@Q)‘

/‘/ 1@ - ‘dey /'/ (3. d(Qx - Q)| Qldy)

< 2DBL(Qk7 Q). N

IN

4.2 Proofsfor Section 2

ThatT' = I'9 is “uniformly” distributed on the set of column-wise orthmmal matrices
in R4 means thatZ(UT') = L£(T') for any fixed orthonormal matri’ € R??. For
existence and uniqueness of the latter distribution we tefEaton (1989, Chapters 1-2).
For the present purposes the following explicit constarctif " described in Eaton (1989,
Chapter 7) is sufficient. Le¥ = 79 := (7, Z,, ..., Z4) be a random matrix ifR?<?
with independent, standard Gaussian column vedors R?. Then

U= 2(Z"2)""
has the desired distribution, and
(3) I = ¢ '2Z(I+0,(q"?) asq— .

9



This equality can be viewed as an extension of Poincar@%)lLemma.

Proof of Theorem21. LetI = I'(Z) as above. Suppose that= 7@, X = X@ and
X = X are independent witlf(X) = £(X) = P, and letY,Y be two independent
random vectors iR with distribution. According to Lemma4]1, condition (A1) is

equivalent to

, r'x Y
(A1) (FTX) —r (y) :
Because of equatioh](3) this can be rephrased as

) y (@ g V2ZTX Y
a7 (b0) = () == (7).

Now we prove equivalence of (A1”) and (A2) starting from tHeservation that

Y@ Yy (@) .
£ ((?(Q))> =EL <(}7(q)> ‘X7X> = ]EN2d(072(q))7

WX, ¢ 'XTXI
v .— (4 I “1la g ~ d R2dx2d
<q—1XTX1d XN L) ©

where

Suppose that condition (A2) holds. Th&f?) converges in distribution to a random

(8?0
o= ( 0 §21d)

with independent random variablg8, 52 having distribution?. Clearly this implies that

diagonal matrix

E Noa(0,5@) —, E Npg(0,%) = £ ((i))

with Q = IE N;(0, S?1,). Hence (A1) holds.
On the other hand, suppose that (A1”) holds. Forasy(t],t;)" € R?*, the Fourier
transform of£ (Y@ T, V@T)T) att equals

IE exp (4 (t] Y@ 4 t;)}(q))) = E exp(—t"29Wt/2) = HD(a(t)),
wherei stands for/—1, a(t) := (||t:1?/2, ||152||2/2,1t1T1t2)T € R?, and

H9(a) = E exp(~a|[X|P /g — azl| X[*/q — as XX /q)
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denotes the Laplace transform 6f (|| X|2/q, [|X[|%/q, X" X /q) ) ata € R3. By as-

sumption, the Fourier transformatonverges to
Eexp(it,Y) Eexp(ity Y).

Settingt, = 0 and varyingt; shows that the Laplace transform©f|| X ||?/¢) converges
pointwise on[0, co) to a continuous function. HendeX ||?/q converges in distribution to
some random variablg¢* > 0, and@ = IEN, =. Therefore, ifS2 denotes an independent

copy of S2, we know that/ ¥ (a(t)) converges to
E exp(—a;(t)S?) E exp(—as(t)S®) = E exp(—a;(t)S* — as(t)S? — as(t) - 0).

A problem at this point is that for dimensiah= 1 the set{a(t) : t € R?*!} C R? has
empty interior. Thus we cannot apply the standard argunsmitaveak convergence and
convergence of Laplace transforms. However, letting= +¢, with ||¢,]|?/2 = 1, one

may conclude that

0 = lim (H9(1,1,2)+H9(1,1,-2) — 2H9(1,0,0)?)

q—00

= lim (H'9(1,1,2) + H9(1,1,-2) = 2 Bexp(~|| X|*/q — | X|*/q))

= 2 lim B (exp(— X |*/g — |X]*/g) (cosh(2X "X /) ~ 1) ).
But for arbitrary smalk > 0 and large" > 0,
B (exp(— | X|*/g — 1X]12/q) (cosh(2X "X /q) — 1) )
> exp(—2r)(cosh(26) — 1) P(IIX|P/q < r, | X|2/q < r,|X X /gl > ¢)
> exp(—2r)(cosh(2€) — 1) (P(IX X /a] = ¢) = 2P(| X|*/q = 1)
)

> exp(—2r)(cosh(2e) — 1 ( (IXTX/q| > €) —2IP(52 > r)—i—o(l))
Hence
lim sup ]P(\XTX/CA >e€) < 2IP(S* >r).
q— 00
Lettingr — oo shows thatX " X /¢ —,, 0. O

Proof of equivalence of (A2) and (A3). Proving that (A3) implies (A2) is elementary.
In order to show that (A2) implies (A3) note first that conalits (A2) for the distributions

P9 imply the same conditions for the symmetrized distribugion

R (O )
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Condition (A2) for these distributions reads as follows.

q
4) c(z(zk — Zyii)o? /q) . R,=RxR and
k=1
q
(5) > (Zi = Zywi)(Zoger — Zsgri)or/a — 0.
k=1

The factor Z,— Z, 1) (Z2g+x—Zsq+1), 1 < k < g, in (B) are independent, identically and
symmetrically distributed. By conditioning on any one oésk factors one can deduce
from (@) thatmax; <<, 0% /q — 0. But then

Z% Zywi)*/a = 2|ol*/a + op(1 + llol*/q),

and one can deduce frofii (4) tHiat||?/q converges to some fixed numbeiin particular,

R = §,. Now we return to the original distribution8. Here the second half of (A2)

means that
k
Z(Mk + 0k Z) (ke + Ok Zgrr) /4
k=1
q q
k=1 k=1
= Op(l)-
Since

B((mentr zwon)’) = uiotset = ool

k=1
a 2
E((ZUszZq+k/Q> ) = Zaé/f — 0,
k=1 k=1
it follows that || ¢||? /¢ — 0. O

4.3 Proofsfor Section[3

Proof of Theorem[3.1l It suffices to verify the following two claims:

(F1) Asq — oo andn — oo, the finite-dimensional marginal distributions of the prss
B(@™ converge to the corresponding finite-dimensional distitins of B.
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(F2) Asq — oo, n — oo andd | 0,
max sup Béq’")(g) - Béq’")(h) —p 0.
teN g heM:pg(g,h)<s

The second condition, (F2), means that the proceBS&8 are asymptotically equicon-

tinuous with respect to the pseudodistance

po((l,9), (m,h)) = 1{L#m}+po(g, h)

onA x H.
In order to verify assertions (F1-2) we consider the condl distribution ofB (@™

given the random matrix

=T .= (I'\,Ty,...,T';) € R*L

In fact, if we define

fen(@) = h(v) forv=(v],...,v)" € R,

then
B () = n/A(TTP —TTP)(fi).

Thus£(B“™ |T) is essentially the distribution of an empirical processedasnn in-
dependent random vectors with distributibi P on R*¢ and indexed by the family
H={fon: LN hecH).
The multivariate version of Lindeberg’s Central Limit Tlem entails that for large
andn, the finite-dimensional marginal distributionsBf*™, conditional or", can be ap-
proximated by the corresponding finite-dimensional disttions of a centered Gaussian

process on\ x H with the same covariance function, namely,

Cov (B (g), B4 (h) | T)
T P(fogfmn) — DT P(fr0)T " P(finp).

S ((4,g), (m, ) =

It follows from equality [8) and the proof of Theorém 2.1 that

I'P —,, Q = /NLd,g2 R(do*) asq — oo,
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and this should imply convergence®f to some limiting function as well. It was shown
by Billingsley and Topsoe (1967) that condition (C3) is eqlent to

(6) lim sup Q{y cRY: sup |h(2) —h(y)| > e} = 0 foranye > 0.
o0 hen zil|z—yl| <8

Note that theid-dimensional marginal distributions @@ are just(). Therefore one can
easily deduce froni{6) that for any fixed> 0,

lgn sup Q{'v cRM:  sup |ff"(w)— ff(v)] > (—:} = 0.

0 f’,f”E’}:[U{l} w:||w—'u||<5

Hence a second application.of Billingsley and Topsoe (186dys that

() swp  [TTPU ) = QU ) = 0 asq— oc.
[ ferHu{1}

In particular, the conditional covariance functibff) converges uniformly in probability
to the covariance function, where

S((6,g), (m, 1)) == Qfrgfmn) — Qfr0)Q(fm.n)
= [ Nuor (o) Rldo) = QLo)QR)
[ Nawalgh) Rido) - Qo)QM) 0= m,
[ Nacl9) N () Rldo) ~ QUo)QUR) i€
= Cov(Bg(9) + Bo(9), Bom(h) + Bh(h))

asq — oo. This proves assertion (F1).
As for assertion (F2), it is well-known from empirical pr@setheory that condi-
tions (C1-2) imply that for arbitrary fixed > 0,

(8) max IP( sup ‘Béq’")(g) — Béq’")(h)‘ >e|T) —, 0
€ g.het:pl® (g,h) <6

asmin(q,n) — oo andé | 0. Here

4009 h) = \JTTP((fog — fua)?) = \JT] Plg — h)?).

But it follows from (7) that

max sup \pgl)(g,h)z—pQ(g,h)z\ —, 0
e g,hEH

asq — oo. Hence one may repla(;éq) in () with py and obtains assertion (F2). O
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Proof of Corollary[3.2. Note that for any fixed integelt > 1,

IN

]E((]E(F(B(q’")) |P)-L i F(Béq’”))>2) L F,

/ " " —1 - !/ 1 2 —1 2
]E((]E(F(BQ+BQ)}BQ) ~ LY F(By, + BY)) ) < LYFI2.

Note also, that

b= (bé(h))(e,h)e/xx% = L_IZFU”)
=1

defines a continuous mapping fradm (A x #H) toRR. Hence Corollary 312 follows essen-
tially from Theoreni 3.1l and the continuous mapping theorem. O
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