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ERGODICITY OF POISSON PRODUCTS AND APPLICATIONS

TOM MEYEROVITCH

Abstract. For every σ-finite measure-preserving transformation T acting on
a space X there is an associated probability preserving transformation T∗

which acts on discrete countable subsets of X. This is the Poisson suspension
of T . We prove ergodicity of the Poisson-product T ×T∗ under the assumption
that T is ergodic and conservative. From this we deduce some probabilistic
results: The ergodicity of the “first return of left-most transformation” associ-
ated with a measure preserving transformation on R+, and the non-existence of
a T -invariant Poisson-thinning. We discuss ergodicity for the Poisson-product
of measure preserving group actions, and related spectral properties.

1. Introduction

Let (X,B, µ) be a σ-finite measure space, and let T : X → X be a measure-
preserving transforation. On the probability space (X∗,B∗, µ∗) of countable subset
of X , with the probability measure µ∗ defined by the poisson-law with intensity µ,
there is a natural probability-preserving transformation T∗ : X∗ → X∗ associated
with T . This map is called the Poisson-suspension of T . Ergodic properties of
Poisson suspensions and the connections with ergodic properties of the underlaying
map have been studied in [7]. In this paper we study ergodicity of the map T ×T∗,
which acts on the product space (X ×X∗,B ×B, µ∗ × µ). We refer to this system
as the Poisson-product associated with (X,B, µ, T ).

Here we prove the following basic result:

Theorem 1.1. Let (X,B, µ, T ) be a conservative, measure preserving transforma-
tion with µ(X) = ∞. Then the Poisson-product T × T∗ is ergodic if and only if T
is ergodic.

In section 2 we briefly provide the terminology and background result. Section
3 contains the proof of theorem 1.1 stated above. the first return of leftmost trans-
formation is studied in section 4.Section 5 is a discussion of Poisson products of
measure preserving group actions, particularly locally compact abelian groups. The
(non) existence of an invariant Poisson thinning is discussed is section 6.

Acknowledgments : The author thanks Emmanual Roy for inspiring conversations
and in particular for suggesting the first return of left most transformation and
raising the question about its ergodicity. This work is indebted to Jon Aaronson
for numerous contributions, in particular for recalling the paper [2], which contains
key points of the main result. Thank Omer Angel and Ori Gurel-Gurevich for
discussions about invariant Poisson-thinning.

2. Preliminaries

In this section we briefly recall some basic definitions and results from infinite
ergodic theory. Throughout this, we assume that (X,B, µ) is a standard σ-finite
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measure space. We assume T : X → X is a measure preserving transformation of
this space, and denote the measurable sets of positive measure by

B+ := {B ∈ B : µ(B) > 0}.

2.1. Conservative transformations, and induced transformations. A set
W ∈ B is called a wondering set if µ(T−nW ∩W ) = 0 for all n > 0. The transfor-
mation T is called conservative if there are no wondering sets in B+. Whenever T
preserves a finite measure, it is conservative.

For a conservative T and A ∈ B+, the first return time function, defined for
x ∈ A by ϕA(x) = min{n ≥ 1 : T n(x) ∈ A} is finite µ-a.e.

The induced transformation on A is defined by TA(x) = TϕA(x)(x). If T is
conservative and ergodic and A ∈ B+, TA : A → A is a conservative, ergodic trans-
formation of (A,B ∩ A, µ |A). For proofs and a general discussion of conservative
transformations, see propositions 1.5.2 and 1.5.3 and the corresponding section of
[1].

2.2. Cartesian product transformations. Suppose T is conservative, and S :
Y → Y is a probability preserving transformation of (Y, C, ν) with ν(Y ) = 1. It
follows (as in proposition 1.2.4 in [1]) that the cartesian product transformation
T × S : X × Y → X × Y is a conservative, measure-preserving transforation of the
cartesian product measure-space (X × Y,B ⊗ C, µ× ν).

2.3. L∞-Eigenvalues of measure preserving transformations. A function
f ∈ L∞(X,B, µ) is an L∞-eigenfunction of T if f 6= 0 and Tf = λf for some
λ ∈ C. The corresponding λ is called an L∞-eigenvalue of T . This is an eigenvalue
which corresponds to the associated operator on L∞(µ) obtained from T .

We briefly recall some well known facts about the L∞-eigenvalues of a non-
singular transformations: If T is ergodic and f is an L∞-eigenfunction, it follows
that |f | is constant almost-everywhere. The L∞-eigenvalues of T are

e(T ) := {λ ∈ C : ∃ f ∈ L∞(X,B, µ) f 6= 0 and Tf = λf}.

An eigenvalue λ with λ 6= 1 is impossible for T conservative. To see this, note
that under the contrary assumption The set

{x ∈ X : |f(x)| ∈ (|λ|k, |λ|k+1]}

would be a non trivial wondering set for some k ∈ Z if |λ| > 1. Thus, for T

conservative, e(T ) ⊂ S1.
e(T ) is a group with respect to complex multiplication, and carries a natural

polish topology, with respect to which the natural embedding in

S1 = {x ∈ C : |x| = 1}

is continuous.
We now recall some known properties about e(T ): In general, e(T ) can be un-

countable, and can be of arbitrary Hausdorff dimension α ∈ (0, 1). However, e(T )
is a weak Dirichlet set : lim infn→∞

∫
|1 − χn(s)|dp(s) = 0 whenever p is a prob-

ability measure on S1 with p(e(T )) = 1. As a consequence we know e(T ) is a set
has measure zero with respect to Haar measure on S1. For proofs and details, see
section 2.6 in [1] and references within.
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2.4. The L2-spectrum. A measure preserving transformation T gives an associ-
ated unitary operator UT on L2(µ). With a unitary operator, there is an associated
spectral measure on S1, defined up to equivalence.

The spectral type of a unitary operator U on a Hilbert space H , denoted σU , is
a positive measure on S1 satisfying:

(a)

〈Unf, g〉 =

∫

S1

χn(s)h(f, g)(s)dσU (s),

where h : H ×H → L1(σU ) is a sesquilinear map.
(b) σU is minimal with that property, in the sense that it satisfies σU << σ for

any measure σ on e(T ) satisfying (a).

The spectral type σU is defined up to measure class. Existence of σU is a formulation
the scalar spectral theorem.

For a measure-preserving transformation T , The spectral type of T σT is the
spectral type of the associated unitary operator UT on L2(µ). For a probability
preserving transformation S , the restricted spectral type is the spectral type the
unitary operator US restricted to L2-functions with integral zero.

2.5. The Poisson suspension. For a σ-finite measure space (X,B, µ), The asso-
ciated Poisson measure µ∗ ∈ P(X∗,B∗) is a probability measure on the standard
measurable space (X∗,B∗) of countable subset, which is uniquely defined by re-
quiring that |ω ∩Ai| are jointly independent random variables for pairwise disjoint
A1, A2, . . . , An ∈ B, and that for A ∈ B, the cardinally of the random set |ω ∩A| is
distributed Poisson with expectancy µ(A):

(1) µ∗ (|ω ∩ A| = k) = e−µ(A)µ(A)
k

k!
.

The Poisson suspension of a measure preserving map T : X → X , denoted
T∗ : X∗ → X∗ defined by T∗(γ) = {T (x) : x ∈ ω}. T∗ is a probability-preserving
transformation.

The well known Fock representation of L2(µ∗) gives an isomorphism

L2(µ∗) ≡
∞⊕

n=0

L2(µ)⊗n.

This isomorphism directly gives the following (as in [7]):

Proposition 2.1. If σ is the spectral-type of T . The restricted spectral type of T∗

is given by:

σT∗
=

∑

n≥1

1

n!
σ⊗n.

Recall that a probability-preserving transformation is ergodic iff its restricted
spectral type has no atom at λ = 1, and is weak mixing iff its restricted spectral
type has no atoms in S1. Thus, as in [7], it follows that T∗ is ergodic iff T∗ is
weakly-mixing iff there are no T -invariant sets of finite measure in B+.
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3. Ergodicity of Poisson product for conservative transformations

We now describe our proof of theorem 1.1. The argument we use is an adaptation
of [2].

To proof our result, we invoke the following condition for ergodicity of cartesian
product, due to M. Keane:

Theorem. (The Ergodic Multiplier Theorem)
Let S be a probability preserving transformation and T a conservative, ergodic,

non-singular transformation. S × T is ergodic iff σS(e(T )) = 0, where:

• σS is the restricted spectral type of S,
• e(T ) is the group of L∞-eigenvalues of T .

A proof of this result, along with related discussions can be found in section 2.7
of [1].

By proposition 2.1, the restricted spectral-type of the Poisson suspension T∗, is
a sum of the convolution powers of the spectral type of T .

We make use of the following basic lemma about convolution of measures and
measure classes. A short proof is provided here for the sake of completeness:

Lemma 3.1. Let G be a Polish group, and let µ1, µ2 ∈ P(G) be σ-finite measures
on G which are in the same equivalence class (have the same null-sets). For any
probability measure ν on G, the measures µ1∗ν and µ2∗ν are in the same equivalence
class of measures.

Proof. Let ǫ > 0 and choose M > 1. There is some δ > 0 such that µ1(B) ≥ ǫ
M

implies µ2(B) ≥ δ. Choose A ∈ B(G) with (µ1 ∗ ν)(A) = ǫ > 0. Thus ,

ν
(
({g ∈ G : µ1(Ag) ≥

ǫ

M
}
)
≥ ǫ−

ǫ

M
.

Thus,

ν (({g ∈ G : µ2(Ag) ≥ δ}) ≥ ǫ−
ǫ

M
.

It follows that µ2 ∗ ν(A) ≥ δǫ(1 − 1
M
). We have proved that µ1 is absolutely

continuous with respect to µ2. Replacing the roles of µ1 and µ2, we conclude that
µ1 and µ2 are in the same equivalence class.

�

From this we deduce the following lemma:

Lemma 3.2. Let T be a conservative, measure-preserving transformation. Let
σT∗

be a measure from the maximal the spectral type of T∗. The group e(T ) acts
non-singularly on σT∗

.

Proof. The claim of this lemma is that for any t ∈ e(T ), ∃gt ∈ L1(σT∗
) such that

for all f ∈ L∞(σT∗
): ∫

f(s)dσT∗
(s) =

∫
f(s+ t)gt(s)dσT∗

(s).

In other words,
∀t ∈ e(T ), σT∗

∼ RtσT∗
,

where Rt denotes convolution with dirac measure at t.
Since the restricted spectral-type σ∗

T of the Poisson suspension is a sum of con-
volution powers of σT , it is sufficient to prove that for all n ≥ 1,
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(2) ∀t ∈ e(T ), σ⊗n
T ∼ Rtσ

⊗n
T .

For n = 1, this follows from the relation

µg ∗ δλ = µg·fλ ,

where fλ is an L∞-eigenfunction with eigenvalue λ (see [2]).
As equation (2) holds for n = 1, it follows for n > 1 by lemma 3.1, with t ∈ e(T ),

σT and σT ∗ δt taking the roles of µ1 and µ2 and σ
⊗(n−1)
T as ν.

�

Completing the proof of theorem 1.1:

By the ergodic multiplier theorem, proving ergodicity of the Poisson-product
amounts to proving σT∗

(e(T )) = 0. Since σT∗
=

∑
n≥1

1
n!σ

⊗n
T , it is sufficient to

prove that σ⊗n
T (e(T )) = 0 for all n ≥ 1.

Suppose the contrary: σ⊗n
T (e(T )) > 0 for some n. From lemma 3.2, it follow

that σ⊗n
T |e(T ) is a quasi-invariant measure on e(T ). Thus, e(T ) can be furnished

with a locally-compact second-countable topology, respecting the Borel structure
inherited from S1, with Haar measure which is equivalent to σ⊗n

T |e(T ).
With the above topology, we have that e(T ) is a locally compact group, continu-

ously embedded in S1, where the topological embedding is also a group embedding.
In this situation, it follows as in [2] that e(T ) is either discrete or e(T ) = S1.

Suppose e(T ) is discrete. It follows that σ⊗n
T has atoms. As any convolution

power of an atom-free measure is itself atom-free, this would imply σT has atoms,
which means T has L2(µ) eigenfunctions. But this is impossible as we assumed
T is ergodic and infinite-measure-preserving. The alternative is that e(T ) = S1.
This is impossible by the remark that e(T ) must be a null set with respect to Haar
measure on S1.

This completes the proof of theorem 1.1.

4. The First Return of Leftmost transformation

In this section we specialize to the case where X = R+ is the set of positive
real numbers, B is the Borel σ-algebra of X , and µ is Lebesgue measure on X .
T : X → X is a conservative, ergodic, Lebesgue-measure-preserving map of the
positive real numbers.

Example 4.1. The unsigned version of Bool’s transformation T (x) = |x − 1
x
| is

a classical example of an ergodic, Lebesgue-measure-preserving map of the positive
real numbers. See [3] for a proof of ergodicity and discussions of this transformation.

We define the following function:

(3) t1 : X∗ → X by t1(ω) = inf ω.

This map is defined µ∗-almost everywhere: µ∗-almost surely, t1(ω) is the leftmost
point of ω, as ω is a discrete countable subset of R .

Define the first return of leftmost time κT : (R+)
∗ → N ∪ {+∞} by:

(4) κ(ω) = inf{k ≥ 1 : t1(T
k
∗ (ω)) = T k(t1(ω))}.

µ∗-Almost surely, κT (ω) is the smallest positive number of iterations of T∗ which
must be applied to ω in order for the left-most point to return to the leftmost loca-
tion. A priory, κT is could be infinite. Nevertheless, we will soon show that when
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T is conservative and measure preserving, κT is finite µ∗-almost surely. Finally, the
first return of leftmost transformation associated with T , T κ

∗ : ω → ω, is defined by

T κ
∗ (ω) := T

κ(ω)
∗ (ω). It is the map of X∗ obtained by reapplying T∗ till once again

there are no points to the left of the point which was originally leftmost.
Let

(5) X0 = {(x, ω) ∈ X ×X∗ : ω ∩ [0, x] = ∅}

Proposition 4.1. Let T : R+ → R+ be conservative and Lebesgue-measure-
preserving. Then the first return of leftmost transformation associated with T is
isomorphic to the induced map of the Poisson product on the set X0 defined by
equation (5):

(X∗,B∗, µ∗, T
κ
∗ )

∼= (X0,B0, µ0, (T × T∗)X0
)

Where µ0 = (µ× µ∗) |X0
is the restriction of the measure product µ× µ∗ to the

set X0, and B0 = (B ⊗ B∗) ∩ X0 is the restriction of the σ-algebra on the product
space to subset of X0.

In particular, it follows that µ0(X0) = 1, so (X0,B0, µ0) is a probability space.

Proof. Consider the map

Φ : X0 → X∗ given by Φ(x, ω) = {x} ∪ ω.

For a non-empty, discrete ω ∈ X∗ we have:

Φ−1(ω) = (t1(ω), ω \ t1(ω)).

Thus Φ is invertible on a set of full µ∗-measure in X∗.
As T is conservative and T∗ is a probability preserving transformation, the Pois-

son product T×T∗ is also conservative. We will see in a moment that µ×µ∗(X0) > 0.
Therefore, the return time ϕX0

is finite almost everywhere on X0.
Since κ ◦ Φ = Φ ◦ ϕX0

, it follows that κ is finite µ∗-a.e.
We also have

Φ(T nx, T n
∗ ω) = T n

∗ (Φ(x, ω))

whenever (x, ω) and (T nx, T n
∗ ω) are in X0. Thus,

Φ ◦ (T × T∗)X0
= T κ

∗ ◦ Φ.

It remains to check that Φ−1µ∗ = µ0. it is sufficient to verify that µ∗(A) =
µ0(Φ

−1(A)) for sets A ∈ B∗ of the form

A =

N⋂

k=0

N (ak, ak+1, nk),

Where:
where 0 = a0 < a1 < a2 < . . . < aN , nk ≥ 0 for k = 1, . . .N and

N (x, y, n) := {ω ∈ X∗ : |ω ∩ [x, y)| = n},

with 0 < x < y positive real numbers , and n ≥ 0 an integer.
Finite intersections of such sets are a basis for the σ-algebra B∗.
Verifying this is a direct calculation involving elementary integration, which we

include here for the sake of completeness. By definition of µ∗:

µ∗(A) =

N∏

k=0

µ([ak, ak+1))
nk

nk!
exp (−µ([ak, ak+1)))
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which simplifies to:

(6) µ∗(A) = exp(−aN)

N∏

k=0

(ak+1 − ak)
nk

nk!

Assuming the nk’s are not all zero,let k0 the smallest k such that nk ≥ 1, and
let I0 = [ak0

, ak0+1). We have:

Φ−1(A) =
⋂

k 6=k0

(X ×N (ak, ak+1, nk))∩
⋃

x∈I0

{x}×(N (ak0
, x, 0) ∩ N (x, ak0+1, nk0

− 1)) .

Thus,

µ0(Φ
−1(A)) = T0

∫

I0

exp(−(x− ak0
)) exp(−(ak0

− x))
(ak0+1 − x)nk0

−1

(nk0
− 1)!

dx

where

T0 =
∏

k 6=k0

(ak+1 − ak)
nk

nk!
exp (ak+1 − ak)

By integrating this rational function of a single variable, it is easily verified that
the last expression is equal to the expression on right hand side of the formula (6).

The equality of the measures for the case nk = 0 for all k = 1, . . .N is verified
by a very similar simple computation.

In particular, it follows that µ0(X0) = 1.
�

It would be interesting to establish other ergodic properties of T κ. For example,
what conditions on T are required for T κ

∗ to be weakly mixing?

5. Poisson-products for measure-preserving group actions

We now consider the following setup: Let G be a locally compact, non-compact,
second countable abelian group acting on a σ-finite measure space (X,B, µ). A
measure-preserving G-action, or a measure preserving G-flow is

T : G×X → X,

Such that g ∈ G 7→ T (g, ·) ∈ Aut(X,B, µ) is a group representation of G in the
group of measure preserving automorphisms of (X,B, µ).

We say a G-action is ergodic if whenever A ∈ B satisfies T (g,A) = A for all
g ∈ G it implies µ(A) = 0 or µ(X \A) = 0 .

The L∞-spectra Sp(T ) of the G-action T is the set of elements χ ∈ Ĝ, the
character group G, such that f(Tgx) = χ(g)f(x) for some non zero f ∈ L∞(X,µ).
In case G = Z, the spectra is simply the group L∞-eigenvalues. As in the case

G = Z, Sp(Tg) is a weak-Dirichlet set in Ĝ. For more details, see K. Schmidt’s
paper [8] which addresses L∞-spectra of non-singular abelian group actions.

The L2-spectral type of T is an equivalence class of Borel measures σT on the

character group Ĝ. For any non-zero f ∈ L2(µ) σf << σT , where the measure σf

is given by:

σ̂f (g) =

∫
f(Tg(x))f(x)dµ(x).

7



The spectral type of σT is the minimal measure class with that property. Analo-
gously, the restricted spectral type of a probability-preserving G-action is defined.

With these definitions, the ergodic multiplier theorem generalizes to G-actions
of locally compact abelian group: The product of an ergodic measure preserving
G-action T and a probability preserving G-action S is ergodic iff Sp(T ) is null with
respect to the restricted spectral type of σT .

When G 6= Z, for example G = Z2, there are obstructions to ergodicity of T ×T∗

under the assumption that T is an ergodic, infinite measure preserving Z2-action.
To see this we consider the following simple example:
Let a, b ∈ R be two real numbers, linearly independent over the rational numbers

Q. Define T : Z2 × R → R by

T ((m,n), x) = x+ am+ bn.

Evidently, T an ergodic Z2 action on R, preserving Lebesgue measure. Note that
for any τ ∈ R, the function fτ ∈ L∞(R) defined by

fτ (x) = exp(iτx),

is satisfies

fτ (T ((m,n), x)) = exp(iτ(x+ am+ bn)) = χta,tb(m,n) exp(iτx),

where χ(τa, τb) = exp(iτam+ τbn). The map t → χ(ta, tb) is a continuous embed-

ding of R in Ẑ2.
It is elementary to check that T × T∗ is not ergodic: For example,

{(x, ω) ∈ R× R∗ : [x+ 1, x− 1] ∩ ω = ∅}

is a non-trivial T × T∗-invariant set.
Say W ∈ B is a wandering set with resect to the action T of a locally-compact

group G if µ(T (g,W ) ∩ W ) = 0 for all g in the complement of some compact
K ⊂ G. Call a G action conservative if there are no-non trivial wandering sets. By
this definition, the Z2 action T in the example above is conservative.

6. Existence of T -Invariant Poisson thinning

A (deterministic) Poisson thinning is a B∗-measurable map Ψ : X∗ → X∗, such
that µ∗-almost surely Ψ(ω) ⊂ ω and Ψµ∗ = (θµ)∗ for some θ ∈ (0, 1). A Poisson
thinning Ψ is called T -invariant if ΨT∗ = T∗Ψ.

Proposition 6.1. If T × T∗ is ergodic, there does not exist a T -invariant Poisson
thinning.

Proof. For f ∈ L1(µ), define f∗ ∈ L1(µ∗) by f∗(ω) =
∫
f(x)dω(x) where we

identify ω ∈ X∗ with a purely atomic measure assigning mass 1 to each x ∈ ω.
From the definitions of f∗ and µ∗, it follows that

∫
f(x)dµ(x) =

∫
f∗(ω)dµ∗(ω).

Suppose by contradiction that Ψ is a Poisson thinning with parameter θ. Define
Ψ̂ : X ×X∗ → {0, 1} by

Ψ̂(x, ω) =

{
1 x ∈ Ψ(ω ∪ {x})
0 otherwise

8



From T∗-invariance of Ψ it follows that Ψ̂(Tx, T∗ω) = Ψ̂(x, ω). Since we assume

T×T∗ is ergodic, Ψ̂ is constant µ×µ∗ almost everywhere, so we can write Ψ̂(x, ω) =
α.

For ω ∈ X∗ and f ∈ L1(µ), we have:

f∗(Ψ(ω)) =

∫
f(x)dΨ(ω) =

∫
f(x)Ψ̂(ω, x)dω = αf∗(ω).

In particular, ∫
f∗(Ψ(ω))dµ∗(ω) = α

∫
f∗dµ∗.

On the other hand, since Ψ is a Poisson-thinning,∫
f∗(Ψ(ω))dµ∗(ω) = θ

∫
f∗dµ∗

It thus follows that α = θ.
Since Ψ̂ takes only values in {0, 1}, we must have θ = 0 or θ = 1, which is

impossible.
�

Combining the above result with theorem 1.1, we have the following:

Corollary 6.2. If T is a conservative ergodic infinite-measure preserving transfor-
mation, there does not exit a T -invariant Poisson thinning.

The proof of proposition 6.1 generalizes directly, and gives the following:

Proposition 6.3. Suppose a group G acts on (X,B, µ) by measure preserving
transformations T : G × X → X. Further, suppose the Poisson-product action of
G on (X ×X∗,B ⊗ B∗, µ× µ∗) is ergodic.

Then there does not exist a Poisson-Thinning which is jointly T (g, ·)-invariant
for all g ∈ G.

However, as discussed in section 5, ergodicity of the Poisson-product of a measure-
preserving group action is not guaranteed. Indeed, For the R-action on R by trans-
lations there exists a T -invariant Poisson-thinning. Such translation invariant thin-
ning was constructed in [4]. This result has been extended by Holroyd Lyons and
Soo to construct a translation-invariant Rd Poisson-splitting in [6]. As far as re-
sults about non-existence of a Poisson-thinning, Evans has shown in [5] that with
respect to any non-compact group of linear transformations there is no invariant
Poisson-thinning on Rd.
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