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SIMPLIFYING AND UNIFYING BRUHAT ORDER FOR B\G/B, P\G/B,
K\G/B, AND K\G/P

WAI LING YEE

Abstract. This paper provides a unifying and simplifying approach to Bruhat order in

which the usual Bruhat order, parabolic Bruhat order, and Bruhat order for symmetric pairs

are shown to have combinatorially analogous and relatively simple descriptions. Such analo-

gies are valuable as they permit the study of P\G/B and K\G/B by reducing to B\G/B
rather than by introducing additional machinery. A concise definition for reduced expres-

sions and a simple proof of the exchange condition for P\G/B are provided as applications

of this philosophy. A parametrization of K\G/P is a simple consequence of understanding

the Bruhat order of K\G/B restricted to a P -orbit.

1. Introduction

Bruhat order is an important tool in many branches of representation theory, in part
because of the importance of studying orbits on the flag variety. CategoryO and the category
of Harish-Chandra modules are two categories for which representations are related to orbits
on the flag variety. Let G be a complex reductive linear algebraic group with Lie algebra g, θ
a Cartan involution of G (specifying a real form), K = Gθ, and B a θ-stable Borel subgroup.
Using Beilinson-Bernstein’s geometric construction, irreducible representations in Category
O of trivial infinitesimal character are known to be in correspondence with B-orbits on the
flag variety while irreducible Harish-Chandra modules of trivial infinitesimal character are
in bijection with K-equivariant local systems on K-orbits on the flag variety. The module
constructions may be modified suitably to produce modules for other infinitesimal characters.

Multiplicities of irreducible composition factors in standard modules for each of these
categories can be computed using Kazhdan-Lusztig-Vogan polynomials. Finding efficient
means of computing such polynomials is a heavily studied problem. Since the recursion
formulas for computing Kazhdan-Lusztig-Vogan polynomials are expressed in terms of the
Bruhat order on orbits and on local systems, we hope that the simplifications to Bruhat
order for P\G/B and K\G/B contained in this paper may lead to a deeper understanding
of the Kazdhan-Lusztig-Vogan polynomials in these categories, and the relationships among
them. (Recall that local systems are parametrized by certain orbits in pairs of flag varieties.)

Within this paper, we discuss how Bruhat order can be described by the simple relations.
Simple relations for Bruhat order are examined from the following perspectives for each of
B\G/B, P\G/B, and K\G/B:

• topological (closure order)
• cross actions and Cayley transforms
• roots and the Weyl group
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• roots and pullbacks.

Strong analogies are drawn between the different cases B\G/B, P\G/B, and K\G/B. This
permits definitions of standard objects and proofs of properties to be simplified for P\G/B
and forK\G/B: it is more efficient to exploit similarities with B\G/B than it is to introduce
new machinery to accommodate the differences. The simplest combinatorial descriptions of
the simple Bruhat relations are Theorems 3.5, 4.6, and 7.24.

Beyond parametrizing representations of various categories, orbits on the flag variety and
Bruhat order appear in geometry (symmetric spaces, spherical homogeneous spaces) and in
number theory problems in which one studies the fixed points of an involution. Bruhat order
is ubiquitous in mathematics and is of fundamental importance.

This paper is structured as follows. Section 2 contains notation and the setup which will
remain fixed for the duration of the paper. Sections 3 and 4 discuss Bruhat order for B\G/B
and for P\G/B, respectively.

We discuss reduced expressions and the exchange property in sections 5 and 6 for each of
B\G/B and P\G/B.

In section 7, Bruhat order for K\G/B is simplified and shown to be analogous to Bruhat
orders for B\G/B and for P\G/B. Motivated by Adams-duCloux, the definition of type I
and type II roots is shown to have a natural conjugation invariant definition independent
of the real form. Using this definition, whether or not a cross action is trivial is easy to
understand.

In section 8, we give a simple combinatorial parametrization of K\G/P and discuss how
the monoidal action descends (or fails to descend) from K\G/B to K\G/P .

The final section contains a discussion of future work.

1.1. Acknowledgements. I would like to thank Annegret Paul and Siddhartha Sahi from
whom I have learned a tremendous amount. I would also like to thank John Stembridge and
David Vogan for useful feedback on this paper.

2. Setup and Notation

The following notation will be fixed for the duration of this paper.

• G: complex reductive linear algebraic group
• θ ∈ Aut(G): a Cartan involution (i.e. holomorphic involution)
• B: a θ-stable Borel (exists by Steinberg, see [?] 2.3)
• B = TU : the θ-stable Levi decomposition. Since B is θ-stable, therefore T is maxi-
mally compact (see Lemma 2.6 of [?]).
• g: the Lie algebra of G. Analogous notation will be used for Lie algebras of other
groups.
• ∆(g, t): the roots of g with respect to t

• W =WG: the Weyl group NG(T )/T of G
• Π: the set of simple roots corresponding to B
• S: the set of simple reflections corresponding to Π
• PJ : the standard parabolic subgroup corresponding to J ⊂ Π
• P = LN : the T -stable Levi decomposition of P
• I ⊂ Π: the subset corresponding to P
• WL: the Weyl Group NL(T )/T of L
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• xα : R→ G: an appropriately selected one-parameter subgroup of G associated to α
• φα : SL2 → G the group homomorphism satisfying

xα(m) = φα

(

1 m
0 1

)

, x−α(m) = φα

(

1 0
m 1

)

, α∨(t) = φα

(

t 0
0 t−1

)

.

• ṡα = xα(−1)x−α(1)xα(−1) = φα

(

0 −1
1 0

)

∈ N(T ) (= nα in the notation of [?])

• ẇ: Given w = si1si2 · · · sik ∈ W a reduced expression, define ẇ = ṡi1 ṡi2 · · · ṡik ∈
N(T ). It is known that ẇ is independent of the reduced expression chosen.
• Hg := gHg−1 for every g ∈ G, H ≤ G
• B := the variety of Borel subgroups of G. This is in bijection with G/B where
Bg ↔ gB.

3. Bruhat Order for B\G/B

3.1. Reducing to Simple Relations. It is well-known that:

Proposition 3.1. Bruhat Decomposition:

G = ∐w∈WBẇB.

Therefore B\G/B ↔ W .

Studying the closures of double cosets of B\G/B leads to a geometric definition for the
Bruhat order on the Weyl group:

BẇB = ∪y≤wBẏB.

Utilizing the bijection between the double cosets and the Weyl group, which as a reflection
group has a simple description in terms of generators and relations, Bruhat order may be
defined more tangibly as follows:

Definition 3.2. For u, v ∈ W , t a (not necessarily simple) reflection, we write u
t
−→ v if

v = ut and ℓ(u) < ℓ(v). Bruhat order on W is defined by u ≤ v if there exists a sequence of
elements w0, w1, . . . , wk ∈ W such that u = w0 → w1 → · · · → wk = v.

In [?], Deodhar discusses four equivalent definitions of Bruhat order. We are most inter-
ested in description II, which we now repeat.

Definition 3.3. Let u, v ∈ W and s be a simple reflection. Property Z(s, u, v) is satisfied if
whenever ℓ(us) ≤ ℓ(u) and ℓ(vs) ≤ ℓ(v), then

u ≤ v ⇐⇒ us ≤ v ⇐⇒ us ≤ vs.

Proposition 3.4. ([?]) Bruhat order is the unique partial ordering ≤ on W such that

(1) for all w ∈ W , w ≤ 1 ⇐⇒ w = 1;
(2) ≤ has Property Z(s, u, v).

We focus on this particular definition of Bruhat order since it allows us to consider only

u
t
−→ v where t is a simple reflection (although we aim to be more general where possible).

We consider different formulations of the simple Bruhat relations.
3



3.2. Weyl Group and Roots. Another means of describing (not necessarily simple) Bruhat
relations is:

Theorem 3.5. Let α be a positive root and w ∈ W . Then Bruhat order is generated by the
relations:

w
sα−→ wsα if wα ∈ ∆+ = ∆(u, t)

w
sα←− wsα if wα ∈ ∆− = ∆(u−, t).

Proof. This is known if α is a simple root ([?], Lemma 1.6). In general, suppose ℓ(w) <
ℓ(wsα). Let wsα = s1s2 · · · sr be a reduced expression for wsα. By the strong exchange
condition, w = s1s2 · · · ŝi · · · sr. Then sα = w−1s1s2 · · · sr = srsr−1 · · · si+1sisi+1 · · · sr−1sr.
We conclude that α = srsr−1 · · · si+1αi. (Note that since s1s2 · · · sr is a reduced expression,
α = srsr−1 · · · si+1αi is a positive root, [?] p. 14.) Then wα = s1 · · · ŝi · · · srsr · · · si+1αi =
s1 · · · si−1αi > 0 since s1s2 · · · sr is a reduced expression.

Similarly, if ℓ(w) > ℓ(wsα), then wα < 0. �

3.3. Roots and Pullbacks. Let ∆ = ∆(g, t) and ∆+ = ∆(b, t). Define Tg and Ug by

B = TU
int(g)
7−→ gBg−1 = (gTg−1)(gUg−1) =: TgUg. Considering Lie algebras, b = t ⊕ u

Ad(g)
7−→

bg = tg⊕ug. We have the map between Cartan subalgebras Ad(g−1) : tg → t, while pullback
allows us to map between duals of Cartan subalgebras: Ad(g−1)∗ : t∗ → t∗g:

(Ad(g−1)∗α)(t) = α(Ad(g−1)t) for all t ∈ tg.

(Or view α as a group homomorphism and use int(g−1).) For α ∈ ∆(u, t), for all x ∈ gα,
and for all t ∈ tg:

[t,Ad(g)x] = Ad(g)[Ad(g−1)t, x]

= α(Ad(g−1)t)(Ad(g)x) since Ad(g) is linear and Ad(g−1)t ∈ t

= (Ad(g−1)∗α)(t) Ad(g)x

Thus letting αg = Ad(g−1)∗α,

Ad(g) : u =
⊕

α∈∆+

gα → ug =
⊕

α∈∆+

gαg

with Ad(g)gα = gαg
.

It is straightforward to prove (use int rather than Ad):

Lemma 3.6. For w ∈ W and n ∈ N(T ) any representative of w, wα = αn. In particular,
wα = αẇ.

Using pullbacks, Bruhat order may be reformulated as follows:

Proposition 3.7. Let α be a positive root and w ∈ W . Then:

w
sα−→ wsα if αẇ ∈ ∆(u, t)

w
sα←− wsα if αẇ ∈ ∆(u−, t).

This may also be written

BẇB
α
−→ BẇṡαB if αẇ ∈ ∆(u, t)

BẇB
α
←− BẇṡαB if αẇ ∈ ∆(u−, t).

4



Remark 3.8. Pullbacks turn out to be particularly useful in studying Bruhat order in more
general situations: for example, if one of the subgroups with respect to which you take
double cosets is twisted by conjugation or if it is a more general spherical subgroup. See [?]
for details.

3.4. Cross Actions.

Definition 3.9. The cross action of W on B\G/B is the action generated by

sα × BẇB := Bẇṡ−1
α B

where α is a positive root.

Under the correspondence between B\G/B andW , cross action corresponds to the natural
left action of W on itself by right multiplication by the inverse.

It follows immediately:

Theorem 3.10. Let α be a positive root and w ∈ W . Then Bruhat order is generated by
the relations:

BẇB
α
−→ sα × BẇB = Bẇṡ−1

α B = BẇṡαB if wα ∈ ∆(u, t)

BẇB
α
←− sα × BẇB = Bẇṡ−1

α B = BẇṡαB if wα ∈ ∆(u−, t).

3.5. Closure Order.

Definition 3.11. The closure order on B\G/B is defined by O1 �
B O2 if O1 ⊂ O2.

As discussed above, it is well-known that closure order and Bruhat order on B\G/B are
the same. We discuss the proof in order to highlight how orbit dimensions change by at most
one under simple relations.

Definition 3.12. Given α a simple root, we define Pα = P{α} (the standard parabolic of
type α containing B). Then we have the canonical projection:

πα : G/B → G/Pα.

which may be viewed as a projection from B to Pα, the variety of parabolics of type α.

The set of Borel subgroups contained in Pα is in bijection with P1. Therefore we see that:

Lemma 3.13. ([?]) πα is a P1-fibration: π−1
α πα(x) ≃ P1 for all x ∈ B.

P1 → G/B
↓ πα

G/Pα

.

Lemma 3.14. If ℓ(wsα) = ℓ(w) + 1 then:

(1) π−1
α πα(BẇB) = BẇB ∪ BẇṡαB;

(2) dimBẇṡαB = dimBẇB + 1;

(3) π−1
α πα(BẇB) = π−1

α πα(BẇB);
(4) BẇB ⊂ BẇṡαB.
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First, π−1
α πα(BẇB) = BẇPα/B = BẇB∪BẇṡαB by the parabolic Bruhat decomposition

(see the following section) and by Lemma 8.3.7 of [?]. Relating the dimension of theB-orbit of
ẇB ∈ G/B to the dimension of its stabilizer Bẇ∩B, (2) follows from the relationship between
lengths of Weyl group elements and the number of positive roots sent to negative roots by the
elements. The third statement follows from purely pointset topological considerations relying
upon the definition of the quotient topology: as we will see in the proof of Proposition 8.2,
πα(BẇB) = πα(BẇB), whence π−1

α πα(BẇB) = π−1
α πα(BẇB). The final statement follows

immediately from the third.

Notation 3.15. Let α ∈ Π and w ∈ W with ℓ(wsα) = ℓ(w) + 1. Then write

BẇB �Bα BẇṡαB.

Theorem 3.16. For w,w′ ∈ W , α simple,

BẇB
α
−→ Bẇ′B ⇐⇒ BẇB �Bα Bẇ

′B.

Therefore, Ou �
B Ov ⇐⇒ u ≤ v.

Proof. Since Bruhat order depended only upon simple relations and the previous lemma
states that simple Bruhat relations and simple closure relations are the same, we conclude
that

u ≤ v ⇒ BuB ⊂ BvB.

To prove that Bruhat order and closure order are the same, it suffices to prove that ∪u≤vBuB
is closed. See Proposition 8.5.5 of [?]. �

In subsequent sections, the P1-bundle accounts for the dimension change of 1 in the simple
Bruhat relations.

4. Bruhat Order on P\G/B

4.1. Reducing to Simple Relations. It is well-known that:

Proposition 4.1. Bruhat Decomposition:

P = ∐w∈WL
BẇB

and thus P\G/B ↔ WL\WG.

Definition 4.2. Bruhat order on both P\G/B and WL\WG is the partial order induced
from Bruhat order on both B\G/B and WG. That is, WLu ≤ WLv if there are coset
representatives u0 and v0, respectively, such that u0 ≤ v0.

That is, if u, v ∈ WG are such that u ≤ v, then WLu ≤ WLv. The converse holds for
minimal length coset representatives:

Proposition 4.3. Let u, v ∈ WG be minimal length coset representatives for WLu and for
WLv. Then

WLu ≤WLv ⇐⇒ u ≤ v.

Proof. This is a special case of [?], Lemma 3.5. �

Because Bruhat order for P\G/B may be described using Bruhat order for B\G/B re-
stricted to minimal length coset representatives, therefore we make the analogous definition
for property Z:

6



Definition 4.4. Let u, v ∈ WG be minimal length coset representatives for WLu and for
WLv. Let s be a simple reflection. Then property Z(s,WLu,WLv) is satisfied if whenever
ℓ(us) ≤ ℓ(u) and ℓ(vs) ≤ ℓ(v), then

WLu ≤WLv ⇐⇒ WLus ≤WLv ⇐⇒ WLus ≤WLvs.

Furthermore,

Proposition 4.5. Bruhat order is the unique partial order on WL\WG such that

(1) for all WLw ∈ WL\WG, WLw ≤ WL1 ⇐⇒ WLw = WL1;
(2) ≤ has property Z(s,WLu,WLv).

Again, Bruhat order for P\G/B may be described using only simple relations and we
focus on reformulations those relations.

4.2. Weyl Group and Roots. The goal is to understand simple relations while avoiding
the introduction of additional machinery. Using the intuition gained from P\G/B, consider:

Theorem 4.6. Let w ∈ WG and let α ∈ ∆+. Then

WLw = WLwsα if wα ∈ ∆(l, t)

WLw
sα−→ WLwsα if wα ∈ ∆(n, t)

WLw
sα←− WLwsα if wα ∈ ∆(n−, t)

Note that this is analogous to Bruhat order relations for B\G/B with l analogous to t,
∆(t, t) = {}.

Proof. We will find conjugation to be a very convenient tool in studying Bruhat order:

WLwsα = WLwsαw
−1w =WLswαw.

It now follows that WLwsα = WLw ⇐⇒ wα ∈ ∆(l, t). The second and third statements
then follow from the formula above and from Theorem 3.5. �

Remark 4.7. Compare this characterization to John Stembridge’s characterization of para-
bolic Bruhat order in [?] in which WL-cosets are associated with WG-orbits in the dual space
of the Cartan subalgebra with stabilizer WL. Bruhat order then corresponds to the partial
order on the root lattice.

4.3. Roots and Pullbacks. Since αẇ = wα, we may reformulate Bruhat order as follows:

Theorem 4.8. Let α be a positive root and w ∈ WG. Then

PẇB
α
−→ PẇṡαB if αẇ ∈ ∆(n, t)

PẇB
α
←− PẇṡαB if αẇ ∈ ∆(n−, t).

4.4. Closure order.

Definition 4.9. The closure order on P\G/B is defined by O1 �
P O2 if O1 ⊂ O2.

Definition 4.10. Let α ∈ Π and w ∈ W . If PẇB �P Pẇṡ−1
α B, then write

PẇB �Pα Pẇṡ
−1
α B.

Again, we will see that closure order and Bruhat order on P\G/B are the same.
7



Lemma 4.11. Let α ∈ Π and w ∈ W . Then:

π−1
α παPẇB = PẇB ∪ PẇṡαB =

{

PẇB if wα ∈ ∆(l, t)
PẇB ∪ PẇṡαB if wα 6∈ ∆(l, t).

Proof. This follows from Theorem 4.6 and the correspondence P\G/B ↔WL\WG. �

Theorem 4.12. Let w ∈ WG and let α ∈ ∆+(g, t). Then Ow �
P
α Owsα ⇐⇒ WLw ≤

WLwsα:

PẇB = PẇṡαB if wα ∈ ∆(l, t)

PẇB �Pα PẇṡαB if wα ∈ ∆(n, t)

PẇB �Pα PẇṡαB if wα ∈ ∆(n−, t)

Furthermore, closure order and Bruhat order on P\G/B are the same:

Ou �
P Ov ⇐⇒ WLu ≤WLv.

Proof. We only need to prove the last three statements. Since BẇB �Bα BẇṡαB if wα > 0
and since PẇṡαB = PẇṡαB if wα ∈ ∆(l, t), therefore PẇB �α PẇṡαB if wα ∈ ∆(n, t).

Similarly, PẇB �α PẇṡαB if wα ∈ ∆(n−, t). Thus
α
−→ and �Pα are equivalent. Since Bruhat

order on P\G/B depends only on simple relations, it follows that if WLu ≤ WLv, then
Ou �

P Ov.
Heuristically, Bruhat order and closure order on P\G/B are the same since:

(1) Bruhat order is induced by Bruhat order on B\G/B and closure order and Bruhat
order for B\G/B are the same;

(2) the topology on G/B is the quotient topology.

For details, see the proof of the equivalence of Bruhat order and closure order for K\G/P ,
Theorem 8.2. Here, we provide an alternate proof using minimal length coset representatives.

To prove the converse, we wish to show that if u, v ∈ WG, then P u̇B ⊂ P v̇B ⇒ WLu ≤
WLv. We may assume that u, v are chosen to be minimal length representatives.

P u̇B ⊂ P v̇B

⇐⇒ ∪w∈WL
Bẇu̇B ⊂ ∪w∈WL

Bẇv̇B = ∪w∈WL
Bẇv̇B

⇐⇒ for every w ∈ WL, Bẇu̇B ⊂ Bẋv̇B for some x ∈ WL

⇒ u ≤ xv for some x ∈ WL

⇒ u ≤ v by Lemma 3.5 of [?].

�

4.5. Cross Actions.

Definition 4.13. The cross action of W on P\G/B is the action generated by

sα × PẇB := Pẇṡ−1
α B

where α is a positive root.

It follows immediately:
8



Theorem 4.14. Let α be a positive root and w ∈ W . Then the cross action corresponding
to α satisfies:

PẇB = sα × PẇB = Pẇṡ−1
α B if wα ∈ ∆(l, t)

PẇB
α
−→ sα × PẇB = Pẇṡ−1

α B if wα ∈ ∆(n, t)

PẇB
α
←− sα × BẇB = Pẇṡ−1

α B if wα ∈ ∆(n−, t).

Proof. Again, if wα ∈ ∆(l, t), then ṡwα ∈ L ⊂ P . The remainder of the proof resembles
previous arguments. �

5. Reduced Expressions for B\G/B and P\G/B

Throughout this section, wherever w = si1si2 · · · sik , let w1 = si1, w2 = si1si2 , . . . , wk =
si1si2 · · · sik = w.

5.1. B\G/B. An important aspect of Bruhat order is understanding decompositions of Weyl
group elements into products of simple reflections.

Definition 5.1. Let w ∈ WG. Then w = si1si2 · · · sik is a reduced expression for w (or
B-reduced expression) if k is minimal.

The following result is standard:

Proposition 5.2. Let w ∈ WG where w = si1si2 · · · sik . Then w = si1si2 · · · sik is a reduced
expression if and only if wjαij+1

> 0 for j = 1, 2, . . . , k − 1.

This is the equivalent definition for reduced expression that generalizes nicely to P\G/B.

5.2. P\G/B. Again, we wish to simplify the existing literature and limit the introduction
of complex machinery as much as possible.

Definition 5.3. An element w ∈ WG is P -minimal if it is a minimal length coset represen-
tative for WLw. Equivalently, wα ∈ ∆(n, t) for every α ∈ I.

Definition 5.4. Let w ∈ WG be P -minimal. A P -reduced expression for w is w = si1si2 · · · sik
where wjαij+1

∈ ∆(n, t) for j = 1, 2, . . . , k − 1. We define ℓP (w) = k, the P -length of w.

Proposition 5.5. Every coset in WL\WG has a unique P -minimal representative and every
P -minimal representative has a P -reduced expression.

Proof. The first statement follows immediately from the definition of P -minimal element.
The second statement follows from the equations

WLw = WLsα if wα ∈ ∆(l, t)

WLw
α
−→ WLsα if wα ∈ ∆(n, t)

WLw
α
←− WLsα if wα ∈ ∆(n−, t).

�
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6. Exchange Property for B\G/B and P\G/B

6.1. B\G/B. The Exchange Property for WG is the following:

Theorem 6.1. Let w = si1si2 . . . sik ∈ WG be a reduced expression and let α ∈ Π. If wα < 0,
then ℓ(w) > ℓ(wsα). Furthermore, the Exchange Property states that there exists some j such
that wsα = si1si2 · · · ŝij · · · sik is a reduced expression for wsα.

6.2. P\G/B. The Exchange Property for WL\WG may be described similarly:

Theorem 6.2. Let w = si1si2 · · · sik ∈ WG be a P -reduced expression and let α ∈ Π. If
wα ∈ ∆(n−, t), then there exists some j such that wsα = si1si2 · · · ŝij · · · sik and it is a
P -reduced expression for wsα.

Proof. We know that there exists j such that si1si2 · · · ŝij · · · sik is a B-reduced expression
for wsα. Since wα ∈ ∆(n−, t), therefore PwB 6= PwsαB, dimPwsαB = dimPwsαB − 1,
and ℓ(wsα) = k − 1. Since, as we analyze each location in any expression, roots in l fix
the orbit, roots in n increase the orbit dimension, while roots in n− decrease the orbit
dimension, therefore each simple reflection in our expression must increase dimension, whence
wsα = si1si2 · · · ŝij · · · sik must be a P -reduced expression as well. �

7. Bruhat Order on K\G/B

Bruhat order for K\G/B may differ in “direction” in the literature due to a preference to
associate the minimal length reduced expression with the open dense orbit since the open
orbit is unique while the closed minimal dimension orbits generally are not.

7.1. Parametrizing K\G/B. We use Richardson-Springer’s parametrization of K\G/B
from their seminal paper [?]. A good reference is [?]. Recall that K = Gθ and B = TU is a
θ-stable Borel subgroup.

Notation 7.1. Modifying Richardson-Springer’s parametrization for B\G/K, we set:

• V := {x ∈ G|x−1θ(x) ∈ N(T )}
• V := K × T -orbits on V : (k, t) · x = kxt−1.
• v̇ ∈ V is a representative of v.

Proposition 7.2. [?] V is in bijection with K\G/B.

7.2. Closure Order. Here, we change our approach and define:

Definition 7.3. Bruhat order on K\G/B is defined to be closure order on K\G/B. For
v1, v2 ∈ V ,

O1 �
K O2 if O1 ⊂ O2

and v1 �
K v2 ⇐⇒ Ov1 �

K Ov2 .

We will then show various definitions to be equivalent, as we did for B\G/B and for
P\G/B, by understanding simple relations and how Bruhat order reduces to understanding
simple relations.

We will need the following notation:

Notation 7.4. Let α ∈ Π and v, v′ ∈ V . If Ov ⊂ π−1
α παOv′ and dimOv′ = dimOv +1, then

write Ov �
K
α Ov′ or v �

K
α v′.

10



7.3. Real Forms and Root Types. In order to discuss Bruhat order in detail, we must
discuss real forms and root types. A real form of the complex Lie algebra g is a real Lie
subalgebra g0 such that g = g0⊕ ig0. A less obvious way to specify a real form is to select a
Cartan involution θ. (Use the Cartan decomposition g = k⊕ s and the fact that the Killing
form is positive definite on ik0 ⊕ s0.)

We begin by studying the Cartan subalgebra.

Lemma 7.5. ([?]) Given any θ-stable Cartan subalgebra t and Cartan decomposition t0 =
tc0 ⊕ tn0 of its real form, it is known that roots α ∈ ∆(g, t) are real-valued on itc0 ⊕ tn0 . Thus
θα = −ᾱ.

Remark 7.6. Recall that ᾱ(X) = α(X̄).

Definition 7.7. Given t a θ-stable CSA, relative to θ, α ∈ ∆(g, t) is:

(1) real if θα = −α
(2) imaginary if θα = α
(3) complex if θα 6= ±α.

Definition 7.8. Given g ∈ G, recall αg := Ad∗
g−1 α : tg = Adg t→ C. Relative to g, α is:

(1) real if ᾱg = −αg
(2) imaginary if ᾱg = αg
(3) complex if ᾱg 6= ±αg.

Notation 7.9. Let v ∈ V and let n = v̇−1θ(v̇), and w = nT . Since v ∈ V , it follows that
θ(w) = w−1.

We study the particular case where g = v̇ ∈ V .

Lemma 7.10. ([?]) If v ∈ V , then v̇T v̇−1 is a θ-stable Cartan subgroup.

This allows us to describe root types using θ.

Definition 7.11. If v ∈ V , then relative to v α is:

(1) real if θαv = −αv
(2) imaginary if θαv = αv
(3) complex if θαv 6= ±αv.

Equivalently,

Definition 7.12. ([?]) Relative to v (or w) α is:

(1) real if wθα = −α
(2) imaginary if wθα = α
(3) complex if wθα 6= ±α.

Proposition 7.13. The previous two definitions for real, complex, imaginary are consistent.

Proof. Let T1 = vTv−1, which is θ-stable because v ∈ V . Then −ᾱv = θαv. Given t1 ∈ T1,

θαv(t1) = αv(θ
−1(t1)) = α(v−1θ−1(t1)v)

whereas for t = v−1t1v ∈ T ,

wθα(t) = θα(n−1tn) = α(θ−1(θ(v)−1v)θ−1(t)θ−1(v−1θ(v)))

= α(v−1θ−1(vtv−1)v)

= α(v−1θ−1(t1)v).
11



Since αv(t1) = α(t), we see therefore that

θαv(t1) = αv(t1) ⇐⇒ wθα(t) = α(t)

θαv(t1) = −αv(t1) ⇐⇒ wθα(t) = −α(t)

θαv(t1) 6= ±αv(t1) ⇐⇒ wθα(t) 6= ±α(t).

�

It follows from these computations that:

Corollary 7.14. For α ∈ Π, v ∈ V , w = v̇−1θ(v̇)T ∈ W ,

wθα = (θαv)v−1 .

We may further distinguish imaginary roots as compact or noncompact.

Definition 7.15. Let α be an imaginary root. Normalizing the one-parameter subgroup xα
appropriately,

θ(xα(ξ)) = xθα(cαξ) = xα(cαξ) where cα = ±1.

The root α is said to be compact imaginary if cα = 1 and noncompact imaginary if cα = −1.

Definition 7.16. Suppose the root α is imaginary relative to v ∈ V . Then, normalizing xαv

appropriately,
θ(xαv

(ξ)) = xθαv
(cαv

ξ) = xαv
(cαv

ξ) where cαv
= ±1.

We say that α is compact relative to v if cαv
= 1 and noncompact if cαv

= −1.

Lemma 7.17. ([?], p. 527) Recall ṡα was defined using one-parameter subgroups. Then

i) if α is real: θ(ṡα) = ṡ−α
ii) if α is compact imaginary: θ(ṡα) = ṡα
iii) if α is complex θ(ṡα) = ṡθα
iv) if α is noncompact imaginary: θ(ṡα) = ṡ−α.

Recall that ṡα = φα

(

0 −1
1 0

)

. Since the matrix

(

0 −1
1 0

)

has order 4, therefore either

ṡ2α = 1 or ṡ4α = 1. Let mα = ṡ2α. Lemma 14.11 of [?] allows us to make the definition:

Definition 7.18. A simple root α is said to be of type II if mα = 1 and of type I otherwise.

Remark 7.19. (1) The above condition is conjugation invariant since the order of an
element is conjugation invariant. That is, α is type I (resp. type II) if and only if αg
is type I (resp. type II).

(2) Furthermore, the definition makes no reference to the real form.
(3) All the roots in each Weyl group orbit must be of the same type.
(4) If a simple Lie algebra is simply laced, then its roots are either all type I or all type

II.

Proposition 7.20. If α is type II, then

ṡ−α = ṡα = ṡ−1
α .

If α is type I, then
ṡ−α = ṡ−1

α 6= ṡα.
12



Proof. Since ṡα = φα

(

0 −1
1 0

)

while ṡ−α = φα

(

0 1
−1 0

)

, we see that ṡ−α = ṡ−1
α . Con-

sidering order, we obtain the proposition. �

7.4. Cross Actions and Cayley Transforms. We will see that simple relations for Bruhat
order on K\G/B may be described by cross actions and Cayley transforms.

Springer showed that if v ∈ V and n ∈ N(T ), then vn−1 ∈ V , so there is a left WG-action
on V and also on V [?].

Definition 7.21. The cross action on K\G/B corresponds to Springer’s WG-action on V .
That is,

sα ×Kv̇B = Kv̇ṡ−1
α B.

In section 4.3 of [?], one finds that:
Case Type of α wrt v sα × v
i.I) real type I sα × v 6= v
i.II) real type II sα × v = v
ii) compact imaginary sα × v = v
iii) complex sα × v 6= v
iv.I) noncompact imaginary type I sα × v 6= v
iv.II) noncompact imaginary type II sα × v = v
This is easy to see using Definition 7.18 and Lemma 7.17. For example, if α is type II
imaginary relative to v, then sα × KvB = Kvṡα

−1B = Kṡ−1
αv
vB = KvB since θ(ṡαv

) =
ṡ−αv

= ṡ−1
αv

= ṡαv
.

Suppose α ∈ Π is noncompact imaginary relative to v ∈ V . In section 6.7 of [?], Springer
defines the automorphism ψ(g) = v̇−1θ(v̇)θ(g)θ(v̇)−1v̇. We observe that this is simply
θn(g) := int(n) ◦ θ(g). Since θ(n) = n−1, this is an involutive automorphism. It is now
easy to see, as Springer pointed out, that ψ descends to an involutive automorphism of Gα,
the subgroup corresponding to ±α, since α is imaginary relative to θn. Springer shows that
ψ(xα(m)) = xα(−m), ψ(x−α(m)) = x−α(m), and ψ(ṡα) = ṡ−1

α . Springer claims that there
is zα ∈ Gα such that zαψ(zα)

−1 = ṡα. We see we may choose zα = xα(−1)x−α(1/2) since
zαψ(zα)

−1 = xα(−1)x−α(1/2)x−α(1/2)xα(−1) = ṡα. Then:

Definition 7.22. Given v ∈ V , α ∈ Π noncompact imaginary relative to v, the Cayley
transform of v through α is

cα(Kv̇B) = Kv̇z−1
α B.

The Cayley transform is known to increase orbit dimension by 1.

In order to relate cross actions and Cayley transforms to simple relations in the closure
order, we must understand how projection onto the variety of parabolics of type α followed by
taking the preimage affects dimensions. Either dim π−1

α πα(Ov) = dimOv or dim π−1
α πα(Ov) =

dimOv+1. Whether the dimension increases or not depends on the type of the root α relative
to v ∈ V parametrizing the orbit.

13



We label the possible cases which may be found in [?]:
Case Root Type of αv dim π−1

α παOv
i.I) real type I same
i.II) real type II same
ii) compact imaginary same
iii.a) complex same
iii.b) complex +1
iv.I) noncompact imaginary type I +1
iv.II) noncompact imaginary type II +1

Case Root Type of αv π−1
α παO Other Types Bruhat Relation

iii.b) complex O ∪ sαO α complex wrt. sαO O �Kα sαO
iv.I) noncpt type I O ∪ sαO ∪ c

αO α real type I wrt. cαO O �Kα cαO
α noncpt type I wrt. sαO sαO �

K
α cαO

iv.II) noncpt type II O ∪ cαO α real type II wrt. cαO O �Kα cαO

Theorem 7.23. If v �Kα v′, then either:

• v′ = sα × v where α is type iii.b) relative to v, or
• v′ = cα × v where α is type iv) relative to v.

Ov type �Kα O′
v type Relationship

iv.I) �Kα i.I) Ov′ = cαOv
iv.II) �Kα i.II) Ov′ = cαOv
iii.b) �Kα iii.a) Ov′ = sαOv

7.5. Weyl Group and Roots.

Theorem 7.24. Let v ∈ V and α ∈ Π. Simple relations for Bruhat order on K\G/B may
be formulated by the existence of v′ ∈ V such that:
Ov �

K
α Ov′ iff wθα > 0 and gαv

6⊂ k

Ov �
K
α Ov′ iff wθα < 0 and gαv

6⊂ k.
We note that this description of Bruhat order is analogous to the descriptions for B\G/B
and P\G/B as follows. The reductive subalgebra k plays an analogous role to l in P\G/B
and to t in B\G/B. Furthermore, in the cases B\G/B and P\G/B, θ = Id.

Proof. Consider the following table:
Case Root Type of αv dim π−1

α παO Combinatorial Description
i.I) real same wθα = −α < 0
i.II) real same wθα = −α < 0
ii) compact imaginary same wθα = α > 0 but gαv

⊂ k

iii.a) complex same wθα < 0
iii.b) complex +1 wθα > 0, gαv

6⊂ k

iv.I) noncompact imaginary type I +1 wθα = α > 0, gαv
6⊂ k

iv.II) noncompact imaginary type II +1 wθα = α > 0, gαv
6⊂ k

The real and imaginary cases follow immediately from definitions.
In the complex case, either wθα > 0 or wθα < 0. Since B is θ-stable, therefore θ∆+ = ∆+.

If wθα > 0, then θ(wθα) > 0. Since θ(w) = w−1, it may be shown that θ(wθα) = w−1α.
From w−1α > 0, we conclude that ℓ(sαw) = ℓ(w) + 1. From θ∆+ = ∆+, we also conclude
that θΠ = Π, whence θα is a simple root. Since α is complex relative to v so that wθα 6= ±α,

14



therefore sαwθα > 0, whence ℓ(sαwsθα) = ℓ(sαw) + 1 = ℓ(w) + 2. Similarly, if wθα < 0,
then θ(wθα) = w−1α < 0 as well and ℓ(sαwsθα) = ℓ(sαw)− 1 = ℓ(w)− 2. The complex case
now follows from the case analysis in 4.3 of [?]. �

7.6. Roots and Pullbacks.

Theorem 7.25. Let v ∈ V and α ∈ Π. Simple relations for Bruhat order on K\G/B may
be formulated by the existence of v′ ∈ V such that:
Ov �

K
α Ov′ if θαv > 0 (i.e. ∈ ∆+(g, t)v) and gαv

6⊂ k

Ov �
K
α Ov′ if θαv < 0 and gαv

6⊂ k.

Proof. This follows from the previous theorem and from Corollary 7.14. �

7.7. Reducing to Simple Relations and K\G/B in More Depth. In [?], Richardson
and Springer define standard order on V (5.2) which they then show to be equivalent to
Bruhat order (section 6). Standard order is defined only using simple relations; therefore
the scope of our results was not reduced by considering only simple relations. We review the
definitions leading to the definition of standard order and discuss some basic results since
we will need them in future discussions.

Definition 7.26. ([?], 3.10) Given the Coxeter group (W,S), the monoid M(W ) has gen-
erators m(s) (s ∈ S) and the relations:

(1) m(s)2 = m(s) s ∈ S;
(2) braid relations: if s, t ∈ S are distinct, then

(a) o(st) = 2k: (m(s)m(t))k = (m(t)m(s))k

(b) o(st) = 2k + 1: (m(s)m(t))km(s) = (m(t)m(s))km(t).

Proposition 7.27. ([?], 3.10)

(1) If w = s1s2 . . . sℓ is a reduced decomposition of w, thenm(w) := m(s1)m(s2) · · ·m(sℓ) ∈
M(W ) is independent of the reduced decomposition chosen.

(2) M(W ) = {m(w) : w ∈ W}.

(3) m(w)m(s) =

{

m(ws) if ws > w
m(w) if ws < w.

Definition 7.28. ([?], 4.7) There is an action of the monoid M(W ) on V : if Ov′ is the
unique dense orbit in KvPα, then m(sα)v = v′. Thus:

If Ov �
K
α Ov′ then m(sα)v = v′.

Otherwise, m(sα)v = v.

The monoidal action should be thought of in the following way. When considering Weyl
group actions, s ∈ S is self-inverse, so acting twice by s should return the original element.
The action of s can both raise and lower dimensions. In contrast, the monoidal action of
s ∈ S on v ∈ V only changes v if a cross action or Cayley transform corresponding to s
raises the dimension. Thus repeated monoidal actions of s are the same as acting once. This
agrees with m(s)2 = m(s). Considering a string of simple monoidal actions, we may always
remove the simple elements which do not raise dimension. As for the Weyl group action on
B\G/B and on P\G/B, any element of V can be obtained by M(W ) acting on the closed
orbits in V .
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Notation 7.29. Let V0 be the set of closed orbits in V .

Definition 7.30. ([?], 4.1) The length of an element of V is defined as follows:

(1) If v ∈ V0, then ℓ(v) = 0.
(2) If v = m(s)u where v 6= u, then ℓ(v) = ℓ(u) + 1.

Definition 7.31. ([?]) A sequence in S is s = (s1, . . . , sk). The length of s is k and m(s) =
m(sk) · · ·m(s1).

Definition 7.32. ([?], 5.2) Given u, v ∈ V , write u
α
−→ v or u

sα−→ v if there exists x ∈ V ,
t ∈ S, and a sequence s ∈ S such that

(1) u = m(s)x and ℓ(u) = ℓ(x) + ℓ(s);
(2) v = m(s)m(t)x and ℓ(v) = ℓ(x) + ℓ(s) + 1.

The relation defined by

u ≤ v if there exists a sequence u = v0
α1−→ v1 · · ·

αk−→ vk = v

is the standard order on V .

Again, Richardson and Springer show in [?] that Bruhat order on K\G/B and standard
order are the same.

The inverse of a cross action is single valued. The inverse of a type II Cayley transform
is single valued while the inverse of a type I Cayley transform is double valued. We wish to
understand how elements of K\G/B may be identified using sequences in S.

Proposition 7.33. Given a sequence in V

v0
s1−→ v1

s2−→ v2 · · ·
sk−→ vk

where αk is noncompact type I relative to vk−1, there is a sequence

u0
s1−→ u1

s2−→ u2 · · ·
sk−1

−−→ uk−1 = sαk
× vk−1

sk−→ vk = cαkvk−1

with each αj the same types relative to vj−1 and to uj−1 (eg. αk is noncompact type I relative
to both uk−1 and vk−1).

Proof. Begin by letting wj = v−1
j θ(vj)T ∈ WG. Since αk is noncompact imaginary relative

to vk−1, therefore wk−1θαk = αk. Therefore (vk−1ṡ
−1
αk
)−1θ(vk−1ṡ

−1
αk
)T = sαk

wk−1θ(sαk
) =

sαk
swk−1θαk

wk−1 = s2αk
wk−1 = wk−1. Recall Definition 7.12. Thus if β is real, imaginary, or

complex relative to v and α is non-compact relative to v, then β is real, imaginary, or complex,
respectively, relative to sα× v. Remark 7.19 shows that if β is type I relative to v, then it is
type I relative to sα×v. If β is compact relative to v (that is, d(θint(v))Xβ = d int(v)Xβ for
Xβ ∈ gβ) and α is non-compact type I or type II relative to v, then we see that β is compact
relative to sα × v:

d(θint(vṡ−1
α ))Xβ = d(θ(int(vṡ−1

α v−1)int(v))Xβ

= d(int(θ(ṡαv
)θint(v))Xβ

= d(int(ṡαv
)int(v))Xβ

= d(int(vṡα))Xβ

= d(int(vṡ−1
α ))Xβ.
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We see that whatever type some simple root β is relative to vk−1, it is precisely the same type
relative to sαk

× vk−1. Recall that c
αk(sαk

× vk−1) = vk as well. Since only noncompact type
I roots cause ambiguity in taking inverses of cross actions and Cayley transforms, therefore
by induction, the proposition holds. �

Remark 7.34. There are two general methods of specifying any element u ∈ V up to braid
relations:

(1) There is u0 ∈ V0 and a sequence

u0
s1−→ u1

s2−→ u2 · · ·
uk−→ uk = u.

This specifies u unambiguously.
(2) Let the unique open dense orbit in K\G/B be KvB. There is a sequence

v = uℓ
sℓ←− uℓ−1

sℓ−1

←−− uℓ−2 · · ·
sk+1

←−− uk = u.

A sequence moving downwards from the open orbit does not necessarily uniquely
identify the orbit u since the inverse Cayley transform is double valued for type
I roots. To uniquely identify u, specify a choice for each type I inverse Cayley
transform.

8. Bruhat Order on K\G/P

8.1. Bruhat and Closure Orders.

Definition 8.1. Bruhat order on K\G/P is the partial order induced from Bruhat order
on K\G/B. That is, KuP ≤ KvP if there are orbit representatives u0 and v0, respectively,
such that Ku0B ≤ Kv0B.

Proposition 8.2. Bruhat order on K\G/P is the same as closure order.

Proof. Recall that πI : G/B → G/P is the natural projection from the variety of Borel
subgroups to the variety of parabolic subgroups of type I. Then πI is continuous. We will
show that πI(U) = πI(U) for all U ⊂ G/B.

First, consider the commutative diagram of natural projections

G
p
> G/P

G/B.

q
∨ πI

>
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Since the topologies on G/B and on G/P are the quotient topologies, for U ⊂ G/B:

πI(U) = p(q−1(U))

=
⋂

V⊃q−1(U) closed

p(V ) by definition of quotient topology

=
⋂

V⊃q−1(U) closed

πI ◦ q(V )

=
⋂

X⊃U closed

πI(X)

= πI(U).

We apply πI(U) = πI(U) to KvP = πI(KvB).

KvP = πI(KvB) = πI(KvB) =
⋃

u≤v

πI(KuB) =
⋃

KuP≤KvP

KuP.

The proposition follows. �

8.2. Understanding KvP : I-Equivalence. We wish to parametrize K\G/P . As we will
see, the key to parametrizingK\G/P is understanding the Bruhat order ofK\G/B restricted
to the B-orbits in a P -orbit.

Since P ⊃ B, therefore each P -orbit KvP can be expressed as a union of B-orbits KuB.
This is an example of an I-equivalence class, defined in [?]:

Definition 8.3. Recall the map πI : G/B → G/P , the natural projection from the flag
variety to the partial flag variety of parabolic subgroups of type I. Two orbits O,O′ in
K\G/B are I-equivalent (write O ∼I O

′) if they project to the same K-orbit on G/P ; i.e.
πI(O) = πI(O

′). The I-equivalence class of O is

[O]∼I
= K\π−1

I (πI(O)).

In [?], each I-equivalence class KvP = ∪O∼IOv
O is shown to be in bijection with some

double coset space Mv\L/B ∩L. Note that these are Mv-orbits on L/B ∩L, the flag variety
of L. The subgroup Mv is a spherical subgroup of L and thus there is a unique open
dense orbit in Mv\L/B ∩ L. The bijection of I-equivalence classes with double coset spaces
respects Bruhat order. Therefore, each I-equivalence class has a unique maximal element
since Mv\L/B ∩ L has a unique maximal element. These maximal elements are easy to
specify combinatorially, giving us a succinct parametrization of K\G/P . We now proceed to
provide more details. Because we study both K-orbis on G/B and Mv0-orbits on L/L ∩ B,
we use superscripts to indicate orbit type.

Notation 8.4. Let:

(1) v0 = a representative for [OK ]∼I
of minimal dimension

(2) θ̃ = int(v−1
0 ) ◦ θ ◦ int(v0)

(3) J = {α ∈ S : αv0 is real or imaginary} ∪ {α ∈ S : αv0 is complex and θ(αv0) ∈ Sv0}.
(4) P I

J = LJN
I
J the T -stable Levi decomposition of the parabolic subgroup of L corre-

sponding to J

(5) Mv0 = Lθ̃JN
I
J .

18



We chose J so that LJ is θ̃-stable, makingMv0 a mixed subgroup (see [?] for the definition
and for more details). Cross actions and Cayley transforms for mixed subgroup orbits on the
flag variety are defined by multiplying orbit representatives by ṡ−1

α and by z−1
α , respectively,

as before.

Proposition 8.5. ( [?]) There is a bijection

Mv0\L/B ∩ L
ψ
−→ K\v0P/B = [OKv0 ]∼I

such that the following diagram commutes:

L > Mv0\L/B ∩ L

K\v0P/B.

ψ
∨>

The unlabelled maps are the natural maps arising by choosing orbit representatives from L
and from v0L. Furthermore,

ψ
(

sα ×O
Mv0

ℓ

)

= sα × ψ
(

O
Mv0

ℓ

)

and ψ
(

cα
(

O
Mv0

ℓ

))

= cα
(

ψ
(

O
Mv0

ℓ

))

.

Remark 8.6. (1) Compare this with Brion and Helminck’s parametrization of an I-equivalence
class in section 1.5 of [?]. Additional results in [?] show thatMv0\L/L∩B is in bijec-

tion with Lθ̃J\LJ/B ∩LJ ×WJ\WI (a smaller K\G/B cross a Weyl group quotient),
connecting the parametrization above to Brion and Helminck’s.

(2) In comparison, P\G/B is in bijection with W I := {w ∈ WG : wα > 0 for every α ∈
I}. Clearly P\G/B is in bijection with the unique maximal length coset repre-
sentatives as well, giving us a parametrization analogous to our parametrization of
K\G/P .

Corollary 8.7. Each I-equivalence class of orbits has a unique maximal orbit. Thus each
P -orbit KvP contains a unique dense B-orbit.

Remark 8.8. This is equivalent to Brion-Helminck’s result in section 1.5 of [?].

8.3. Parametrizing K\G/P .

Theorem 8.9. Let I ⊂ Π correspond to the standard parabolic P . Then the double coset
space K\G/P is in bijection with VP where

VP := {v ∈ V : for every α ∈ I, wθα < 0 where w = v−1θ(v)T}

= {v ∈ V : for every α ∈ I,m(sα)v = v}.

In other words, K\G/P is in bijection with the I-maximal elements of V .

Proof. This follows immediately from the proposition and the corollary above and our char-
acterization of Bruhat order for K\G/B. �

Remark 8.10. Compare this to Brion and Helminck’s parametrization in section 1.2 of [?].
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8.4. Behaviour of Simple Relations: Descent of the Monoidal Action. Since Bruhat
order for K\G/P is induced from Bruhat order on K\G/B, which can be described using
simple relations, one concludes that Bruhat order for K\G/P can be described using simple
relations as well. However, the absence of a Borel subgroup among the two subgroups
with respect to which we take double cosets complicates matters somewhat, obstructing the
possibility of making a natural definition for

α
−→ consistent among all coset representatives.

Proposition 8.11. (1) If α ∈ I, then ṡα, zα ∈ L ⊂ P ; thus

πI(v) = πI(m(sα)v) for all v ∈ V.

(2) If α ∈ Π \ I,

πI(v) 6= πI(m(sα)v) ⇐⇒ v 6= m(sα)v.

Proof. This follows immediately from Proposition 8.5. �

Thus we may restrict our attention to simple relations in K\G/B for α ∈ Π \ I.
Consider defining cross action to be sα ×KvP = Kvṡ−1

α P . Since for w ∈ WL,

KvB
sα×−−→ Kvṡ−1

α B ⊂ Kvṡ−1
α P

KvwB
sα×−−→ Kvwṡ−1

α B

KvwB
s
w−1α

×
−−−−→ Kvṡ−1

α wB ⊂ Kvṡ−1
α P,

we see that the cross action does not descend naturally from K\G/B to K\G/P .

Lemma 8.12. For α ∈ Π \ I, L normalizes N , so WLα ⊂ ∆(n, t).

(1) For any w ∈ WL, the coefficient of α in the expression of wα as a linear combination
of simple roots is 1.

(2) If β ∈ WLα is a simple root, then β = α.

Proposition 8.13. If w ∈ WL, α ∈ Π \ I, and v ∈ VP , then

OPm(swα)v = O
P
m(sα)v.

Proof. By Lemma 8.12 and Lemma 5.3.3 of [?], there is a reduced expression of swα of the
form s1 · · · sksαsk · · · s1 where the si ∈ WL. Since v is maximal, m(sk · · · s1)v = v. Then
m(swα)v = m(s1 · · · sk)m(sα)m(sk · · · s1)v = m(s1 · · · sk)m(sα)v. Since the monoidal action
by WL preserves P -orbits, the lemma follows. �

Proposition 8.14. Let v ∈ VP and u ∈ V with u ∼I v. Let w ∈ WL be of minimal length
such that v = m(w)u. If α ∈ Π \ I, then OPm(sα)v

= OPm(s
w−1α

)v = O
P
m(s

w−1α
)u.

Remark 8.15. It is tempting at this point, but incorrect, to conclude that the monoidal
action of WG on K\G/B descends naturally to a monoidal action on K\G/P as follows:

• m(swα)v = m(wsαw
−1)m(w)u

?
= m(w)m(sα)u.

• OPm(swα)v
= OPm(sα)v

and OPm(w)m(sα)u
OPm(sα)u

so OPm(sα)v
= OPm(sα)u

.

However, we cannot cancel inverses inM(WG), so the above argument is incorrect. It is easy
to find a rank two counterexample.
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Proposition 8.16. If v ∈ VP , α and β ∈ Π\I, and α 6= β with v
α
−→ m(sα)v and v

β
−→ m(sβ)v,

then
OPm(sα)v 6= O

P
m(sβ)v

.

Proof. Assume by contradiction that m(sα)v and m(sβ)v belong to the same P -orbit. Then
there exist minimal length elements wα, wβ ∈ WL such thatm(wα)m(sα)v = m(wβ)m(sβ)v ∈
V P . Then wαsα = wβsβ ⇒ sαsβ = w−1

α wβ ∈ WL ⇒ sα = sβ–contradiction. �

9. Conclusion

It would be interesting to apply the simplifications of Bruhat order to the study of
Kazhdan-Lusztig-Vogan polynomials. The theory of parabolic Kazhdan-Lusztig polynomials
appears the most likely to benefit from the simplifications.

Another topic for future consideration is to further explore the philosophy of proving
results for P\G/B and for K\G/B by reducing to B\G/B using our analogies for simple
relations. For example, can it be applied to develop a better understanding of the exchange
property and the deletion condition for K\G/B?

Can the theory for K\G/B be simplified by using the Tits group?
Can the theories for K\G/P and P\G/B be made more similar by recasting results for

P\G/B using maximal length representatives rather than minimal length representatives?
The reader will find more material on Bruhat order in [?]. In particular, it contains a de-

scription of Bruhat order for mixed subgroups (for which parabolic subgroups and symmetric
subgroups are a special case) and for situations where one of the subgroups with respect to
which we take double cosets is twisted by conjugation. The descriptions of Bruhat order
through pullbacks of roots in particular carries over to the twisted case very naturally.

Department of Mathematics and Statistics, University of Windsor, Windsor, Ontario,

CANADA

E-mail address : wlyee@uwindsor.ca

21


	1. Introduction
	1.1. Acknowledgements

	2. Setup and Notation
	3. Bruhat Order for B "026E30F G / B
	3.1. Reducing to Simple Relations
	3.2. Weyl Group and Roots
	3.3. Roots and Pullbacks
	3.4. Cross Actions
	3.5. Closure Order

	4. Bruhat Order on P "026E30F G / B
	4.1. Reducing to Simple Relations
	4.2. Weyl Group and Roots
	4.3. Roots and Pullbacks
	4.4. Closure order
	4.5. Cross Actions

	5. Reduced Expressions for B "026E30F G / B and P "026E30F G / B
	5.1. B "026E30F G / B
	5.2. P "026E30F G / B

	6. Exchange Property for B "026E30F G / B and P "026E30F G / B
	6.1. B "026E30F G / B
	6.2. P "026E30F G / B

	7. Bruhat Order on K "026E30F G / B
	7.1. Parametrizing K "026E30F G / B
	7.2. Closure Order
	7.3. Real Forms and Root Types
	7.4. Cross Actions and Cayley Transforms
	7.5. Weyl Group and Roots
	7.6. Roots and Pullbacks
	7.7. Reducing to Simple Relations and K "026E30F G / B in More Depth

	8. Bruhat Order on K "026E30F G / P
	8.1. Bruhat and Closure Orders
	8.2. Understanding KvP: I-Equivalence
	8.3. Parametrizing K "026E30F G / P
	8.4. Behaviour of Simple Relations: Descent of the Monoidal Action

	9. Conclusion

