# A STELLAR PROOF OF HIRZEBRUCH-RIEMANN-ROCH FOR TORIC VARIETIES 

HAL SCHENCK


#### Abstract

We give a simple proof of the Hirzebruch-Riemann-Roch theorem for smooth complete toric varieties, based on Ishida's result in 5 that the Todd genus of a smooth complete toric variety is one.


## 1. Introduction

The Hirzebruch-Riemann-Roch theorem relates the Euler characteristic of a coherent sheaf $\mathcal{F}$ on a smooth complete $n$-dimensional variety $X$ to intersection theory, via the formula

$$
\begin{equation*}
\chi(\mathcal{F})=\int \operatorname{ch}(\mathcal{F}) T d\left(\mathcal{T}_{X}\right) \tag{1}
\end{equation*}
$$

In [2], Brion-Vergne prove an equivariant Hirzebruch-Riemann-Roch theorem for complete simplicial toric varieties. If the toric variety is actually smooth, it is possible to derive (1) from their result. In this note, we give a simple direct proof of (11) when $X$ is a smooth complete toric variety. Such a variety is determined by a smooth complete rational polyhedral fan $\Sigma \subseteq N_{\mathbb{R}}$, where $N \simeq \mathbb{Z}^{n}$ is a lattice; we write $X$ for the associated toric variety $X_{\Sigma}$. We will make use of the following standard facts about toric varieties. First,

$$
\begin{equation*}
T d\left(X_{\Sigma}\right)=\prod_{\rho \in \Sigma(1)} \frac{D_{\rho}}{1-e^{-D_{\rho}}} \tag{2}
\end{equation*}
$$

where $\Sigma(k)$ denotes the set of $k$-dimensional faces of $\Sigma$. For $\tau \in \Sigma(k)$ there is an associated torus invariant orbit $O(\tau)$, and we use $V(\tau)$ to denote the orbit closure $\overline{O(\tau)}$, which has dimension $n-k$. A key fact is that (see 4], Proposition 3.2.7)

$$
\begin{equation*}
V(\tau)=\overline{O(\tau)} \simeq X_{\operatorname{Star}(\tau)} \tag{3}
\end{equation*}
$$

Since $\Sigma$ is smooth, all orbits are also smooth, and if $\rho_{i}, \rho_{j}$ are distinct elements of $\Sigma(1)$, then (see 4], Lemma 12.5.7)

$$
\left[\left.D_{\rho_{i}}\right|_{V\left(\rho_{j}\right)}\right]= \begin{cases}V(\tau) & \tau=\rho_{i}+\rho_{j} \in \Sigma \\ 0 & \rho_{i}, \rho_{j} \text { are not both in any cone in } \Sigma\end{cases}
$$

The final ingredient we need is a result of Ishida: building on work of Brion [1], in [5] Ishida shows that (1) holds for the structure sheaf of a smooth complete toric variety $X$ :

$$
\begin{equation*}
1=\int \operatorname{Td}\left(\mathcal{T}_{X}\right)=\left[\prod_{\rho \in \Sigma(1)} \frac{D_{\rho}}{1-e^{-D_{\rho}}}\right]_{n} \tag{4}
\end{equation*}
$$

[^0]
## 2. The proof

For a smooth complete toric variety, any coherent sheaf has a resolution by line bundles [3], so it suffices to consider the case $\mathcal{F}=\mathcal{O}_{X}(D)$. Let $X=X_{\Sigma}$, and recall that $\operatorname{Pic}(X)$ is generated by the classes of the divisors $D_{\rho}, \rho \in \Sigma(1)$. We will show that if (11) holds for a divisor $D$, then it also holds for $D+D_{\rho}$ and $D-D_{\rho}$, for any $\rho \in \Sigma(1)$. We begin with the case $D-D_{\rho}$, and induct on the dimension of $X$.

A smooth complete toric variety of dimension one is simply $\mathbb{P}^{1}$, so the base case holds by Riemann-Roch for curves. Suppose the theorem holds for all smooth complete fans of dimension $<n$, and let $\Sigma$ be a smooth complete fan of dimension $n$. When $D=0$ the result holds by Ishida's theorem. Let $\rho \in \Sigma(1)$, and partition the rays of $\Sigma$ as

$$
\Sigma(1)=\rho \cup \Sigma^{\prime}(1) \cup \Sigma^{\prime \prime}(1)
$$

where the rays in $\Sigma^{\prime}(1)$ are in one to one correspondence with the rays of the fan $\operatorname{Star}(\rho)$. Let $X^{\prime}=X_{\operatorname{Star}(\rho)} \simeq V(\rho)$. Tensoring the standard exact sequence

$$
0 \longrightarrow \mathcal{O}_{X}\left(-D_{\rho}\right) \longrightarrow \mathcal{O}_{X} \longrightarrow \mathcal{O}_{X^{\prime}} \longrightarrow 0
$$

with $\mathcal{O}_{X}(D)$ yields the sequence

$$
0 \longrightarrow \mathcal{O}_{X}\left(D-D_{\rho}\right) \longrightarrow \mathcal{O}_{X}(D) \longrightarrow \mathcal{O}_{X^{\prime}}(D) \longrightarrow 0
$$

From the additivity of the Euler characteristic, we have

$$
\chi\left(\mathcal{O}_{X}(D)\right)-\chi\left(\mathcal{O}_{X}\left(D-D_{\rho}\right)\right)=\chi\left(\mathcal{O}_{X^{\prime}}(D)\right)
$$

Our hypotheses imply that

$$
\begin{aligned}
\int_{X^{\prime}} e^{D} T d\left(\mathcal{T}_{X^{\prime}}\right) & =\chi\left(\mathcal{O}_{X^{\prime}}(D)\right) \\
\int_{X} e^{D} T d\left(\mathcal{T}_{X}\right) & =\chi\left(\mathcal{O}_{X}(D)\right)
\end{aligned}
$$

so it suffices to show that

$$
\begin{align*}
\int_{X^{\prime}} \operatorname{ch}(D) T d\left(\mathcal{T}_{X^{\prime}}\right) & =\int_{X}\left(e^{D}-e^{D-D_{\rho}}\right) T d\left(\mathcal{T}_{X}\right) \\
& =\int_{X} e^{D}\left(\frac{1-e^{-D_{\rho}}}{D_{\rho}}\right) D_{\rho} T d\left(\mathcal{T}_{X}\right) \tag{5}
\end{align*}
$$

Break the Todd class of $X$ into two parts:

$$
T d\left(\mathcal{T}_{X}\right)=\prod_{\gamma \in \Sigma^{\prime}(1) \cup \rho} \frac{D_{\gamma}}{1-e^{-D_{\gamma}}} \cdot \prod_{\gamma \in \Sigma^{\prime \prime}(1)} \frac{D_{\gamma}}{1-e^{-D_{\gamma}}}
$$

In (5), the term $\frac{1-e^{-D_{\rho}}}{D_{\rho}}$ cancels with the corresponding term in $\operatorname{Td}\left(\mathcal{T}_{X}\right)$, so that

$$
\begin{align*}
\int_{X} e^{D}\left(\frac{1-e^{-D_{\rho}}}{D_{\rho}}\right) D_{\rho} T d\left(\mathcal{T}_{X}\right) & =\int_{X} e^{D} D_{\rho} \prod_{\gamma \in \Sigma^{\prime}(1) \cup \Sigma^{\prime \prime}(1)} \frac{D_{\gamma}}{1-e^{-D_{\gamma}}}  \tag{6}\\
& =\int_{X} e^{D} D_{\rho} \prod_{\gamma \in \Sigma^{\prime}(1)} \frac{D_{\gamma}}{1-e^{-D_{\gamma}}}
\end{align*}
$$

The second equality follows since $D_{\rho} \cdot D_{\gamma}=0$ if $\gamma \in \Sigma^{\prime \prime}(1)$. By smoothness, all intersections are either zero or one, and thus

$$
\begin{aligned}
\int_{X} e^{D} D_{\rho} \prod_{\gamma \in \Sigma^{\prime}(1)} \frac{D_{\gamma}}{1-e^{-D_{\gamma}}} & =\left[e^{D} D_{\rho} \prod_{\gamma \in \Sigma^{\prime}(1)} \frac{D_{\gamma}}{1-e^{-D_{\gamma}}}\right]_{n} \\
& =\left[e^{\left.D\right|_{V(\rho)}} \prod_{\gamma \in \Sigma^{\prime}(1)} \frac{D_{\gamma}}{1-e^{-D_{\gamma}}}\right]_{n-1} \\
& =\int_{X^{\prime}} e^{D} \cdot \operatorname{Td}\left(\mathcal{T}_{X^{\prime}}\right)
\end{aligned}
$$

This proves the result for $D-D_{\rho}$. For $D+D_{\rho}$, the result follows using the substitution $e^{D_{\rho}}-1=e^{D_{\rho}}\left(1-e^{-D_{\rho}}\right)$.

Acknowledgements I thank David Cox for pointing out Ishida's result to me.

## References

[1] M. Brion, Points entiers dans les polyédres convexes, Ann. Sci. École Norm. Sup. 21 (1988), 653-663.
[2] M. Brion, M. Vergne, An equivariant Riemann-Roch theorem for complete, simplicial toric varieties, J. Reine Angew. Math. 482 (1997), 67-92.
[3] D. Cox, The homogeneous coordinate ring of a toric variety, J. Algebraic Geom. 4 (1995), 15-50.
[4] D. Cox, J. Little and H. Schenck, Toric Varieties, AMS, to appear, available at the website http://www.cs.amherst.edu/~dac/toric.html
[5] M. Ishida, Polyhedral Laurent series and Brion's equalities, Intl. J. Math. 1 (1990), 251-265.
Schenck: Mathematics Department, University of Illinois, Urbana, IL 61801, USA
E-mail address: schenck@math.uiuc.edu


[^0]:    2000 Mathematics Subject Classification. 14M25, 14C40.
    Key words and phrases. Toric variety, Chow ring, cohomology.
    Schenck supported by NSF 07-07667, NSA 904-03-1-0006.

