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Abstract

It is shown that under some conditions the distance between densities of free
convolutions of two pairs of probability measures is smaller than the maxi-
mum of the Levy distance between the corresponding measures in these pairs.
In particular, weak convergence µn → µ, νn → ν implies that the density of
µn � νn is defined for all sufficiently large n and converges to the density of
µ � ν. Some applications are provided including (i) a new proof of the local
version of the free central limit theorem, (ii) a local limit theorem for sums of
free projections, and (iii) a local limit theorem for sums of �-stable random
variables. In addition, a local limit law for eigenvalues of a sum of N -by-N
random matrices is proved.

1. INTRODUCTION

This paper contributes to the study of free convolution of probability measures by showing
that under some conditions, if measures µi and νi, i = 1, 2, are close to each other in terms of
the Levy metric and if free convolution µ1 � µ2 is absolutely continuous, then ν1 � ν2 is also
absolutely continuous and the densities of measures ν1 � ν2 and µ1 � µ2 are close to each
other.

The study of the free convolution is motivated by numerous applications of this operation.
It first arose in the study of operator algebras ([20]). If two self-adjoint operatorsA andB with
spectral measures µA and µB are free, then their sumA+B has the spectral measure µA�µB,
where � denotes the free convolution operation. A concrete example of free operators is given
by P (g1) and Q (g2) , where g1 and g2 are operators of left multiplication by generators g1
and g2 in the group algebraG (Z ∗ Z) , and P , Q are two self-adjoint polynomials. Here Z∗Z
denotes the free group with two generators g1 and g2.

Surprisingly, free convolution also appears prominently in the theory of large random ma-
trices ([21], [17], [16]). Roughly speaking, if AN and BN are two independent sequences of
Hermitian N -by-N matrices with empirical distribution of eigenvalues µAN

and µBN
, and if

µAN
→ µα and µBN

→ µβ as N → ∞, then the empirical distribution of eigenvalues of
AN +BN converges to µα�µβ. This link with random matrices brought some breakthrough
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2 V. KARGIN

results in the theory of operator algebras ([23], [10]), and attracted the attention of physicists
([25], [8]). A recent illustration of the connection between free probability techniques and
random matrices is a proof of the so-called single ring theorem for random matrices ([9]).

Another surprising application of free convolution is to the representation theory of the
symmetric group Sn ([7]). Recall that irreducible representations of Sn are indexed by Young
diagrams (i.e., partitions of n). Every Young diagram corresponds in a one-to-one fashion to a
certain probability measure, the transition measure of the diagram. Biane discovered that for
large-dimensional representations the measure of the outer product of irreducible representa-
tions is close to the free convolution of the measures of original representations.

These applications suggest that free convolution of probability measures deserves a de-
tailed study. Such a study was initiated by Voiculescu in [20]. It was noted that free con-
volution has strong smoothing properties, and in particular, the free convolution of discrete
measures is often absolutely continuous. More precisely, it was proved in [4] that µ1�µ2 has
an atom at x if and only if there are y and z such that x = y+z, and µ1 ({y})+µ2 ({z}) > 1.

In [1], it was shown that µ1 � µ2 can have a singular component if and only if one of the
measures is concentrated on one point and the other has a singular component (so that the re-
sulting free convolution is simply a translation of the measure with the singular component).
Moreover, in the same paper it was shown that the density of the absolutely continuous part is
analytic wherever the density is positive and finite.

In earlier work, some quantitative versions of this smoothing property of free convolution
were given. In particular, in [22] it was shown that if µ1 is absolutely continuous with density
v1 ∈ Lp (R) , (p ∈ (1,∞]), then the free convolution µ1 � µ2 is absolutely continuous with
density v� ∈ Lp (R) , and ‖v�‖p ≤ ‖v1‖p . In particular, the supremum of the density v� is
less than or equal to the supremum of the density of v1.

Another important property of free convolution is that it is continuous with respect to
weak convergence of measures. In particular, by a result in [2], if µN → µ and νN → ν as
N →∞, then µN �νN → µ�ν. In fact, Theorem 4.13 in [2] says that dL (µ� ν, µ′ � ν ′) ≤
dL (µ, µ′)+dL (ν, ν ′) ,where dL denotes the Levy metric on probability measures on R,which
metrizes weak convergence of measures.

The main result of this paper establishes a strengthened version of this property. If dis-
tances dL (µ, µ′) and dL (ν, ν ′) are sufficiently small and µ� ν is absolutely continuous, then
µ′�ν ′ is also absolutely continuous and the distance between the densities of µ�ν and µ′�ν ′

can be bounded in terms of the Levy distances between the original measures.
In particular, this result shows that free convolution transforms the weak convergence of

measures µN → µ and νN → ν into the convergence of probability densities of µN � νN to
the density of µ� ν.

We prove this result under an additional assumption imposed on measures µ and ν, which
we call the smoothness of the pair (µ, ν) at a point of its support E. This assumption holds if
µ = ν and the density of µ � µ is absolutely continuous and positive at E. In the case when
µ 6= ν, this assumption should be checked directly. We envision that in applications µ and
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ν are fixed measures for which this assumption can be directly checked, and µN and νN are
(perhaps random) measures for which it can be checked that they are close to µ and ν in Levy
distance.

In order to formulate our main result precisely, we introduce several definitions. Let µA
and µB be two probability measures on R with the Stieltjes transforms mA (z) and mB (z) ,

where the Stieltjes transform of a probability measure µ is defined by the formula

m(z) :=

∫
R

µ(dx)

x− z
.

Then, the free convolution µA � µB is defined as the probability measure with the Stieltjes
transform, m� (z), which satisfies the following system of equations:

m� (z) = mA (z − SB (z)) , (1)

m� (z) = mB (z − SA (z)) ,

z +
1

m� (z)
= SA (z) + SB (z) ,

where SA (z) and SB (z) are auxiliary functions.
This is not the standard definition of free convolution. Usually, one defines theR-transform

of measure µA by the formulaR (t) = m
(−1)
A (−t)−1/t,wherem(−1)

A is the functional inverse
of m, and similarly for RA (t) . Then R = RA + RB is the R-transform of a probability
measure, which is µA � µB. (Our references for free probability are [18] and [15]). It is easy
to check that our definition is equivalent to the standard with the relation between functions
SA,B and R-transforms given by

SA (z) = RA (−m� (z)) ,

and similarly for SB (z) and RB (z) .

It is an important and non-trivial fact that SA,B (z) is analytic everywhere in C+ and maps
C+ to C−, where C+ = {z : Imz ≥ 0} and C− = {z : Imz ≤ 0} ([6]). These functions are
called subordination functions for the pair (µA, µB) .

We define tA(z) = z − SA(z) and similarly for tB . Then tA,B(z) are analytic everywhere
in C+ and ImtA,B (z) ≥ Imz.

From the definition of tA,B (z) , and the third equation in system (1), it follows that
m� (z) = (z − tA (z)− tB (z))−1 , and the first and second equations of (1) imply a sys-
tem of equations for tA and tB:

1

z − tA (z)− tB (z)
= mA (tB (z)) , (2)

1

z − tA (z)− tB (z)
= mB (tA (z)) .

For large z, tA(z) ∼ z +O(1), and similarly for tB(z).
The analytic solutions of system (2) that satisfy this asymptotic condition at infinity are

unique in C+ = {z|Imz > 0}. This follows from the facts that the solutions are unique in
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the area Imz ≥ η0 for sufficiently large η0 and that the analytic continuation in a simply-
connected domain is unique.

Definition 1.1. A pair of probability measures on the real line (µA, µB) is called smooth at
E if the limits tA (E) = limη↓0 ImtA (E + iη) and tB (E) = limη↓0 ImtB (E + iη) exist and
if both ImtA(E) and ImtB(E) are positive.

Definition 1.2. A point E ∈ R is called generic with respect to measures (µα, µβ) if the
following equation holds:

k(E) :=
1

m′α(tβ(E))
+

1

m′β(tα(E))
− (E − tα(E)− tβ(E))2 6= 0. (3)

Let µ1 and µ2 be two probability measures on the real line, and let F1 (t) and F2 (t) be
their cumulative distribution functions. The Levy distance between measures µ1 and µ2 is
defined by the formula:

dL (µ1, µ2) = sup
x

inf {s ≥ 0 : F2 (x− s)− s ≤ F1 (x) ≤ F2 (x+ s) + s} .

The Levy distance is in fact a metric on the space of probability measures and the convergence
with respect to this metric is equivalent to the weak convergence of measures.

Here is the main result of this paper.

Theorem 1.3. Assume that a pair of probability measures (µA, µB) is smooth atE and thatE
is generic for (µA, µB). Then, for some positive s0 and c and all pairs of probability measures
(νA, νB) such that dL (µA, νA) < s ≤ s0 and dL (µB, νB) < s ≤ s0, it is true that νA � νB

is absolutely continuous in a neighborhood of E with the density ρ�,ν , and

|ρ�,ν (E)− ρ�(E)| < cs.

This theorem will be proved as a corollary to Proposition 2.4 below. The assumptions of
the theorem are sufficient but possibly not necessary. Of course, it is necessary to require
that µA � µB be absolutely continuous in a neighborhood of E so that the density ρ� (E) is
defined. However, it is not clear if this assumption alone implies the statement of the theorem.

The constant c in the theorem can be bounded in terms of tA (E) , tB (E) and |k(E)| .
In particular, if tA (E) , tB (E) and |k(E)| are uniformly bounded away from zero for all
E ∈ (a, b) , then supE∈(a,b) |ρ�,ν (E)− ρ� (E)| < cs for some c > 0.

The main ideas of the proof of Theorem 1.3 are as follows. Letm�,ν(z) denote the Stieltjes
transform of νA�νB. (We also define SA,ν , SB,ν , tA,ν , and tB,ν for the pair (νA, νB) similarly
to corresponding objects for the pair (µA, µB), which were denoted SA, SB , tA, and tB .)
First, we prove that the smallness of dL(µA, νA) and dL(µB, νB) implies that the differences
|mA,ν −mA| and |mB,ν −mB| are small, as well as the differences between derivatives of
the Stieltjes transforms. Then we show that this fact, together with system (2), implies that the
difference between corresponding t functions is small. At this stage we need the assumption
of smoothness of the pair of measures as well as condition (3). Finally, we check that if both
Stieltjes transforms and t-functions are close to each other, then the Stieltjes transforms of
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µA � µB and νA � νB are close to each other, which implies that the densities of these free
convolutions are close to each other.

In the case when µA = µB = µ, the smoothness of the pair (µ, µ) is easy to check by
using the following proposition.

Proposition 1.4. If µ � µ is (Lebesgue) absolutely continuous in a neighborhood of E and
the density of µ� µ is positive at E, then (µ, µ) is smooth at E.

Note that even if the measures µA and µB are discrete, their free convolution can be
Lebesgue absolutely continuous everywhere. For example, this is true for µA = µB =

(δ−1 + δ0 + δ1)/3. Moreover, by results in [1], if measure µA � µB is absolutely contin-
uous in a neighborhood of x0 and its density is positive at x0, then the density is analytic.

The idea of the proof of this proposition is that if tA (z) = tB (z) := t (z) , then we can
express it as t (z) = (1/2)

(
z −m� (z)−1

)
, and the smoothness of µ�µ implies thatm� (z)

is bounded and has a limit when z approaches the real axis. Therefore, Imt (z) is bounded
and positive as Imz ↓ 0, and the pair (µ, µ) is smooth. The details will be given in Section 3.

Another important case is when one of the probability measures is semicircle. The semi-
circle distribution λ is an absolutely continuous distribution supported on the interval [−2, 2]

and its density is

λ (x) =
1

2π

√
4− x2

on this interval.
Since λ is absolutely continuous, λ� µ is always absolutely continuous.

Proposition 1.5. Let µA = λ be the semicircle distribution. If the density of λ�µB is positive
at E, and |m� (E)| 6= 1, then (λ, µB) is smooth at E.

Theorem 1.3 can be applied to derive some new results about sums of free random variables
and about eigenvalues of large random matrices.

If X1, . . . , Xn are free, identically distributed self-adjoint random variables with finite
variance σ2, then it is known ([19],[14]) that Sn := (X1 + . . .+Xn) / (σ

√
n) converges in

distribution to a r.v. X with the standard semicircle law. Bercovici and Voiculescu in [3]
showed that the convergence in this limit law holds in a stronger sense. Namely, assuming
that Xi are bounded, they showed that Sn has a density for all sufficiently large n and that the
sequence of these densities converges uniformly to the density of the semicircle law. Recently,
this result was generalized in [24] to the case of possibly unbounded Xi with finite variance.
This result can be considered as a local limit version of the free CLT.

In the first application (Theorem 4.1), we give a short proof of this result by using Theorem
1.3.

In the second application (Theorem 4.2), we prove an analogous local limit result for the
sums Sn = X1,n + . . . + Xn,n, where Xi,n are free projection operators with parameters
pi,n such that

∑n
i=1 pi,n → λ and maxi pi,n → 0 as n → ∞. The classical analogue of this

situation is the sum of independent indicator random variables, and the classical result states
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that the sums converge in distribution to the Poisson r.v. with parameter λ. A local version of
this result is absent in the classical case because the Poisson r.v. is discrete. In the free case,
the limit is a r.v. with the Marchenko-Pastur law, which is continuous with bounded density
for λ > 1. We show that in this case the sum Sn has a density for all sufficiently large n and
the sequence of these densities converges uniformly to the density of the Marchenko-Pastur
law.

In the third application (Theorem 4.3), we show that a similar local limit result holds for
sums of free �-stable random variables.

The fourth application (Theorem 4.4) is of a different kind and is concerned with eigenval-
ues of large random matrices. Let HN = AN + UNBNU

∗
N , where AN and BN are N -by-N

Hermitian matrices, and UN is a random unitary matrix with the Haar distribution on the uni-
tary group U (N) . Let λ(A)1 ≥ . . . ≥ λ

(A)
N be the eigenvalues of AN . Similarly, let λ(B)

k and
λ
(H)
k be ordered eigenvalues of matrices BN and HN , respectively. Define the spectral point

measures of AN by µAN
:= N−1

∑N
k=1 δλ(A)

k (H)
, and define the spectral point measures of

BN and HN similarly.
Assume that µAN

→ µα and µBN
→ µβ . and that the support of µAN

and µBN
is unifomly

bounded. Let the pair (µα, µβ) be smooth at E, and E be generic for (µα, µβ).

DefineNI := NµHN
(I), the number of eigenvalues ofHN in interval I, and letNη (E) :=

N(E−η,E+η]. Finally, assume that η = η (N) and 1√
log(N)

� η(N)� 1.

Then, by using the author’s previous results from [13], and Theorem 1.3, it is shown that

Nη(E)

ηN
→ ρ�(E),

with probability 1, where ρ� denotes the density of µα�µβ . This result can be interpreted as
a local limit law for eigenvalues of a sum of random Hermitian matrices.

The rest of the paper is organized as follows. Section 2 is concerned with the proof of
the main theorem, Section 3 contains proofs of Propositions 1.4 and 1.5, Section 4 contains
applications, and Section 5 concludes.

2. PROOF OF THEOREM 1.3

Let F1 (x) and F2 (x) denote the cumulative distribution functions of measures µ1 and µ2,
respectively.

Lemma 2.1. Let dL (µ1, µ2) = s. Assume that h (x) is a C1 real-valued function, such that∫∞
−∞ |h (u)| < ∞ and

∫∞
−∞ |h

′ (u)| < ∞. Assume that h (u) has a finite number of zeroes.
Then,

∆ :=

∣∣∣∣∫
R
h (u)F2 (ηu) du−

∫
R
h (u)F1 (ηu) du

∣∣∣∣ ≤ csmax
{

1, η−1
}
,

where c > 0 depends only on h.

Proof: Let A be the set where h > 0 and B the set where h < 0. These sets are unions of
open intevals because h is a differentiable function. The boundary of these sets consists of the
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points where h = 0. By the definition of the Levy distance,

∆ ≤
∫
A
h (u) [F1 (ηu+ s) + s− F1 (ηu)]du

+

∫
B
h (u) [F2 (ηu)− F2 (ηu+ s)− s]du.

The estimation of these two integrals is similar. Consider, for example, the first one.
First of all, note that ∫

A
h (u) sdu < cs

because
∫∞
−∞ |h (u)| <∞.

Next, let Ã = A+ s/η. Then,∫
A
h (u)F1 (ηu+ s) du =

∫
Ã
h (t− s/η)F1 (ηt) dt,

and therefore,∫
A
h (u) [F1 (ηu+ s)− F1 (ηu)] du ≤

∫
A∩Ã

[h (t− s/η)− h (t)]F1 (ηt) dt

+

∫
A4Ã

max (|h (t− s/η)| , |h (t)|)F1 (ηt) dt.

For the first integral in this estimate, we can use the fact that

h (t− s/η)− h (t) = −
∫ t

t−s/η
h′ (ξ) dξ,

and therefore,∣∣∣∣∫
A∩Ã

[h (t− s/η)− h (t)]F1 (ηt) dt

∣∣∣∣ ≤ ∫
R

∫ t

t−s/η

∣∣h′ (ξ)∣∣F1 (ηt) dξdt

=

∫
R

∣∣h′ (ξ)∣∣(∫ ξ+s/η

ξ
F1 (ηt) dt

)
dξ

≤ s

η

∫
R

∣∣h′ (ξ)∣∣ dξ.
For the second integral, we note that∫

A4Ã
max (|h (t− s/η)| , |h (t)|)F1 (ηt) dt ≤ sup |h (t)|

∣∣∣A4 Ã
∣∣∣

≤ sup |h (t)|Ks/η,

where K is the number of points in the border of A, that is, the number of zeroes of h (t) .

By using all these estimates, we obtain:

∆ ≤ csmax
{

1, η−1
}
,

where c depends only on function h (t) . �.
Now, let m1 (z) and m2 (z) denote the Stieltjes transforms of measures µ1 and µ2, respec-

tively.
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Lemma 2.2. Let dL (µ1, µ2) = s and z = E + iη, where η > 0.Then,
(a) |m1 (z)−m2 (z)| < csη−1 max

{
1, η−1

}
where c > 0 is a numeric constant, and

(b)
∣∣ dr
dzr (m1 (z)−m2 (z))

∣∣ < crsη
−1−r max

{
1, η−1

}
where c > 0 are numeric constants.

Proof: (a) By integration by parts, we can write,

m1 (z) =

∫ ∞
−∞

F1 (λ)

(λ− z)2
dλ.

Hence,

Imm1 (z) =

∫ ∞
−∞

2η (λ− E)(
(λ− E)2 + η2

)2F1 (λ) dλ

=
2

η2

∫ ∞
−∞

λ−E
η((

λ−E
η

)2
+ 1

)2F1 (λ) dλ

=
2

η

∫ ∞
−∞

F1 (E + ηu)
udu

(1 + u2)2
.

Similarly,

Rem1 (z) =
1

η

∫ ∞
−∞

F1 (E + ηu)

(
u2 − 1

)
du

(1 + u2)2
.

By translating measures µ1 and µ2 by E, we can assume that E = 0 in the formulas for
Imm1 (z) and Rem1 (z) . Hence, the claim (i) follows from Lemma 2.1. Claim (ii) can be
derived similarly by using the fact that

dr

dλr
1

λ− iη
=

1

(λ− iη)r+1 .

�

Lemma 2.3. Assume that the pair (µA, µB) is smooth at E. Suppose that (νA, νB) is another
pair of probability measures such that dL(µA, νA) < s and dL(µB, νB) < s. Let z = E+ iη.
Then, ∣∣∣∣ 1

z − tA (z)− tB (z)
−mA,ν (tB (z))

∣∣∣∣ ≤ cs,
and ∣∣∣∣ 1

z − tA (z)− tB (z)
−mB,ν (tA (z))

∣∣∣∣ ≤ cs,
where c is a positive constant that depends only on the pair of measures µA and µB.

That is, if we substitute tA and tB in the system for tA,ν and tB,ν , then the error is small.
Proof: tA and tB satisfy the equations of system (2), which implies that it is enough to

show that
|mA,ν (tB (z))−mA (tB (z))| < cs

and
|mB,ν (tA (z))−mB (tA (z))| < cs
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for all z = E + iη. This follows directly from Lemma 2.2 and the assumption that the pair
(µA, µB) is smooth at E. Indeed, let η0 (E) > 0 denote min{ImtA (E) , ImtB (E)}. Then,
by Lemma 2.2,

|mA,ν (tB (z))−mA (tB (z))| < csmin

{
1

η0 (E)
,

1

η20 (E)

}
,

and a similar estimate holds for the difference |mB,ν (tA (z))−mB (tA (z))|. �

Proposition 2.4. Assume that a pair of probability measures (µA, µB) is smooth at E and
that E is generic for (µA, µB) . Then for some positive s0 and c and all pairs of probability
measures (νA, νB) such that dL(µA, νA) < s ≤ s0 and dL(µB, νB) < s ≤ s0, the limits
tA,ν (E) := limη↓0 tA,ν (E + iη) and tB,ν (E) := limη↓0 tB,ν (E + iη) exist, and it is true
that

|tA,ν (E)− tA (E)| < cs,

and

|tB,ν (E)− tB (E)| < cs.

Corollary 2.5. Assume that assumptions of Proposition 2.4 hold. Then, νA�νB is absolutely
continuous in a neighborhood of E with the density ρ�,ν , and

|ρ�,ν (E)− ρ� (E)| < cs.

Proof of Corollary: Since m�,ν (z) = (z − tA,ν (z)− tB,ν (z))−1 , hence Proposition
2.4 implies that the limit m�,ν (E) = limη↓0m�,ν (E + iη) exists and

|m�,ν (E)−m� (E)| < cs.

Moreover, this is true for every x in a neighborhood of E with a uniform constant c. This
implies that for all sufficiently small s, the measure νA � νB is absolutely continuous in a
neighborhood of E with the density ρ�,ν , and

|ρ�,ν (E)− ρ� (E)| < cs.

�

Proof of Proposition 2.4: Let F (t) : C2 → C2 be defined by the formula:

F :

(
t1

t2

)
→

(
(z − t1 − t2)−1 −mA,ν (t2)

(z − t1 − t2)−1 −mB,ν (t1)

)
.

Let us use the norm ‖(x1, x2)‖ =
(
|x1|2 + |x2|2

)−1/2
.By Lemma 2.3, ‖F (tA (z) , tB (z))‖ ≤

cs for all z = E + iη and η ≥ 0.

The derivative of F with respect to t is

F ′ =

(
(z − t1 − t2)−2 (z − t1 − t2)−2 −m′A,ν (t2)

(z − t1 − t2)−2 −m′B,ν (t1) (z − t1 − t2)−2

)
.
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The determinant of this matrix is
[
m′A,ν (t2) +m′B,ν (t1)

]
(z − t1 − t2)−2−m′A,ν (t2)m

′
B,ν (t1) .

By assumption of smoothness and by Lemma 2.2, this is close (i.e., < cs for some c > 0)
to [m′A (t2) +m′B (t1)] (z − t1 − t2)−2 −m′A (t2)m

′
B (t1) at (t1, t2) = (tA (z) , tB (z)) for

all z in a neighborhood of E. The latter expression is non-zero by assumption (3). In addi-
tion, the assumption of smoothness shows that (z − t1 − t2)−2 is bounded in a neighborhood
of E. Hence, the entries of the matrix [F ′]−1 are bounded at (tA (z) , tB (z)) for all z in a
neighborhood of E. This shows that operator norm of [F ′]−1 is bounded.

Similarly, the assumption of smoothness of (µA, µB) and Lemma 2.2 imply that the oper-
ator norm of F ′′ is bounded for all (t1, t2) in a neighborhood of (tA (z) , tB (z)) and for all
values of parameter z in a neighborhood of E.

It follows by the Newton-Kantorovich theorem ([12]) that the solution of the equation
F (t) = 0, which is (tA,ν(z), tB,ν(z)), exists for all z = E + iη with η ≥ 0 and satisfies the
inequalities:

|tA,ν (z)− tA (z)| < cs

and

|tB,ν (z)− tB (z)| < cs

for all z with η sufficiently close to 0.

Since tA,ν (z) and tA (z) are analytic in C+ = {z|Imz > 0} and limη↓0 tA (E + iη) ex-
ists, the fact that |tA,ν (z)− tA (z)| is bounded implies that tA,ν (E) := limη↓0 tA,ν (E + iη)

exists. A similar argument shows the existence of tB,ν (E). Finally, by taking the limit we
find that

|tA,ν (E)− tA (E)| < cs

and

|tB,ν (E)− tB (E)| < cs.

�

3. PROOF OF PROPOSITIONS 1.4 AND 1.5

Recall that a function f (x) is called Hölder continuous at x0 if there exist positive con-
stants α, C, and ε such that |f(x)− f (x0)| < C |x− x0|α for all x such that |x− x0| < ε.

Lemma 3.1. Suppose that a probability measure µ has a density which is positive and Hölder
continuous at E. Let m (z) be the Stieltjes transform of µ. Then |m (E + iη)| ≤M <∞ for
all η > 0.

Proof: The results of Sokhotskyi, Plemelj, and Privalov ensure that the limit ofm (E + iη)

exists when η ↓ 0 (see Theorems 14.1b and 14.1c in [11]). Since m (E + iη) is continuous in
the upper half-plane and |m (E + iη)| ≤ 1/η, the claim of the lemma follows. �

Proof of Proposition 1.4: Note that for the case µA = µB = µ,

t (z) =
(
z −m� (z)−1

)
/2. (4)
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Since µ � µ is absolutely continuous in a neighborhood of E, and the density ρ� is positive
at E, hence by results in [1] ρ� is analytic and therefore uniformly Hölder continuous in a
neighborhood of E. This implies that the limit m� (E) = limη↓0m� (E + iη) exists and that
Imm� (E) = πρ� (E) . Since ρ� (E) > 0 by assumption, it is clear from (4) that the limit
t (E) = limη↓0 t (E + iη) exists. Moreover, since

Imt (z) =
1

2

(
η +

Imm� (z)

|m� (z)|2

)
,

and by Lemma 3.1, Rem� (z) is bounded uniformly in η, hence Imt (E) > 0. It follows that
(µ, µ) is smooth at E. This completes the proof of the proposition. �

Lemma 3.2. If µA has the semicircle distribution, then
(i) tB = z − tA + 1

z−tA ;
(ii) m� = tA − z, and
(iii) tA satisfies the equation

tA = z +

∫
µB (dx)

x− tA
.

Proof: (i) If µA has the semicircle distribution, thenm(−1)
A = −

(
z + z−1

)
; hence the first

equation in system (2) implies

tB = −
(

1

z − tA − tB
+ z − tA − tB

)
,

which simplifies to

tB = z − tA +
1

z − tA
.

(ii) By using (i),

m� =
1

z − tA − tB
= − (z − tA) .

(iii) The second equation in system (2) becomes

− (z − tA) =

∫
µB (dx)

x− tA
.

�

Proof of Proposition 1.5: From (ii) in Lemma 3.2, ImtA(E) = Imm�(E) = πρ�(E) >

0. From (i),

ImtB (E) = ImtA (E)

(
−1 +

1

|E − tA|2

)
= ImtA (E)

(
−1 +

1

|m� (E)|2

)
.

If |m� (E)|2 < 1 and ImtA (E) > 0, then ImtB (E) > 0 and (λ, µB) is smooth. It is not
possible that |m� (E)|2 > 1 and ImtA (E) > 0 because this would imply that ImtB (E) < 0

which is impossible by a general result of Biane. Hence, ρ� (E) > 0 and |m� (E)|2 6= 1

imply that (λ, µB) is smooth. �
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4. APPLICATIONS

In the first application we re-prove the free local limit theorem which was first demon-
strated in [3] for bounded random variables and later generalized in [24] to the case of un-
bounded variables with finite variance.

Let Xi be a sequence of self-adjoint random variables in the sense of free probability the-
ory. Define Sn = (X1 + . . .+Xn) /

√
n, and let µn denote the spectral probability measure

of Sn.

Theorem 4.1. Suppose Xi are freely independent, identically distributed with zero mean and
unit variance. Let Iε = [−2 + ε, 2− ε]. Then for all sufficiently large n, µn is (Lebesgue)
absolutely continuous everywhere on I , and the density dµn/dx uniformly converges on Iε to
the density of the standard semicircle law.

Note that the results in [3] imply that for every closed interval J outside of [2,−2] , the
measure µn (J) = 0 for all sufficiently large n, provided that µ1 has bounded support. In
addition, the uniform convergence on Iε can be strengthened to the uniform convergence on
R as in the proof of Theorem 3.4(iii) in [24].

Proof: Let νA,n be the distribution of
(
X1 + . . .+X[n/2]

)
/
√
n and νB,n be the distribu-

tion of
(
X[n/2]+1 + . . .+Xn

)
/
√
n. By using the free CLT from [14] (which generalizes the

result in [19]), we infer that νA,n and νB,n converge weakly to µA = µB = µ, where µ is the
semicircle law with variance 1/2. It is easy to calculate

tA = tB =
3z +

√
z2 − 4

4
,

and therefore the pair (µ, µ) is smooth on Iε. This also follows from Proposition 1.4. A
calculation shows that condition (3) is satisfied for each E ∈ Iε, and therefore the density of
νA,n � νB,n exists for all sufficiently large n, and converges to the density of µ � µ at each
E ∈ Iε. A remark after Theorem 1.3 shows that the convergence is in fact uniform. Since
νA,n�νB,n = µn, this implies that the density of µn converges uniformly on Iε to the density
of the standard semicircle law. �

In a similar fashion, it is possible to prove the local limit law for the convergence to the
free Poisson distribution.

Let {Xn,i}ni=1 be freely independent self-adjoint random variables with the distribution
µn,i = pn,iδ1 + (1− pn,i) δ0. Let Sn = Xn,1 + . . . + Xn,n and let µn denote the spectral
probability measure of Sn. Recall that the Marchenko-Pastur law with parameter λ ≥ 1 is the
probability measure with the density

p(x) =

√
4x− (1− λ+ x)2

2πx

on the interval [xmin, xmax] :=

[(
1−
√
λ
)2
,
(

1 +
√
λ
)2]

. In the free probability literature,

this distribution is called the free Poisson distribution.
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Theorem 4.2. Assume that
∑n

i=1 pn,i → λ > 1 and maxi pn,i → 0 as n → ∞. Let Iε =

[xmin + ε, xmax − ε]. Then for all sufficiently large n, µn is (Lebesgue) absolutely continuous
everywhere on Iε, and the density dµn/dx uniformly converges on Iε to the density of the
Marchenko-Pastur law with parameter λ.

The proof of this theorem is similar to the proof of the previous one. The first step is the
proof of the weak convergence of µn. In the case when pn,i = λ/n for all i, it can be found
on page 34 in [18]. The general case is a minor adaptation of this case and we omit it. Next,
we choose kn so that

kn∑
i=1

pn,i ≤ λ/2 <
kn+1∑
i=1

pn,i

and define νA,n and νB,n as the spectral probability measures of Xn,1 + . . . + Xn,kn and
Xn,kn+1 + . . .+Xn,n, respectively. It is easy to see that both νA,n and νB,n converge weakly
to µA = µB = µ, the Marchenko-Pastur distribution with parameter λ/2. By using Proposi-
tion 1.4, we conclude that the pair (µ, µ) is smooth for every point in Iε. Moreover, a direct
calculation shows that

tA (z) = tB (z) =
1

4

(
z + λ− 1 +

√
(z − (1 + λ))2 − 4λ

)
,

and

m′A = m′B =
1− λ/2

2z2
+
−z (1 + λ/2) + (1− λ/2)2

2z2
√

(z − (1 + λ/2))2 − 2λ
.

After some calculations the violation of the genericity condition (3) can be simplified to the
following equation:

f (E, λ) := E3−
(

5 +
5

2
λ

)
E2 +

(
7 +

13

2
λ+ 2λ2

)
E− (3−5λ+

5

4
λ2 +

1

2
λ3) = 0. (5)

Figure 4 shows the contour plot of f(E, λ). It can be seen from this plot and can be
checked formally that for λ > 1, there is only one E = E (λ) that satisfies equation (5).
Figure 4 shows the zero set of f (E, λ) for λ > 1, compared with the bounds on the support
of the Marchenko-Pastur distribution. It can be seen from this graph and can be checked

formally that E(λ) < tmin (λ) =
(

1−
√
λ
)2
. Consequently, E is always generic for (µ, µ)

and Theorem 1.3 applies. Hence, the density of µn converges uniformly on Iε to the density
of the Marchenko-Pastur distribution with parameter λ. �.

Similar results can be established for other limit theorems except that it is more difficult
to check the genericity of a point in the support of the limit distribution. Here is one more
theorem of this type. Let measures µ and ν be called equivalent (µ ∼ ν) if there exist such
real a and b, with a > 0, that for every Borel set S ⊂ R, µ(S) = ν(aS + b). Recall that
measure µ is called �-stable, if µ� µ ∼ µ. Measure ν belongs to the domain of attraction of
a �-stable law µ, if there exist measures νn equivalent to ν such that

νn � νn � . . .� νn︸ ︷︷ ︸
n-times

→ µ.
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FIGURE 1. Contour plot of the right-hand side of equation 5

FIGURE 2. The zero set of the right-hand side of Equation 5 compared with
the support bounds for E
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Clearly, in this case there exists a sequence of real constants Bn > 0 and An such that if Xn

are freely independent, identically distributed self-adjoint random variables with distribution
ν, then

X1 + . . .+Xn

Bn
−An → X, (6)

where X is a random variable with distribution µ. (More about the �-stability of probability
measures and its relation to the classical stability of probability measures can be found in [5]).

Let µn denote the measure of
X1 + . . .+Xn

Bn
−An.

Theorem 4.3. Suppose a �-stable distribution µ is not equivalent to δ0. Let J be a bounded
closed interval such that the density of µ is strictly positive on J. Suppose that An, Bn, and
µn are defined as in the limit law (6). Then µn is (Lebesgue) absolutely continuous on J for
all sufficiently large n and there is a sequence of constants an and bn such that the density
dµn
dx (E) univormly converges to the density dµn

dx (E) at (Lebesgue) almost all E ∈ J .

Proof: Let J ⊂ I, where the inclusion is strict and I is a larger bounded closed interval
such that density of µ is strictly positive on I. It is possible to find such I because by the
results of Biane in [5], µ is absolutely continuous with analytical density. As the first step, we
will show that µn is (Lebesgue) absolutely continuous on I for all sufficiently large n and that
there is a sequence of constants ãn and b̃n such that the density dµn

dx

(
ãnE + b̃n

)
converges

to the density dµn
dx (E) at (Lebesgue) almost all E ∈ I . Note that by definition of µn, the

convolution µn � µn = µ2n (a2n ·+b2n) , where a2n and b2n are certain constants. Since
µ � µ = µ (a ·+b) and µ has analytic density, therefore by Proposition 1.4 (µ, µ) is smooth
at E ∈ (I − b)/a. Almost all points E are generic for (µ, µ), since otherwise k (z) (in the
genericity condition) would be exaclty 0 which is not possible. Hence, by Theorem 1.3 the
weak convergence µn → µ implies that µ2n (a2n ·+b2n) has a density on (I − b)/a for large
n and that the density uniformly converges to the density of µ � µ = µ (a ·+b) . It follows
that the density of µ2n

(
ã2n ·+b̃2n

)
uniformly converges to the density of µ on I, where

ã2n and b̃2n are some constants. The case of µ2n+1 can be handled similarly by considering
µn � µn+1

Since both µn
(
ãn ·+b̃n

)
and µn converge to µ weakly (µn → µ by assumption and

µn

(
ãn ·+b̃n

)
→ µ by the convergence of densities), we can conclude that the Levy distance

between µ
((
· − b̃n

)
/ãn

)
and µ becomes arbitrary small as n → ∞. This implies that the

sequences ãn and b̃n converge to 1 and 0, respectively. Otherwise, we could select a subse-
quence of ãn and b̃n that converge to a limit (a, b) 6= (1, 0) and after taking the weak limit of
measures µ

((
· − b̃n

)
/ãn

)
we would find that µ ((· − b)/a) = µ, which is impossible.

Let fn denote the density of µn and f the density of µ. By results of Biane in [5], density f
is continuous at its support and approaches zero as |x| → ∞, hence it is uniformly continuous.
Moreover, for each ε > 0, we can find δ > 0 such that if |an − 1| < δ and bn < δ, then
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|f (x)− f (anx+ bn)| < ε for all x. Hence, for every ε > 0, we can find n0 > 0 such that
for all n > n0,

∣∣∣fn (ãnx+ b̃n

)
− f

(
ãnx+ b̃n

)∣∣∣ < ε for all x ∈ I\S where S is a set of

measure zero and ãn and b̃n are the sequences defined above. After a change of variables we
find that |fn (t)− f (t)| < ε for all t ∈

(
I\S − b̃n

)
/ãn. By using the fact that the union

of sets of measure zero has measure zero, we can conclude that fn (t) uniformly converges to
f (t) on J\S̃ where J is an arbitrary closed subinterval of I and S̃ is a set of measure 0. �

Our next application is of a different kind and answers a question that arises in the theory
of large random matrices.

LetHN = AN +UNBNU
∗
N , whereAN andBN areN -by-N Hermitian matrices, and UN

is a random unitary matrix with the Haar distribution on the unitary group U (N) .

Let λ(A)1 ≥ . . . ≥ λ
(A)
N be the eigenvalues of AN . Similarly, let λ(B)

k and λ(H)
k be ordered

eigenvalues of matrices BN and HN , respectively.
Define the spectral point measures of AN by µAN

:= N−1
∑N

k=1 δλ(A)
k (H)

, and define the

spectral point measures of AN and HN similarly. Let NI := NµHN
(I) denote the number

of eigenvalues of HN in interval I, and let Nη (E) := N(E−η,E+η].

Theorem 4.4. Assume that

(1) µAN
→ µα and µBN

→ µβ .
(2) supp(µAN

) ∪ supp(µBN
) ⊆ [−K,K] for all N .

(3) The pair (µα, µβ) is smooth at E, and E is generic for (µα, µβ).
(4) 1√

log(N)
� η(N)� 1.

Then,

Nη(E)

2ηN
→ ρ�(E),

with probability 1, where ρ� denotes the density of µα � µβ .

Previously, it was shown by Pastur and Vasilchuk in [16] that Assumption (1) together
with a weaker version of Assumption (2) implies that µHN

→ µα � µβ with probability 1.
Theorem 4.4 says that convergence of µHN

to µα � µβ holds on the level of densities, so it
can be seen as a local limit law for eigenvalues of the sum of random Hermitian matrices.

Proof: In Theorem 2 in [13], it was shown that the following claim holds. Suppose that
η = η (N) and 1/

√
logN � η (N) � 1. Assume that measure µAN

� µBN
is absolutely

continuous and its density is bounded by a constant TN . Then, for all sufficiently large N,

P

{
sup
E

∣∣∣∣Nη (E)

2Nη
− %�,N (E)

∣∣∣∣ ≥ δ} ≤ exp

(
−cδ2 (ηN)2

(logN)2

)
, (7)

where c > 0 depends only on KN := max {‖AN‖ , ‖BN‖} and TN . Here %�,N denote the
density of µAN

� µBN
. (The notation f (N) � g(N) means that limN→∞ g (N) /f(N) =

+∞.)



AN INEQUALITY FOR THE DISTANCE BETWEEN DENSITIES OF FREE CONVOLUTIONS 17

This statement can be modified so that the supremum in the inequality holds for E in an
interval, provided that the density of µAN

�µBN
is bounded by a constant TN in this interval:

P

{
sup

E∈(a,b)

∣∣∣∣Nη (E)

2Nη
− %�,N (E)

∣∣∣∣ ≥ δ
}
≤ exp

(
−cδ2 (ηN)2

(logN)2

)
. (8)

Since Assumptions (1) and (3) hold, therefore we can use Theorem 1.3 and infer that
%�,N (E)→ %� (E) . In particular, the sequence of densities %�,N (E) is uniformly bounded
by a constant T. This fact and Assumption (2) imply that the positive constant c in (7) can be
chosen independently of N. By using the Borel - Cantelli lemma, we can conclude that

Nη (E)

2Nη
→ %� (E)

with probability 1. �

5. CONCLUSION

We proved that if probability measures νA and νB are sufficiently close to probability
measures µA and µB in the Levy distance, and if µA�µB is (Lebesgue) absolutely continuous
at E, then (under some mild additional conditions), νA � νB is also absolutely continuous at
E and its density is close to the density of µA � µB.

We applied this result to derive several local limit law results for sums of free random
variables and for eigenvalues of a sum of random Hermitian matrices.
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