
ar
X

iv
:1

10
7.

05
37

v1
  [

m
at

h.
C

O
] 

 4
 J

ul
 2

01
1

CO-QUASI-INVARIANT SPACES

FOR FINITE

COMPLEX REFLECTION GROUPS

J.-C. AVAL AND F. BERGERON

Abstract. We study, in a global uniform manner, the quotient of the ring of poly-
nomials in ℓ sets of n variables, by the ideal generated by diagonal quasi-invariant
polynomials for general permutation groups W = G(r, n). We show that, for each such
group W , there is an explicit universal symmetric function that gives the Nℓ-graded
Hilbert series for these spaces. This function is universal in that its dependance on ℓ

only involves the number of variables it is calculated with. We also discuss the com-
binatorial implications of the observed fact that it affords an expansion as a positive
coefficient polynomial in the complete homogeneous symmetric functions.
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1. Introduction

For rank n classical families of finite complex reflection groups W , we contribute to the
description of the diagonal co-quasi-invariant space QW for W , in several (say ℓ) sets of
n variables. Here, the use of the term diagonal refers to the fact that W is considered as

a diagonal subgroup of W ℓ, acting on the ℓth-tensor power R
(ℓ)
n of the symmetric algebra

of the defining representation of W . Instead of the usual one, the action considered
here is the so-called Hivert-action. Invariant polynomials under this action are known as

quasi-invariants1 (or quasi-symmetric for the symmetric group). Our space Q
(ℓ)
W is simply

the quotient of R
(ℓ)
n by the ideal generated by constant-term-free quasi-invariants for W .

1Under the same name, an entirely different notion has been considered in [7, 8]. However, the termi-
nology of quasi-symmetric polynomials being well ingrained, it seems awkward to call their generalization
to other reflection groups by any other name than quasi-invariant.
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2 J.-C. AVAL AND F. BERGERON

We show that the associated multigraded Hilbert series, denoted Q
(ℓ)
W (q1, . . . , qℓ) (which

is symmetric in the qi), can be described in an uniform manner as a positive coefficient
linear combination of Schur polynomials

Q
(ℓ)
W (q1, . . . , qℓ) =

∑

µ

cµ sµ(q1, . . . , qℓ), (1.1)

with the cµ independent of ℓ, and µ running through a finite set of integer partitions that
depend only on the group W . This is a typical phenomena in many similar situations
such as considered in [6]. It has the striking feature that we can give explicit formulas

for the dimension of Q
(ℓ)
W for all ℓ. To see why this is so striking, it may be worthwhile

to recall that, for the entirely analogous context of diagonal co-invariant spaces (i.e. the

one corresponding to the usual diagonal action of W on R
(ℓ)
n ), a large body of work has

only recently settled the special case ℓ = 2, but that we know almost nothing yet for
ℓ ≥ 3.

2. Our context

A down to earth description of our context may be given as follows. Consider a ℓ× n
matrix of variables X := (xij). For any fixed i (a row of X), we say that the variables
xi1, xi2, . . . , xin form the ith set of variables. In some instances it is worth simplifying
this notation, and write

X =









x1 x2 · · · xn

y1 y2 · · · yn
...

...
. . .

...
z1 z2 · · · zn









.

Thus, x = x1, . . . , xn stands for the first set of variables, y = y1, . . . , yn for the second
set, . . ., and z = z1, . . . , zn for the last set.

With the aim of certain describing polynomials in the variables X , we choose to denote
by Xj the j

th column of X , for 1 ≤ j ≤ n. We assume the same convention for any ℓ×n
matrix of non-negative integers A. Moreover, if the Ai are the columns of A, we write

A = A1A2 · · ·An.

We then consider the monomials

X
Aj

j :=

ℓ
∏

i=1

x
aij
ij , as well as XA :=

n
∏

j=1

X
Aj

j .

For the monomialsXA, who clearly form a basis of the space of polynomialsR
(ℓ)
n := Q[X ],

the corresponding degree vector:

deg(XA) :=
∑

j

Aj ,

lies in Nℓ.



CO-QUASI-INVARIANT SPACES 3

Given r, n ∈ N+, recall that the generalized symmetric group W = G(r, n) may be
described as the group of n× n matrices having exactly one non zero coefficient in each
row and each column, which is an rth root of unity. One usually considers W as acting

on polynomials in R
(ℓ)
n = Q[X ] by replacement of the variables by the matrix X w. With

this point of view, we may consider that W is generated by the transpositions sj , which
exchange columns j and j + 1 in X , together with s0 which multiplies the first column
of X by a (chosen) primitive rth root of unity. These generators sj satisfy the usual
Coxeter relations for j ≥ 1:

s2j = Id, (sj sj+1)
3 = Id, and

sj sk = sk sj , when |j − k| > 1.

For the special pseudo-reflection s0, we have sr0 = Id and (s0 s1)
2 r = Id. This is the

diagonal action which is considered for the “usual” definition of the diagonal co-invariant
space for W (see [5]). Rather than this space, we consider a variant below.

Our point of departure from the “classical” situation is to consider rather the diagonal
Hivert-action of W on polynomials. As introduced in [9], this action is described in
terms of its effect on monomials. In a first step, the effect of simple transpositions sj is
described, and then one checks the compatibility with the above Coxeter relations. Only
the sj , for j ≥ 1, are affected. One sets

sj · (· · ·X
Aj

j X
Aj+1

j+1 · · · ) :=

{

(· · ·X
Aj+1

j+1 X
Aj

j · · · ) if Aj = 0 or Aj+1 = 0,

(· · ·X
Aj

j X
Aj+1

j+1 · · · ) otherwise.
(2.1)

In other words, sj exchanges variables x∗j and x∗j+1, if and only if there is no “collision”
of exponents. For example, we have

s1 · x
2
1 y

3
2 y

4
3 = x2

1 y
3
2 y

4
3, whereas s1 · x

2
1 y

3
3 y

4
4 = x2

2 y
3
3 y

4
3.

Checking that this is compatible with the Coxeter relations allows one to extend this
action to the whole group W .

A polynomial is said to be diagonally quasi-invariant for W if

w · f(X) = f(X), for all w ∈ W.

For example, taking W = G(1, 3) (the symmetric group S3) and ℓ = 1, we have the
quasi-invariant (or quasi-symmetric) polynomials:

x1 + x2 + x3, x1
2 + x2

2 + x3
2, x1

3 + x2
3 + x3

3,
x1x2 + x1x3 + x2x3, x1x2

2 + x1x3
2 + x2x3

2, x1
2x2 + x1

2x3 + x2
2x3.

For ℓ = 2, another S3-quasi-invariant is the polynomial

y1x2y2 + y1x3y3 + y2x3y3.

The vector space of diagonally quasi-invariant for W = G(r, n) is spanned by the mono-
mial basis {MA}A∈Br,n

, which are indexed by r-composition-matrices. These are the
positive integer entries ℓ × k matrices, 1 ≤ k ≤ n, having all column sums congruent
to 0 mod r, with no column sum actually vanishing. We say that we have an r-matrix
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if this last condition is dropped. The monomial quasi-invariant associated to such an
r-composition-matrix is simply defined as

MA :=
∑

Y⊆X

Y A,

with Y running over all matrices obtained by selecting (in the order that they appear)
k columns of X . We sometimes write M [A] for MA(X). It is easy to check directly that
this is indeed a basis. For example, we have

M
[

1 3
0 1
2 0

]

=
∑

a<b

xa z
2
a x

3
b yb.

We simply denote by JW (or often simply by J) the ideal generated by constant-term-free
diagonally W -quasi-invariant polynomials.

We may now define our main object of study, which is the co-quasi-invariant space:

Q
(ℓ)
W := R(ℓ)

n /JW . (2.2)

To better analyze the structure of this space, we need to consider the action of the general

linear group GLℓ on R
(ℓ)
n , defined by

(f · τ)(X) := f(τ X), for τ ∈ GLℓ. (2.3)

Observing that the ideal J = JW is invariant under this action, we conclude that Q
(ℓ)
W

inherits a GLℓ-module structure. Since the ideal J is homogeneous for the vector-degree,

Q
(ℓ)
W may be graded by this same vector-degree, i.e.:

Q
(ℓ)
W =

⊕

d∈Nℓ

QW,d,

with QW,d denoting the homogeneous component of degree d of Q
(ℓ)
W . It follows that the

associated Hilbert series, Q
(ℓ)
W (q), coincides with the character of Q

(ℓ)
W as a GLℓ-module.

To help the reader parse this statement, let us assume that B is a basis consisting of

homogeneous elements of Q
(ℓ)
W . This means that, for f(X) in B, we have

f(qX) = qd f(X), (2.4)

where q stands for the diagonal matrix

q =





q1
. . .

qℓ



 ,

and qd := qd11 · · · qdℓℓ . Thus, an homogeneous f(X) is an eigenvector of the linear trans-
form q∗ sending f(x) to f(qX). Recall here that, by definition, the trace of q∗, as a

function of the qi, is the character of Q
(ℓ)
W . Summing up, the Hilbert series of the space,

defined by the expression

Q
(ℓ)
W (q) :=

∑

d∈Nℓ

qd dim(QW,d), (2.5)
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coincides with the (also usual) definition of the character of the corresponding (polyno-
mial) representation of GLℓ.

The point of this last observation is thatQ
(ℓ)
W (q) is Schur-positive, since Schur functions

sµ(q) appear as characters of irreducible representations of GLℓ. Indeed, the decomposi-

tion into irreducibles of the polynomial GLℓ-representation Q
(ℓ)
W (q) gives a formula of the

form (1.1), with µ running through all partitions for which the homogeneous component
QW,µ is non-vanishing. For example, for the symmetric group, one finds the following

expressions for Qn := Q
(ℓ)
Sn
(q)

Q1 = 1,

Q2 = 1 + s1(q),

Q3 = 1 + 2 s1(q) + 2 s2(q),

Q4 = 1 + 3 s1(q) + 5 s2(q) + 2 s11(q) + 5 s3(q),

Q5 = 1 + 4 s1(q) + 9 s2(q) + 5 s11(q) + 14 s3(q)

+10 s21(q) + 14 s4(q).

These examples exhibit the announced striking “independence” with respect to ℓ.

Before going on with our discussion, let us introduce another GLℓ-module which is

isomorphic (both as a GLℓ-module and a W -module) to the space Q
(ℓ)
W . For each of

the variables xij ∈ X , consider the partial derivation denoted by ∂xij
, or ∂ij for short.

For a polynomial f(X), we then denote by f(∂X) the differential operator obtained by

replacing the variables in X by the corresponding derivation in ∂X . The space S
(ℓ)
W

of diagonally super-harmonic polynomials with respect to W -quasi-invariants is simply
defined to be the set of polynomial solutions g(X) of the system of partial differential
equations

f(∂X)(g(X)) = 0, for f(X) ∈ J . (2.6)

Evidently, we need only consider a generating set of J for these equations to characterize

all solutions. The elementary proof (see [5]) thatQ
(ℓ)
W and S

(ℓ)
W are isomorphic relies on the

fact that there is a scalar product for which S
(ℓ)
W appears as the orthogonal complement

of JW .

Following our established conventions, S
(ℓ)
W (q) stands for the Hilbert series of the

graded space S
(ℓ)
W . From the above discussion, this is equal to the Hilbert series Q

(ℓ)
W (q).

The advantage of working with S
(ℓ)
W is that we may present a basis in terms of explicit

polynomials (which give canonical representatives for equivalence classes in Q
(ℓ)
W ).

To get a better feeling of how things work out, let us first consider the case W = S3

and ℓ = 2. We may then check that we have the following bases Bd for the various
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homogeneous components H
(2)
3,d of the space H

(2)
3 = S

(2)
W .

B
(2)
00 = {1},

B
(2)
10 = {−x1 + x2,−x1 + x3},

B
(2)
01 = {−y1 + y2,−y1 + y3},

B
(2)
20 = {− (x1 − x2) (x1 − 2 x3 + x2) ,

− (x1 − x3) (x1 − 2 x2 + x3)},

B
(2)
11 = {x2y2 − x1y2 − x3y3 + x1y3 − y1x2 + y1x3,

x2y3 − x3y3 + x1y1 − y1x2 − x1y2 + y2x3},

B
(2)
02 = {− (y1 − y2) (y1 − 2 y3 + y2) ,

− (y1 − y3) (y1 − 2 y2 + y3)}.

Observe that we can calculate B
(2)
0k from B

(2)
k0 by exchanging all the variables xi by the

corresponding yi.

By contrast, for ℓ = 3, the space S
(3)
3 = S

(3)
W affords the following bases. For all d of

the form jk0, we may choose B
(3)
jk0 := B

(2)
jk . To get the bases for the other non-vanishing

components of S
(3)
W , we set B

(3)
j0k equal to the set of polynomials obtained by exchanging

the yi by the corresponding zi for all elements of B
(3)
jk0. In turn, we get B

(3)
0jk from B

(3)
j0k,

now exchanging the x-variables for the y-variables. It can then be checked that there are

no other non-vanishing component in H
(3)
3 . One may also use Theorem 3.1 to see this.

Our point here is that we get the two Hilbert series

H
(2)
3 (q1, q2) = 1 + 2 (q1 + q2) + 2 (q21 + q22 + q1q2)

H
(3)
3 (q1, q2, q3) = 1 + 2 (q1 + q2 + q3) + 2 (q21 + q22 + q23 + q1q2 + q1q3 + q2q3)

both taking the form H3(q) = 1 + 2 s1(q) + 2 s2(q), as announced.

3. General results

Theorem 3.1. For any given complex reflection group W = G(r, n), the Hilbert series

Q
(ℓ)
W (q) affords an expansion in terms of Schur functions, with positive integer coefficients

that are independent of ℓ, the sum being over the set of partitions of integers d:

0 ≤ d ≤ 2 r n− r − n, (3.1)

and having at most n parts.

To better underline one of the most important feature of this statement, we may
consider that the symmetric function involved in these expressions are written in terms
of infinitely many variables

q = q1, q2, q3, . . .

This makes formula (1.1) entirely independent of ℓ. To get the Hilbert series in the special
case of ℓ sets of n variables, we simply specialize this “universal” formula by setting all
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variables qk, for k > ℓ, equal to zero. This process is made even more transparent by
“removing the variables”, writing sµ (or hµ) instead of sµ(q) (or hµ(q))

2 in (1.1). In
other words, we consider f(q1, . . . , qℓ) as the evaluation, of a (variable free) symmetric

functions f , in the set of ℓ variables q1, . . . , qℓ. We may also drop the ℓ in Q
(ℓ)
W .

The following formula, for the case ℓ = 1, is shown to hold in [1]. Namely, for the
group W = G(r, n), we have

QW (q, 0, 0, . . .) =

(

1− qr

1− q

)n

·
n−1
∑

k=0

n− k

n+ k

(

n + k

k

)

qr k. (3.2)

In particular, for n = 2, we get

QW (q, 0, 0, . . .) = (1 + q + . . .+ qr−1)2 (1 + qr).

Since hk(q, 0, 0, . . .) = qk, this is readily seen to be the specialization at

q = q, 0, 0, . . .

of the following “universal” formula (see [6]), for the groups W = G(r, 2):
(

r−1
∑

k=0

hk

)2

+
r−1
∑

k=0

(k + 1) hr+k +
r−1
∑

k=1

(r − k) h2 r−1+k. (3.3)

As such, it holds for the diagonal co-invariant space (under the classical action) which,
in this very specific case, coincides with the space of diagonal co-quasi-invariant space.

A nice feature of the expression given in (3.3) is its h-positivity:
∑

µ

aµ hµ, with aµ ≥ 0.

This appears to hold for many other reflection groups, in particular when W is a sym-
metric group, leading us to state the following.

Conjecture 3.2. For the symmetric group, the Hilbert series Qn(q) is h-positive.

An immediate consequence of this conjecture is that Qn(q) has to have a very specific
form, since

Qn(q, 0, 0, . . .) =
∑

µ

aµ hµ(q, 0, 0, . . .)

=
∑

µ

aµ q
|µ|

=

n−1
∑

k=0

n− k

n+ k

(

n+ k

k

)

qk, (3.4)

=
∑

β

qχ(β), (3.5)

2As in Macdonald [10], we write hk for the complete homogeneous symmetric functions.
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with β running over the set of Dyck paths3 of height n, and χ(β) taking as value the
x-coordinate of the first point of the path at height n. The passage from (3.4) to (3.5)
is classical. It follows that

Proposition 3.3. Conjecture 3.2 implies that Qn(q) affords an expression of the form

Qn(q) =
∑

β

hµ(β)(q), (3.6)

with β running over the set of all Dyck paths of height n, and µ(β) some partition of the
integer χ(β).

As of this writing, we do not have a rule for producing the partition µ(β) associated
to β, which would have to be compatible with the actual values given in (4.4).

4. Low degree components

We discuss now how to get explicit polynomial formulas in the variable n for the coef-
ficient of hµ, when µ is a partition of a small enough integer. We restrict the discussion
to the case W = Sn, but much of it holds in generality. We exploit here the fact that

low degree homogeneous components of the spaces R
(ℓ)
n and Q

(ℓ)
n ⊗ Jn are isomorphic.

This immediately implies that we have explicit formulas for the relevant homogeneous
components of Qn, since we have the explicit expressions

R(ℓ)
n (q) = (1 +H(q))n, and Jn(q) =

1

1−H(q)
, (4.1)

where H(q) :=
∑

k≥1 hk(q). It follows that we may calculate the low degree terms of the
Hilbert series Qn(q), via the expansion

(1 +H(q))n(1−H(q)) = 1 + (n− 1)h1 + (n− 1)h2 +
1
2
n(n− 3)h2

1 + (n− 1)h3

+1
6
n(n− 1)(n− 5)h3

1 + n(n− 3)h1h2 + . . .
(4.2)

Observe that the coefficients for the various hµ in Qn(q) agree with those in the right-
hand side of (4.2), whenever n ≥ 5. This phenomenon seems to hold for n larger than
twice the order of terms calculated.

Let us write k(µ) for the number of parts of a partition µ, and denote by

dµ := d1!d2! · · · dn!

the product of the factorials of multiplicities of parts in µ. Here di is the multiplicity of
the part i. We then easily calculate that the coefficient of hµ(q), in the right hand side
of (4.2), can be written in the form

(n)k(µ)
dµ

−
∑

ν

(n)k(ν)
dν

, (4.3)

3See section 5 for more details.
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where the summation is over the set of partitions that can be obtained by removing one
part of µ. As usual, we denote by (n)k the product

(n)k := n(n− 1) · · · (n− k + 1).

Explicit values. Explicit calculations give the following h-positive expressions, in the
case of the symmetric group.

Q1 = 1
Q2 = 1 + h1,
Q3 = 1 + 2 h1 + 2 h2,
Q4 = 1 + 3 h1 + 3 h2 + 2 h1

2 + 5 h3,
Q5 = 1 + 4 h1 + 4 h2 + 5 h1

2 + 4 h3 + 10 h1h2 + 14 h4,
Q6 = 1 + 5 h1 + 5 h2 + 9 h1

2 + 5 h3 + 18 h1h2 + 5 h1
3

+28 h3h1 + 14 h2
2 + 42 h5.

(4.4)

For the groups W = G(2, n), which is the hyperoctahedral group Bn, we have the values

QG(2,2) = 1 + 2 h1 + h2 + h1
2 + 2 h3 + h4,

QG(2,3) = 1 + 3 h1 + 2 h2 + 3 h1
2 + 3 h3 + h1

3 + 3 h1h2

+6 h3h1 + 2 h4 + 3 h1h4 + 5 h5 + 6 h6 + 2 h7.

5. Colored quasi-symmetric polynomials

In light of the results and conjecture considered above, we think it worthwhile to refor-
mulate results obtained in [2] from this new perspective. Indeed, the relevant formulas
take a new and much nicer format which gives indirect support to our conjecture, since
the Hilbert series considered happen to be provably h-positive. This was not noticed at
the time of the writing of [2].

Let us consider the subspace of colored 4 quasi-symmetric polynomials of the space
of diagonal Sn-quasi-invariants (in the context of X being ℓ × n matrix of variables).
Contrary to our previous presentation, colored quasi-symmetric polynomials are not
defined as invariants. They are rather described in terms of a basis, indexed by “colored
composition”. Recall that colored compositions of length p are ℓ× p-matrices

C =









c11 c12 · · · c1p
c21 c22 · · · c2p
...

...
. . .

...
cℓ1 cℓ2 · · · cℓp









with non negative entries, and such that the associated entries reading word (obtained
by reading column by column from left to right, and each column from top to bottom)
avoids the pattern of ℓ consecutive zeros.

4These where coined to be the G(ℓ, n)-quasi-symmetric polynomials (or even B-quasi-symmetric when
ℓ = 2) in [2, 4], but this terminology leads to confusion in the present context.
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To each colored composition C, we associate a monomial colored quasi-symmetric
functions by setting:

MC :=
∑ ∏

1≤i≤ℓ

∏

1≤k≤p

xcik
i,aik

(5.1)

where the sum is over all choices of aik such that

aik ≤ ai+1,k, when 1 ≤ i < ℓ, and

aℓk < a1,k+1, for 1 ≤ k < p.

For example, we have

M
[

1 3
0 1
2 0

]

=
∑

a≤b<c≤d

xa z
2
b x

3
c yd.

An example helps us point out the difference between diagonal Sn-quasi-invariants and
colored quasi-symmetric polynomials. For n = 3 and ℓ = 2, we have the three indepen-
dent diagonal quasi-symmetric polynomials of degree 2:

x1y1 + x2y2 + x3y3,
x1y2 + x1y3 + x2y3, and
x2y1 + x3y1 + x3y2,

whereas we have only two

x1y1 + x2y2 + x3y3 + x1y2 + x1y3 + x2y3, and
x2y1 + x3y1 + x3y2,

colored quasi-symmetric polynomials in same degree.

We denote by K the ideal generated by constant-term-free colored quasi-symmetric
polynomials assuming that the parameters n and ℓ are unambiguous from the context,
and introduce the quotient of the ring of polynomials by the ideal K:

C(ℓ)
n := R(ℓ)

n /K. (5.2)

The main result of [2] may be elegantly re-coined in terms of an h-positive expansion

for the Hilbert series of Cn = C
(ℓ)
n . This new formulation has the extra advantage that it

has similarities with the formula that we would expect to find under the hypothesis that
conjecture 3.2 holds. In order to state this reformulation, we need to recall some notions
concerning Dyck paths. Recall that such a path is a sequence

β = p0, p1, . . . , p2n

of points pi = (xi, yi) in N × N, with xi ≤ yi, p0 = (0, 0), p2n = (n, n), and such that
either

pi+1 =

{

pi + (1, 0) or,

pi + (0, 1),

for all i. We say that n is the height of β, and that we have a horizontal step

si := (pi−1, pi),

at level k ≥ 1, if yi = k = yi+1. The set of Dyck paths of height n is denoted by Dn.
To any given Dyck path β, we associate the composition ν(β) obtained by counting the
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number of level k horizontal steps (ignoring the situation when this number is zero), for
k < n. An example is given in Figure 1, for the Dyck path

β = (0, 0), (0, 1), (0, 2), (1, 2), (1, 3), (1, 4), (2, 4), (3, 4), (4, 4),

(4, 5), (4, 6), (5, 6), (6, 6), (6, 7), (6, 8), (7, 8), (8, 8)

With these notions at hand, we may now give our new formula.

✲

✻

�
�
�
�
�
�
�
�
�
�
�
�
�
�

1

3

2

s

s

s s

s

s s s s

s

s s s

s

s s s

Figure 1. A Dyck path β with ν(β) = 132.

Proposition 5.1. The Hilbert series of the quotient Cn is given by the formula:

Cn(q) =
∑

β∈Dn

hν(β)(q), (5.3)

whose dependence on ℓ is entirely encapsulated in the number of variables in q.

Observe that if we set all the qi equal to 1, we get a combinatorial expression which is
interesting on its own:

∑

β∈Dn

∏

k∈ν(β)

(

k + ℓ− 1

k

)

=
1

ℓ n+ 1

(

(ℓ+ 1)n

n

)

, (5.4)

in which one may consider ℓ as a variable, hence we actually get a polynomial identity5.
For integral values of ℓ, equation (5.4) may be proven via a simple bijection on paths.
Observe also that both spaces Cn and Qn coincide when ℓ = 1.

6. Proofs

6.1. Theorem 3.1. Recall that we are asserting here that for any group W = G(r, n)
there exists a universal expression for the Hilbert series of QW of the form

QW (q) =
∑

µ

cµ sµ(q), cµ ∈ N, (6.1)

5It is a well-known fact that the right-hand-side is actually a polynomial in ℓ.
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with the sum running over partitions µ of integers d ≤ 2 r n− r−n, each such partitions
having at most n parts. This restriction on the number of parts follows from the fact
that this holds for the whole space Rn, of which QW (or rather SW ) can be considered
as a subspace.

In order to prove inequality (3.1), we need to introduce some notations. The sum of
all the entries an r-matrix A, divided by r, is an integer that we denote by wr(A). This
is said to be the r-size of A. To avoid ambiguity, we restrict to r-matrices having a
non-vanishing last column. The number of columns of such an r-matrix is its length.

Given an r-vector V (a single-column r-matrix), there is a lexicographically largest
r-matrix A(V ) such that

• all of the columns of A(V ) are of r-size 1,

• the sum of the columns of A(V ) is V ,

• the columns of A(V ) occur in decreasing lexicographic6 order from left to right.

We denote θ(V ) the first column of A(V ), and set ∆(V ) := V − θ(V ). For V tr = (2, 3, 4)
(Atr denotes the transpose of A), we get

A(V ) =





2 0 0
1 2 0
0 1 3



 ,

hence θ(V )tr = (2, 1, 0) and ∆(V )tr = (0, 2, 4). We now associate to any r-vector V the
smallest set, denoted by S(V ), of r-matrices that contains A(V ) and that is closed under
the operation that consists in taking sum of consecutive columns. For example, still with
V tr = (2, 3, 4), we have

S(V ) :=











2 0 0
1 2 0
0 1 3



 ,





2 0
3 0
1 3



 ,





2 0
1 2
0 4



 ,





2
3
4











For two ℓ-row matrices, A = A1 · · ·Ak and B = B1 · · ·Bj , the concatenation AB is the
matrix having columns

AB := A1 · · ·AkB1 · · ·Bj .

For a general r-composition matrix A = A1A2 . . . Ak, we define S(A) to be the set
obtained by all possible concatenation of matrices successively picked from each of the
sets S(Ai).

We now come to the definition of the polynomials G[A] := G[A](X) that are used
to prove (3.1). These are indexed by trans r-matrices, which is to say r-matrices A =
A1 A2 . . . Ak for which there exists 1 ≤ j ≤ k such that wr(A1 . . . Aj) ≥ j. It is clear that
any r-composition matrix is trans.

6Considering entries from top to bottom.
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Definition 6.1. To a trans r-matrix A, we associate the W -quasi-invariant polynomial,
G[A] = GA(X) recursively defined as follows.

• If A is an r-composition, we set

GA :=
∑

B∈S(A)

MB.

• If not, there is a unique column decomposition of A as a concatenation

A = B 0V C,

where B an r-matrix (say of length j), V is a non-zero r-vector, and C is an
r-composition. We then set

G[A] := G[B V C]−X
θ(V )
j+1 G[B∆(V )C].

It should be clear that when A = B 0V C is trans, then so are both B V C and B∆(V )C.
Thus, the family G[A] is well-defined by induction on the length of A.

It is helpful to consider an explicit an example. With r = 2 and n = 4, we compute
that

G
[

0 2 0 1
0 2 0 3

]

= G
[

0 2 1
0 2 3

]

− x3 y3G
[

0 2 0
0 2 0

]

= G
[

2 1
2 3

]

− x2
1G
[

0 1
2 3

]

− x3 y3
(

G
[

2 0
2 2

]

− x2
1 G
[

0 0
2 2

])

.

Since

G
[

2 1
2 3

]

= M
[

2 1
2 3

]

+M
[

2 0 1
2 0 3

]

+M
[

2 1 0
2 1 2

]

+M
[

2 0 1 0
0 2 1 2

]

,

G
[

0 1
2 3

]

= M
[

0 1
2 3

]

+M
[

0 1 0
2 1 2

]

,

G
[

2 0
2 2

]

= M
[

2 0
2 2

]

+M
[

2 0 0
0 2 2

]

,

G
[

0 0
2 2

]

= M
[

0 0
2 2

]

,

we finally get

G
[

0 2 0 1
0 2 0 3

]

= x2
2 y

2
2 x4 y

3
4 + x2

2 x3 y
3
3 y

2
4 + x2

2 y
2
3 x4 y

3
4 + x2

3 y
2
3 x4 y

3
4 − x3

3 y
3
3 y

2
4.

Observe that the lexicographic order leading monomial of G
[

0 2 0 1
0 2 0 3

]

is precisely

X

(

0201
0203

)

= x2
2 y

2
2 x4 y

3
4.

This is shown to hold in full generality in the following proposition.

Proposition 6.2. For any trans r-matrix A, the leading monomial of GA(X) is XA.

Proposition 6.2 is established through the next two lemmas.

Lemma 6.3. For any r-composition matrix A, we have

G0A = GA(X−1), (6.2)

writing X−1 for the alphabet obtained from X by removing its first column of variables.
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Proof. We write A = V C, with V the r-vector corresponding to the first column of A.
In view of Definition 6.1, we have

GV C = Xθ(V )G∆(V )C +GV C(X−1) (6.3)

which implies (6.2). �

Lemma 6.4. Let A be an r-matrix of length j, and D an r-composition matrix, then we
have

GAD(X) = XAG0jD(X) + (terms <lex X
A). (6.4)

Proof. If A is an r-composition, (6.4) is a direct consequence of Definition 6.1. If not,
equation (6.4) is shown to hold by induction on the length of A. Consider the unique
factorization

A = B0V C

with B is an r-matrix of length j, V a non-vanishing r-vector, and C an r-composition.
We use Definition 6.1 and Lemma 6.3 to calculate that

GB0V CD = GBV CD −X0
jθ(V )0n−j−1

GB∆(V )CD

= XB G0jV CD −X0
j−1θ(V )0n−j

XB G0j∆(V )CD + (terms <lex X
B)

= XB G0j+1V CD + (terms <lex X
B)

= XB G0jV CD(X−1) + (terms <lex X
B)

= XB0V C G0p−1D(X−1) + (terms <lex X
B0V C)

= XB0V C G0pD + (terms <lex X
B0V C).

�

Proof of Condition (3.1). The proof is now an easy consequence of the following two
observations.

• Any r-matrix A with wr(A) = n is trans. Thus any monomial XA with A an
r-matrix and wr(A) = n is the leading monomial of a polynomial in the ideal
generated by quasi-invariant polynomials for the group G(n, r).

• Any monomial of total degree strictly greater than 2rn− r− n is the multiple of
a monomial XA, with A an r-matrix and for which wr(A) = n. Since it is true
for any monomial of such degree, any monomial of degree strictly greater than
2rn− r − n lies in the ideal, whence (3.1).

�

6.2. Colored polynomials. The main aim of this subsection is to prove Proposition 5.1.
Let us first show that formula (5.4) holds for all positive integer values of ℓ, hence it
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follows that we have a polynomial identity. Recall that an ℓ-path is a finite sequence of
points pi = (xi, yi) in the plane such that p0 = (0, 0) and

pi+1 =

{

pi + (ℓ, 0) or,

pi + (0, 1).

We say that we have an ℓ-Dyck path if the path satisfies the further condition that xi ≤ yi
for all i. Let us denote by D

(ℓ)
n the set of ℓ-Dyck paths of height n ℓ. It is well-known

that ℓ-Dyck paths are enumerated by the Fuss-Catalan numbers:

#D(ℓ)
n =

1

ℓ n+ 1

(

(ℓ+ 1)n

n

)

, (6.5)

appearing as the right-hand side of (5.4). To relate this to the left-hand-side of (5.4), we
consider ℓ-colored Dyck paths of height n, which are simply height n Dyck path β whose
horizontal steps, at levels k < n, have been colored by elements of the set {1, 2, . . . , ℓ}.
Here, we assume that the colors of steps on a same level are weakly increasing from left
to right, according to the color order 1 < 2 < . . . < ℓ. In other words, the coloring is a
function γ, associating to each horizontal step si of β, a color γ(si), in such a manner
that

γ(si) ≤ γ(si+1),

if both si and si+1 are horizontal steps, hence inevitably at the same level. Thus ℓ-colored
Dyck paths are pairs (β, γ), consisting of a path with its coloring.

We establish formula (5.4) by building a bijection between ℓ-colored Dyck paths of
height n, and ℓ-Dyck paths of height n ℓ. Given an ℓ-colored Dyck path (β, γ), we denote
by akj the number of level k horizontal steps of color j, and we iteratively construct a
path

Φ(β, γ) = q0, q1 . . . , (6.6)

using this data. Starting with q0 = (0, 0), and running through the akj’s as k goes from
1 to n− 1 and j goes from 1 to ℓ, we successively add to π

• akj horizontal steps of length ℓ, followed by
• one vertical step (0, 1).

One easily checks that this indeed results in an ℓ-Dyck path of height n ℓ. This transfor-
mation is illustrated in Figure 2 with {red, green} as color set (i.e.: ℓ = 2). It is easy to
check that Φ is a bijection. �

With the intention of giving a proof of Proposition 5.1, let us recall the following result
of [2] which generalizes the main result of [3].

Lemma 6.5. A monomial basis of the quotient C
(ℓ)
n is given by the monomials XA such

that π(A) is an ℓ-Dyck path.

This last statement uses the following “encoding” of monomials XA in terms of lattice
paths. The lattice path π(A) is obtained by applying the following construction to
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✲

✻
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✲

✻
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Figure 2. The transformation Φ.

entries-reading-word w(A) of the ℓ × n exponent matrix A. Starting with the point
(0, 0), for each entry a of w(A) we add a horizontal steps (ℓ, 0), followed by one vertical
step (0, 1). For instance, Figure 3 represents the path π(A) associated to the monomial

X

(

1 1 0
0 2 1

)

= x1 x2 y
2
2 y3,

whose exponent matrix has entries-reading-word 101201. Observe that each horizontal
step is of length two. One associates variables to each level, namely xi at even level
2 (i − 1), and yi at odd level 2 i − 1. We then read out the monomial from the path
by the simple device of associating as exponent of the variable of a level, the number of
horizontal steps on that level.

✲

✻

s s

s

s s

s s s

s

s s

s

x1

y1

x2

y2

x3

y3

x4

Figure 3. Example of π(A) for ℓ = 2.

Proof of Proposition 5.1. For a given Dyck path β, let us consider the set C(β) of
ℓ-Dyck path π such that there exists a coloring γ with Φ(β, γ) = π. In formula,

C(β) = { π | ∃γ such that Φ(β, γ) = π},
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with Φ as in (6.6). If ak is the number of horizontal steps at level k in β, the choice of
ℓ-coloring is equivalent to the choice of a monomial

xak1
k1 xak2

k2 · · · xakℓ
kℓ ,

with akj giving the number of steps getting to be colored j, hence ak = ak1+. . .+akℓ. The
Hilbert series of the resulting set of monomial is hak(q). Since there is independence in
the choice of colorings at different levels, the Hilbert series of the monomials associated
to ℓ-Dyck paths in C(β) is hν(β)(q). The fact that Φ is a bijection gives the proof of
Proposition 5.1, in view of Lemma 6.5. �

7. Open problems

The main remaining open question in all the above considerations is to find a explicit
(even conjectural) candidate for partitions µ(β), one for each Dyck path β, which would
explain the h-positive expansion in Proposition 3.3. Naturally, similar questions may
be stated whenever the universal Hilbert series QW (q), for a group W , happens to be
h-positive. As discussed in the paper, the resulting entirely combinatorial description of
the universal QW (q) would give, in one compact formula, the GLℓ-action characters for
all the spaces Qℓ

W .
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