A STELLAR PROOF OF HIRZEBRUCH-RIEMANN-ROCH FOR TORIC VARIETIES

HAL SCHENCK

ABSTRACT. We give a simple proof of the Hirzebruch-Riemann-Roch theorem for smooth complete toric varieties, based on Ishida's result in [5] that the Todd genus of a smooth complete toric variety is one.

1. INTRODUCTION

The Hirzebruch-Riemann-Roch theorem relates the Euler characteristic of a coherent sheaf \mathcal{F} on a smooth complete *n*-dimensional variety X to intersection theory, via the formula

(1)
$$\chi(\mathcal{F}) = \int ch(\mathcal{F})Td(\mathcal{T}_X).$$

In [2], Brion-Vergne prove an equivariant Hirzebruch-Riemann-Roch theorem for complete simplicial toric varieties. If the toric variety is actually smooth, it is possible to derive (1) from their result. In this note, we give a simple direct proof of (1) when X is a smooth complete toric variety. Such a variety is determined by a smooth complete rational polyhedral fan $\Sigma \subseteq N_{\mathbb{R}}$, where $N \simeq \mathbb{Z}^n$ is a lattice; we write X for the associated toric variety X_{Σ} . We will make use of the following standard facts about toric varieties. First,

(2)
$$Td(X_{\Sigma}) = \prod_{\rho \in \Sigma(1)} \frac{D_{\rho}}{1 - e^{-D_{\rho}}},$$

where $\Sigma(k)$ denotes the set of k-dimensional faces of Σ . For $\tau \in \Sigma(k)$ there is an associated torus invariant orbit $O(\tau)$, and we use $V(\tau)$ to denote the orbit closure $\overline{O(\tau)}$, which has dimension n - k. A key fact is that (see [4], Proposition 3.2.7)

(3)
$$V(\tau) = \overline{O(\tau)} \simeq X_{\operatorname{Star}(\tau)}.$$

Since Σ is smooth, all orbits are also smooth, and if ρ_i, ρ_j are distinct elements of $\Sigma(1)$, then (see [4], Lemma 12.5.7)

$$[D_{\rho_i}|_{V(\rho_j)}] = \begin{cases} V(\tau) & \tau = \rho_i + \rho_j \in \Sigma \\ 0 & \rho_i, \rho_j \text{ are not both in any cone in } \Sigma. \end{cases}$$

The final ingredient we need is a result of Ishida: building on work of Brion [1], in [5] Ishida shows that (1) holds for the structure sheaf of a smooth complete toric variety X:

(4)
$$1 = \int T d(\mathcal{T}_X) = \left[\prod_{\rho \in \Sigma(1)} \frac{D_{\rho}}{1 - e^{-D_{\rho}}}\right]_n.$$

²⁰⁰⁰ Mathematics Subject Classification. 14M25, 14C40.

Key words and phrases. Toric variety, Chow ring, cohomology.

Schenck supported by NSF 07–07667, NSA 904-03-1-0006.

HAL SCHENCK

2. The proof

For a smooth complete toric variety, any coherent sheaf has a resolution by line bundles [3], so it suffices to consider the case $\mathcal{F} = \mathcal{O}_X(D)$. Let $X = X_{\Sigma}$, and recall that $\operatorname{Pic}(X)$ is generated by the classes of the divisors D_{ρ} , $\rho \in \Sigma(1)$. We will show that if (1) holds for a divisor D, then it also holds for $D + D_{\rho}$ and $D - D_{\rho}$, for any $\rho \in \Sigma(1)$. We begin with the case $D - D_{\rho}$, and induct on the dimension of X.

A smooth complete toric variety of dimension one is simply \mathbb{P}^1 , so the base case holds by Riemann-Roch for curves. Suppose the theorem holds for all smooth complete fans of dimension < n, and let Σ be a smooth complete fan of dimension n. When D = 0 the result holds by Ishida's theorem. Let $\rho \in \Sigma(1)$, and partition the rays of Σ as

$$\Sigma(1) = \rho \cup \Sigma'(1) \cup \Sigma''(1),$$

where the rays in $\Sigma'(1)$ are in one to one correspondence with the rays of the fan $\operatorname{Star}(\rho)$. Let $X' = X_{\operatorname{Star}(\rho)} \simeq V(\rho)$. Tensoring the standard exact sequence

$$0 \longrightarrow \mathcal{O}_X(-D_\rho) \longrightarrow \mathcal{O}_X \longrightarrow \mathcal{O}_{X'} \longrightarrow 0$$

with $\mathcal{O}_X(D)$ yields the sequence

$$0 \longrightarrow \mathcal{O}_X(D - D_\rho) \longrightarrow \mathcal{O}_X(D) \longrightarrow \mathcal{O}_{X'}(D) \longrightarrow 0.$$

From the additivity of the Euler characteristic, we have

$$\chi(\mathcal{O}_X(D)) - \chi(\mathcal{O}_X(D - D_\rho)) = \chi(\mathcal{O}_{X'}(D)).$$

Our hypotheses imply that

$$\int_{X'} e^D T d(\mathcal{T}_{X'}) = \chi(\mathcal{O}_{X'}(D))$$
$$\int_X e^D T d(\mathcal{T}_X) = \chi(\mathcal{O}_X(D)),$$

so it suffices to show that

(5)
$$\int_{X'} ch(D)Td(\mathcal{T}_{X'}) = \int_{X} (e^{D} - e^{D - D_{\rho}})Td(\mathcal{T}_{X})$$
$$= \int_{X} e^{D} \left(\frac{1 - e^{-D_{\rho}}}{D_{\rho}}\right) D_{\rho}Td(\mathcal{T}_{X})$$

Break the Todd class of X into two parts:

$$Td(\mathcal{T}_X) = \prod_{\gamma \in \Sigma'(1) \cup \rho} \frac{D_{\gamma}}{1 - e^{-D_{\gamma}}} \cdot \prod_{\gamma \in \Sigma''(1)} \frac{D_{\gamma}}{1 - e^{-D_{\gamma}}}$$

In (5), the term $\frac{1-e^{-D_{\rho}}}{D_{\rho}}$ cancels with the corresponding term in $Td(\mathcal{T}_X)$, so that

(6)
$$\int_{X} e^{D} \left(\frac{1 - e^{-D_{\rho}}}{D_{\rho}} \right) D_{\rho} T d(\mathcal{T}_{X}) = \int_{X} e^{D} D_{\rho} \prod_{\gamma \in \Sigma'(1) \cup \Sigma''(1)} \frac{D_{\gamma}}{1 - e^{-D_{\gamma}}}$$
$$= \int_{X} e^{D} D_{\rho} \prod_{\gamma \in \Sigma'(1)} \frac{D_{\gamma}}{1 - e^{-D_{\gamma}}}.$$

3

The second equality follows since $D_{\rho} \cdot D_{\gamma} = 0$ if $\gamma \in \Sigma''(1)$. By smoothness, all intersections are either zero or one, and thus

$$\int_{X} e^{D} D_{\rho} \prod_{\gamma \in \Sigma'(1)} \frac{D_{\gamma}}{1 - e^{-D_{\gamma}}} = \left[e^{D} D_{\rho} \prod_{\gamma \in \Sigma'(1)} \frac{D_{\gamma}}{1 - e^{-D_{\gamma}}} \right]_{n}$$
$$= \left[e^{D|_{V(\rho)}} \prod_{\gamma \in \Sigma'(1)} \frac{D_{\gamma}}{1 - e^{-D_{\gamma}}} \right]_{n-1}$$
$$= \int_{X'} e^{D} \cdot Td(\mathcal{T}_{X'}).$$

This proves the result for $D - D_{\rho}$. For $D + D_{\rho}$, the result follows using the substitution $e^{D_{\rho}} - 1 = e^{D_{\rho}}(1 - e^{-D_{\rho}})$.

Acknowledgements I thank David Cox for pointing out Ishida's result to me.

References

- M. Brion, Points entiers dans les polyédres convexes, Ann. Sci. École Norm. Sup. 21 (1988), 653–663.
- [2] M. Brion, M. Vergne, An equivariant Riemann-Roch theorem for complete, simplicial toric varieties, J. Reine Angew. Math. 482 (1997), 67–92.
- [3] D. Cox, The homogeneous coordinate ring of a toric variety, J. Algebraic Geom. 4 (1995), 15-50.
- [4] D. Cox, J. Little and H. Schenck, *Toric Varieties*, AMS, to appear, available at the website http://www.cs.amherst.edu/~dac/toric.html
- [5] M. Ishida, Polyhedral Laurent series and Brion's equalities, Intl. J. Math. 1 (1990), 251–265.

SCHENCK: MATHEMATICS DEPARTMENT, UNIVERSITY OF ILLINOIS, URBANA, IL 61801, USA *E-mail address:* schenck@math.uiuc.edu