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ON A CONJECTURE ON THE WEAK GLOBAL DIMENSION OF

GAUSSIAN RINGS

GURAM DONADZE AND VIJI Z. THOMAS

Abstract. In [2], Bazzoni and Glaz conjecture that the weak global dimension of a
Gaussian ring is 0, 1 or ∞. In this paper, we prove their conjecture in all cases except
when R is a non-reduced local Gaussian ring with nilradical N satisfying N 2 = 0.

1. Introduction

In her Thesis [10], H. Tsang, a student of Kaplansky introduced Gaussian rings. Noting
that the content of a polynomial f over a commutative ring R is the ideal c(f) generated
by the coefficients of f , we now define a Gaussian ring.

Definition 1.1. A polynomial f ∈ R[x] is called Gaussian if c(f)c(g) = c(fg) for all
g ∈ R[x]. The ring R is called Gaussian if each polynomial in R[x] is Gaussian.

Among other things, H. Tsang ([10]) proved that an integral domain is Gaussian if and
only if it is Prüfer (see Definition 2.3), a result also proved independently by R. Gilmer
in [4]. Thus Gaussian rings provide another class of rings extending the class of Prüfer
domains to rings with zero divisors. In [2], the authors consider five possible extensions of
the Prüfer domain notion to the case of commutative rings with zero divisors, two among
which are Gaussian rings and rings with weak global dimension (see Definition 2.2) at
most one. The authors also consider the problem of determining the possible values for the
weak global dimension of a Gaussian ring. At the end of their article, the authors make
the following conjecture.

Conjecture (Bazzoni-Glaz, [2]). The weak global dimension of a Gaussian ring is either
0, 1 or ∞.

In [6], the author shows that the weak global dimension of a coherent Gaussian ring is
either ∞ or at most one. She also shows that the weak global dimension of a Gaussian
ring is at most one if and only if it is reduced. So to prove the conjecture it is enough to
show that w. gl. dimR = ∞ for all non-reduced Gaussian rings R. Since w. gl. dimR =
sup{w. gl. dimRp | p ∈ Spec(R)}, it is enough to prove the conjecture for non-reduced local
Gaussian rings. For any non reduced local Gaussian ring R with nilradical N , either (i)
N is nilpotent or (ii) N is not nilpotent. Except when N 2 = 0, the authors of [2] prove
that if R satisfies (i), then w. gl. dimR = ∞. In this paper we prove that if R satisfies
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(ii), then w. gl. dimR = ∞ (cf. Theorem 5.4). In fact the authors of [2] do not exclude
the case N 2 = 0 ([2, Theorem 6.4]), but we exclude this case for correctness (cf. Section 5,
Theorem 5.2). In this paper we solve the Bazzoni-Glaz conjecture in all cases except this
case. With this in mind, we now state our Main theorem.

Main Theorem. Let R be a non-reduced local Gaussian ring with nilradical N . If N 2 6= 0,
then w. gl. dim(R) = ∞.

In a recent paper [1], the authors have validated the Bazzoni-Glaz conjecture for the
class of rings called fqp-rings. The class of fqp-rings fall strictly between the classes of
arithmetical rings and Gaussian rings.

In Section 3, we consider some homological properties of local Gaussian rings. In partic-
ular we consider local Gaussian rings (R,m) which are not fields, with the property that
each element of m is a zero divisor. In this case we prove that w. gl. dimR ≥ 3.

In [2, Section 6], the authors consider local Gaussian rings (R,m) such that the maximal
ideal m coincides with the nilradical of R. With this set up in Section 4, we prove that if
m is not nilpotent, then w. gl. dimR = ∞.

Finally in Section 5, we prove our main theorem. As a result of our Main Theorem, we
reduce the Bazzoni-Glaz conjecture to the following Conjecture: Let R be a non-reduced
local Gaussian ring with nilradical N . If N 2 = 0, then w. gl. dim(R) = ∞.

Throughout this paper, R is a commutative ring with unit, (R,m) is a local ring(not
necessarily Noetherian) with unique maximal ideal m. We denote the set of all prime ideals
of R by Spec(R) and the set of all maximal ideals by Max(R).

2. Preliminary Results

In this section we will recall some definitions and results that we will need in later
sections.

Definition 2.1. The flat dimension fd(M) is the minimum integer (if it exists) such that
there is a resolution of M by flat R modules 0 → Fn → · · · → F1 → F0 → M → 0. If no
finite resolution by flat R modules exists for M , then we set fd(M) = ∞.

Now we define the weak global dimension of a ring R denoted as w. gl. dim(R). It is also
sometimes suggestively called as the Tor-dimension.

Definition 2.2. w. gl. dim(R)=sup{fd(M) | M is an R-module}.

Recall that w. gl. dim(R)=sup{d | Tord(M,N) 6= 0 for some R-modules M,N}. The
w. gl. dim(R) ≤ 1 if and only if every ideal of R is flat, or equivalently, if and only if every
finitely generated ideal of R is flat.

We now define Prüfer domain. A Noetherian Prüfer domain is a Dedekind domain.

Definition 2.3. A domain is Prüfer if every non-zero finitely generated ideal is invertible.

L. Fuchs introduced the class of arithmetical rings in [3].

Definition 2.4. A ring R is arithmetical if the lattice of the ideals of R is distributive.
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In [7], the author characterized arithmetical rings by the property that in every localiza-
tion at a maximal ideal, the lattice of the ideals is linearly ordered by inclusion. Hence in a
local arithmetical ring, the lattice of the ideals is linearly ordered by inclusion. Thus local
arithmetical rings provide another class of rings extending the class of valuation domains
to rings with zero-divisors.

The next theorem appears in Tsang’s (see [10]) unpublished thesis.

Theorem 2.5 ([10]). Let R be a Gaussian ring. If R is local, then

(i) R is Gaussian if and only if Rm is Gaussian for all m ∈ Max(R);
(ii) R is Gaussian if and only if Rp is Gaussian for all p ∈ Spec(R);
(iii) the prime ideals of R are linearly ordered under inclusion; and
(iv) the nilradical of R is the unique minimal prime ideal of R.

We will need several equivalent characterizations of local Gaussian rings, which we now
state.

Theorem 2.6. Let (R,m) be a local ring with maximal ideal m. The following conditions
are equivalent.

(i) R is a Gaussian ring;
(ii) If I is a finitely generated ideal of R and (0 : I) is the annihilator of I, then

I/I ∩ (0 : I) is a cyclic R-module;
(iii) Condition (ii) for two generated ideals;
(iv) For any two elements a, b ∈ R, the following two properties hold:

(a) (a, b)2 = (a2) or (b2);
(b) If (a, b)2 = (a2) and ab = 0, then b2 = 0.

(v) If I = (a1, a2, . . . , an) is a finitely generated ideal of R, then I2 = (a2i ) for some
1 ≤ i ≤ n.

The implication (iv) ⇒ (i) was noted by Lucas in [8] and the rest of Theorem 2.6 was
proved by Tsang in [10]. The next two results can be found in [2].

Theorem 2.7 ([2]). Let (R,m) be a local Gaussian ring and let D = {x ∈ R | x2 = 0}.
The following hold:

(i) D is an ideal of R, D2 = 0, and R/D is an arithmetical ring;
(ii) For every a ∈ R, (0 : a) and D are comparable and D ⊆ Ra+ (0 : a);
(iii) If a ∈ m \D, then (0 : a) ⊆ D;
(iv) Let m be the nilradical of R. If m is not nilpotent, then m = m2 +D and m2 = m3.

Proposition 2.8. Let (R,m) be a local Gaussian ring. If m is non-zero and nilpotent,
then w. gl. dimm = ∞.

3. Some results on local Gaussian rings

It is well known that if the w. gl. dimR = n, then there exists a cyclic R-module, say
R/I such that w. gl. dimR/I = n. In the next lemma we show that this cyclic module can
be chosen with some additional properties.
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Lemma 3.1. Let R be local Gaussian ring with w. gl. dim(R) = n and let I be an ideal of R.
If the w. gl. dimR(R/I) = n, then there exists an ideal J ⊂ R such that w. gl. dimR(R/J) =
n and J ⊇ I +D.

Proof. Let M be an R-module such that Torn(R/I,M) 6= 0. Suppose the lemma is not
true. Then we prove that the natural projection R/I → R/(I + x1R+ · · ·+ xmR) induces
an inclusion

Torn(R/I,M) →֒ Torn(R/(I + x1R + · · ·+ xmR),M) (3.1.1)

for any finite subset {x1, . . . , xm} ⊂ D. Set I0 = I and define Ip inductively as Ip =
Ip−1 + xpR for all 1 ≤ p ≤ m. We have the following short exact sequence

0 → (xpR + Ip−1)/Ip−1 → R/Ip−1 → R/Ip → 0

for all 1 ≤ p ≤ m. The homomorphism f : R → (xpR + Ip−1)/Ip−1 defined by f(r) =
rxp+Ip−1 for all r ∈ R induces an isomorphism R/Ker f ∼= (xpR+Ip−1)/Ip−1. Furthermore
we have that Ker f ⊃ Ip−1 + (0 : xp) ⊃ I + D. If Torn((xpR + Ip−1)/Ip−1,M) 6= 0, then
the lemma is true with J = Ker f . So assume that Torn((xpR + Ip−1)/Ip−1,M) = 0. In
this case the natural projection R/Ip−1 → R/Ip induces an inclusion Torn(R/Ip−1,M) →֒
Torn(R/Ip,M) for all 1 ≤ p ≤ m, proving (3.1.1).

Now let X denote the following class of ideals: J ∈ X iff J ⊂ D and J is finitely
generated. Then

lim−→
J∈X

Torn(R/(I + J),M) = Torn(R/(I +D),M) (3.1.2)

Using (3.1.1) and (3.1.2), we obtain an inclusion Torn(R/I,M) →֒ Torn(R/(I +D),M).
Thus Torn(R/(I +D),M) 6= 0 and the lemma is proved. �

The next lemma is an immediate consequence of the long exact sequence of Tor groups
applied to the given short exact sequence. We note it here for the readers convenience.

Lemma 3.2. Let R be a commutative (not necessarily local Gaussian) ring. Let M1 and M2

be R-modules and f : M1 → M2 be an injective homomorphism. If the w. gl. dim(R) = n,
then f∗ : Torn(M1,−) → Torn(M2,−) is also injective.

Proof. The proof is a direct consequence of the long exact sequence of Tor groups applied
to the given short exact sequence and the fact that Torn+1(M2/M1,−) = 0. �

Lemma 3.3. Let (R,m) be a local Gaussian ring. If the w. gl. dim(R) = n,
then Torn(R/D,−) = 0 for all n ≥ 1.

Proof. If the lemma is not true, then there exists a moduleM such that Torn(R/D,M) 6= 0.

Consider a free resolution of M : · · ·
∂n+2

−−−→ RXn+1
∂n+1

−−−→ RXn
∂n−→ · · ·

∂1−→ RX0
∂0−→ M , where

Xi are sets. By assumption Torn(R/D,M) = Ker(∂n)/ Im(∂n+1) 6= 0, where ∂i is the
natural homomorphism ∂i : (R/D)Xi → (R/D)Xi−1 obtained after tensoring the above
resolution by R/D for all i ∈ N. Since Torn(R/D,M) 6= 0, there exists a w ∈ Ker(∂n) such
that w /∈ Im(∂n+1). Let w be the representative of w in RXn. Hence ∂n(w) ∈ DXn−1 . Let
λ1, . . . , λm ∈ D be the finitely many non-zero entries of ∂n(w). Now we consider two cases.
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Case 1. There exists an a ∈ m \D such that aλj = 0 for all 1 ≤ j ≤ m.
Define a homomorphism f : R/D → R/aD which is multiplication by a. Using Theorem
2.7(iii), it follows that (0 : a) ⊂ D. This gives the injectivity of f . Therefore by Lemma
3.2, f∗ : Torn(R/D,M) → Torn(R/(aD),M) is injective and hence f∗(w) 6= 0. It is easy
to verify that aw is a representative of f∗(w) in RXn. Since a ∈ (0 : λj) for all 1 ≤ j ≤ m,
we obtain that ∂n(aw) = a∂n(w) = 0. This would imply that f∗(w) = 0, a contradiction.

Case 2. For all a ∈ R \D at least one aλj 6= 0.
We have an injective homomorphism g : R/D → Rm defined by g(1) = (λ1, . . . , λm). By
Lemma 3.2, the induced homomorphism g∗ : Torn(R/D,M) → Torn(R

m,M) is injective.
This is a contradiction as Torn(R

m,M) = 0. �

Lemma 3.4. Let (R,m) be a local Gaussian ring such that each element of m is a zero
divisor. If λ1, . . . , λn ∈ m, then there exists a non-trivial element a ∈ m such that aλj = 0
for all 1 ≤ j ≤ n.

Proof. We divide the proof into two cases.
Case 1: λ1, . . . , λn ∈ D.
First we claim that D 6= 0. Towards that end, let 0 6= a, b ∈ m with ab = 0. By Theorem

2.6(iv), we have either a2 = 0 or b2 = 0. Thus D 6= 0. So take any d ∈ D \ 0. Using
Theorem 2.7(i), we obtain that dλi = 0 for all 1 ≤ i ≤ n.

Case 2: There exist j ∈ {1, 2, . . . , n} such that λj /∈ D.
By Theorem 2.7(iii), it follows that (0 : λj) ⊆ D. Set I = (λ1, . . . , λn). So (0 : I) ⊂ (0 :

λj) ⊆ D. Using Theorem 2.6(ii), we obtain that I/I ∩ (0 : I) is a cyclic R-module, say its
generator is λ. Hence we can write λi = riλ + di for all 1 ≤ i ≤ n, where di ∈ I ∩ (0 : I)
and ri ∈ R. Observe that λ ∈ m \D. Choose any d ∈ (0 : λ) \ 0. Using Theorem 2.7(iii),
it follows that d ∈ D. Multiplying the equation expressing λi in terms of λ with d, we
obtain dλi = driλ + ddi for all 1 ≤ i ≤ n. Using Theorem 2.7(i), we obtain that ddi = 0.
Thus dλi = 0 for all 1 ≤ i ≤ n.

�

Lemma 3.5. Let (R,m) be a local Gaussian ring with w. gl. dim(R) = n. If each element
of m is a zero divisor, then Torn(R/m,−) = 0 for all n ≥ 1.

Proof. The proof of this Lemma follows by substituting m for D in Lemma 3.3. As a result
of Lemma 3.4, the proof of lemma 3.5 falls under Case 1 of Lemma 3.3. �

Proposition 3.6. Let (R,m) be a local Gaussian ring. If m 6= 0 and each element of m is
a zero divisor, then w. gl. dim(R) ≥ 3.

Proof. If m = D, then Proposition 2.8 implies that w. gl. dim(R) = ∞. If m 6= D, then
take any x ∈ m \D and consider the following resolution of R/xR:

0 → (0 : x) → R
σ
−→ R

τ
−→ R/xR,

where τ is the natural projection and σ(r) = xr for all r ∈ R. If w. gl. dim(R) < 3, then
(0 : x) must be flat. Thus it suffices to show that (0 : x) is not flat. We will use the fact that
if M is a flat R module then I⊗M = IM for all ideals I ⊂ R. Set I = xR and M = (0 : x)
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and observe that IM = 0. Hence it suffices to show that I ⊗ (0 : x) 6= 0. Since x /∈ D,
Theorem 2.7(iii) implies that (0 : x) ⊂ D. Define a homomorphism θ : I⊗(0 : x) → (0 : x)
as follows: if a ∈ I and b ∈ (0 : x), then set θ(a⊗ b) = rb, where r ∈ R is such that a = xr.
If there is another r′ ∈ R such that a = xr′, then (r − r′) ∈ (0 : x) which implies that
(r−r′)b = 0. Taking into account the last remark, it is easy to check that θ is well defined.
Moreover the homomorphism θ′ : (0 : x) → I ⊗ (0 : x) defined by θ′(c) = x ⊗ c for all
c ∈ (0 : x) is an inverse of θ. Hence we have an isomorphism θ : I ⊗ (0 : x) ∼= (0 : x) which
shows that I ⊗ (0 : x) 6= 0, proving that (0 : x) is not flat. �

4. Local Gaussian rings with nilradical being the maximal ideal

Let R be a local Gaussian ring which admits the following property:

Property 4.1. For all x ∈ D \ 0, (0 : x) is not cyclic modulo D. In other words there is
no a ∈ R \D such that (0 : x) = aR +D.

Lemma 4.2. Let (R,m) be a local Gaussian ring such that each element of m is a zero
divisor. If R satisfies Property (4.1) and m 6= D , then

(i) m = m2 +D;
(ii) for any finitely generated ideal J ⊂ m there exist x ∈ m such that J2 ⊂ x2R and

x2 /∈ D;
(iii) m2 is flat.

Proof. (i): Let a ∈ m \D. Since every element of m is a zero divisor, there exists x ∈ D \ 0
such that ax = 0. By Property (4.1), (0 : x) 6= aR +D. So there exists some b ∈ m such
that b ∈ (0 : x) and b /∈ aR +D. Theorem 2.7(i) implies that R/D is a local arithmetical
ring. So a ∈ bR+D and hence a = br+d for some r ∈ R and d ∈ D. Moreover b /∈ aR+D
which implies that r is not a unit and hence r ∈ m. Thus a ∈ m2 +D.

(ii): First we will show that if x2 ∈ D for all x ∈ m, then m2 ⊂ D. Towards that end let
z ∈ m2. Such a z is of the form z =

∑n

i=1
xiyi, where xi, yi ∈ m for all 1 ≤ i ≤ n. Using

Theorem 2.6(iv), if follows that (xi, yi)
2 = (x2

i ) or (y
2
i ) for all 1 ≤ i ≤ n. This shows that

xiyi ∈ D for all 1 ≤ i ≤ n. Recalling that D is an ideal of R, it follows that z ∈ D. Hence
we have proved that m2 ⊂ D. By (i) this would imply that m = D, a contradiction. Thus
there exists an x ∈ m such that x2 /∈ D. By Theorem 2.6(v), for any finitely generated
ideal J we have J2 = y2R for some y ∈ J . If y2 /∈ D then we are done. If y2 ∈ D, choose
any x ∈ m with x2 /∈ D and observe that y2 ∈ x2R. Thus J2 ⊂ x2R.

(iii): To prove that m2 is flat over R, we show that for any ideal I ⊂ R, the natural
homomorphism f : I ⊗ m2 → m2 is injective. Assume that w ∈ I ⊗ m2 is such that
f(w) = 0. Set w =

∑k

i=1
zi ⊗ xiyi, where zi ∈ I and xi, yi ∈ m. By (ii) there exist x ∈ m

such that x2 /∈ D and xiyi ∈ x2R for all 1 ≤ i ≤ n. Put xiyi = x2ri, where ri ∈ R. Then
w = z ⊗ x2, where z =

∑k

i=1
ziri ∈ I. Hence f(z ⊗ x2) = 0 ⇔ zx2 = 0. If z = 0 then

w = 0 and the proof is finished. So assume that z 6= 0. Using Theorem 2.7(iii), we obtain
that (0 : a) ⊆ D for all a ∈ m \ D. Since x2 ∈ m \ D, it follows that z ∈ D and either
zx = 0 or zx 6= 0. If zx = 0, then z ∈ D \ 0 and x ∈ (0 : z). It follows by Property (4.1)
that (0 : z) 6= xR + D. So there exists y ∈ m such that y ∈ (0 : z) and y /∈ xR + D.
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By Theorem 2.7(i), we obtain that R/D is a local arithmetical ring. Hence (y) 6⊂ (x). So
x = cy + d′, where c ∈ m and d′ ∈ D. Computing w, we obtain

w = z ⊗ x2 = z ⊗ (cy + d′)2 = z ⊗ (c2y2 + 2cyd′ + d′2) = zy2 ⊗ c2 + zd′ ⊗ 2cy + z ⊗ d′2.

Noting that d′2, zd′ ∈ D2 = 0 and that zy2 = 0, we obtain w = 0. If zx 6= 0, we have
zx ∈ D \ 0 and x ∈ (0 : zx). By (4.1), there exists h ∈ m such that h ∈ (0 : zx) and
h /∈ xR+D. Using the same argument as above, there exists an a ∈ m such that x = ah+d′′.
Observing that zd′′, d′′2 ∈ D2 we obtain that w = z ⊗ x2 = z ⊗ (ah + d′′)2 = z ⊗ a2h2.
Furthermore, by (i) we can write a = b+ d where b ∈ m2 and d ∈ D. Therefore

w = z ⊗ (ah2(b+ d)) = z ⊗ (ah2b) + z ⊗ (ah2d) = (zah2)⊗ b+ (zd)⊗ (ah2). (4.2.1)

Substituting 0 = zd ∈ D2 and ah = x − d′′ in (4.2.1) and recalling that h ∈ (0 : zx), we
obtain w = (zxh)⊗ b− zhd′′ ⊗ b = 0. �

Lemma 4.3. Let (R,m) be a local Gaussian ring with w. gl. dim(R) = n. Let m be the
nilradical of R. If R satisfies Property (4.1) and m is not nilpotent, then Torn−1(R/m,−) =
0 for all n ≥ 3.

Proof. By applying the long exact sequence of Tor groups to the short exact sequence
0 → m2 → R → R/m2 → 0 and using Lemma 4.2(iii), it follows that Tork(R/m2,−) = 0
for all k ≥ 2. If m = m2, then the lemma is proved. So assume that m 6= m2. Observing
that m/m2 is a vector space over R/m, we obtain that m/m2 =

⊕

R/m. Consider the short
exact sequence 0 → m/m2 → R/m2 → R/m → 0. Consider the following segment of the
corresponding long exact sequence of Tor groups

Torn(R/m,−) → Torn−1(m/m2,−) → Torn−1(R/m2,−).

Using Lemma 3.5 and Lemma 4.2, we obtain that Torn−1(m/m2,−) = 0. This shows that
Torn−1(

⊕

R/m,−) = 0. Recalling that Torn−1(
⊕

R/m,−) =
⊕

Torn−1(R/m,−) proves
our lemma. �

The idea of the next lemma is taken from [9], but we give a slightly different proof.

Lemma 4.4. Let (R,m) be a local arithmetical ring with nilradical m. For any x ∈ m \ 0,
if (0 : x) = I then (0 : I) = (x).

Proof. Clearly (x) ⊆ (0 : I). We want to show that (0 : I) ⊆ (x). Towards that end
assume that there exists a z ∈ (0 : I) such that z /∈ (x). Recalling that the ideals in a
local arithmetical ring are linearly ordered under inclusion, we obtain that x = λz where
λ ∈ m. Hence λ /∈ I which implies that I ⊂ (λ). By induction on k, we will show that
I ⊂ (λk) for all k ∈ N. The case k = 1 is obvious. Let b ∈ I be arbitrary. Since I ⊂ (λ)
there exists a t ∈ m such that b = λt. Notice that we have 0 = zb = zλt = xt. Hence
t ∈ I = (0 : x). By induction hypothesis I ⊂ (λk). So t = λkt1 where t1 ∈ m. Hence
b = λk+1t1, where t1 ∈ m. Thus I ⊂ (λk+1) for all k ∈ N. Since λ is nilpotent, we obtain
that I = 0, a contradiction. �

In what follows let R′ = R/D and m′ = m/D. Recall that if R is a local Gaussian ring,
then R′ is a local arithmetical ring by Theorem 2.7(i).
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Lemma 4.5. Let (R,m) be a local Gaussian ring with nilradical m. If w. gl. dim(R) = n ≥
1, then

(i) there is a non trivial element x ∈ m′ such that w. gl. dimR(R
′/xR′) = n;

(ii) for any non trivial element z ∈ m′ and ideal J ⊂ R′ such that z ∈ J , zR′ 6= J ,
the natural projection R′/zR′ → R′/J induces a trivial map 0 : Torn(R

′/zR′,−) →
Torn(R

′/J,−);
(iii) w. gl. dimR(R

′/zR′) = n for any non trivial element z ∈ m′.

Proof. (i): There is an ideal I ⊂ R such that w. gl. dimR(R/I) = n. Without loss of
generality one can assume that D ⊂ I (see Lemma 3.1). Hence w. gl. dimR(R

′/I ′) = n,
where I ′ = I/D. Using Lemma 3.3, we obtain that I ′ 6= 0. Let X denote the following
class of ideals: J ∈ X iff J ⊂ I ′ and J is finitely generated. Since Torn(R

′/I ′,−) =
lim−→J∈X

Torn(R
′/J,−) and w. gl. dimR(R

′/I ′) = n, there exist x1, . . . , xm ∈ I ′ such that

w. gl. dimR(R
′/(x′

1, . . . , xm)) = n. Since R′ is local arithmetical, (x1, . . . , xm) = (xi) for
some 1 ≤ i ≤ m. Thus the first part of the lemma is proved.

(ii): Let I = (0 : z) ⊂ R′. Using Lemma 4.4, we obtain that (0 : I) = zR′. This
implies that (0 : I) ⊂ J and (0 : I) 6= J . Hence there exists y ∈ I such that (0 : y) ⊂ J
and (0 : y) 6= J . Thus we have the inclusions zR′ ⊂ (0 : y) ⊂ J which give rise to the
natural projections R′/zR′ → R′/(0 : y) → R′/J . Using Lemma’s 3.2 and 3.3, we obtain
that Torn(R

′/(0 : y),−) = 0, since R′/(0 : y) ∼= yR′ ⊂ R′. Hence the composition of the
following maps Torn(R

′/zR′,−) → Torn(R
′/(0 : y),−) → Torn(R

′/J,−) is trivial.
(iii): By (i) we have a non trivial element x ∈ M′ such that w. gl. dimR(R

′/xR′) = n.
For any non trivial element z ∈ m′, either z ∈ xR′ or x ∈ zR′. If z ∈ xR′ and z 6= x,
then there exists λ ∈ m′ such that z = λx. Define a map α : R′/xR′ → R′/zR′ by
α(r + xR′) = λr + zR′ for all r ∈ R′. Since x /∈ (0 : λ), it follows that (0 : λ) ⊂ xR′.
This shows that α is injective. Using Lemma 3.2, we obtain that α induces an inclusion
Torn(R

′/xR′,−) →֒ Torn(R
′/zR′,−). Thus Torn(R

′/zR′,−) 6= 0.
In the case when x ∈ zR′ and x 6= z, there exists λ′ ∈ m′ such that x = λ′z. Define a

map σ : R′/zR′ → R′/xR′ by σ(r + zR′) = r + xR′ for all r ∈ R′. Since z /∈ (0 : λ′), we
obtain that (0 : λ′) ⊂ zR′. Thus σ is injective. Consider the short exact sequence

0 → R′/zR′ σ
−−→ R′/xR′ τ

−−→ R′/λ′R′ → 0 ,

where τ is the natural projection. Observe that xR′ ⊂ λ′R′ and xR′ 6= λ′R′. Using (ii),
we see that τ induces the trivial map 0 : Torn(R

′/xR′,−) → Torn(R
′/λ′R′,−). Therefore

σ induces an epimorphism

Torn(R
′/zR′,−) ։ Torn(R

′/xR′,−) ,

which implies that Torn(R
′/zR′,−) 6= 0. �

Let deg(r) denote the degree of nilpotency of r ∈ R. Noting that the nilpotency degree
of an element r ∈ R is the smallest k ∈ N such that rk = 0, we state our next lemma.

Lemma 4.6. Let (R,m) be a local Gaussian ring with nilradical m and let λ ∈ m. If m is
not nilpotent, then there exists z ∈ m such that deg(z) > deg(λ).



ON A CONJECTURE ON THE WEAK GLOBAL DIMENSION OF GAUSSIAN RINGS 9

Proof. Let deg(λ) = n. Suppose the lemma is not true, then deg(z) ≤ deg(λ) for all z ∈ m.
Now we will show that mn = 0. This will give us a contradiction, as m is not nilpotent.
Towards that end, let z1, . . . , zn ∈ m and consider I = (z1, . . . , zn). Using Theorem 2.6(ii),
we can write zi = riz + di for some z ∈ I, ri ∈ R and di ∈ I ∩ (0 : I) ⊂ (0 : zi) for all
1 ≤ i ≤ n. So

z1z2 · · · zn =

n
∏

i=0

(zri + di) (4.6.1)

After expanding the right hand side of (4.6.1), observe that every term of the expansion
except the term d1 · · ·dn contains a z and some di, where 1 ≤ i ≤ n. Using Theorem 2.7(i),
it follows that d1 · · · dn = 0. Since diz = 0 for all 1 ≤ i ≤ n, every term in the expansion
is zero. Thus mn = 0, a contradiction.

�

Lemma 4.7. Let (R,m) be a local Gaussian ring with nilradical m. If w. gl. dim(R) = n ≥
1 and m is not nilpotent, then Torn(R

′/am′,−) = 0 for all non trivial a ∈ m′.

Proof. If am′ = 0, then Lemma 3.3 gives the desired result. So assume that am′ 6= 0. We
claim that am′ is not a finitely generated ideal. Suppose am′ is a finitely generated ideal.
Since R′ is an arithmetical ring, there exists an element λ ∈ m′ such that am′ = aλR′. Let
deg(x) denote the degree of nilpotency of x for all x ∈ m′. Since m is not nilpotent, m′

is not nilpotent. By Lemma 4.6, there exists z ∈ m′ such that deg(z) > deg(λ). Observe
that λ ∈ zm′, i.e. λ = zh for some h ∈ m′. Hence az 6= 0. Furthermore 1− hr is a unit for
all r ∈ R′. This implies that az − aλr = a(z − zhr) = az(1 − hr) 6= 0. Thus az /∈ aλR′, a
contradiction.

Now let X be the following class of ideals: J ∈ X iff J ⊂ am′ and J is finitely generated.
Then Torn(R

′/am′,−) = lim−→J∈X
Torn(R

′/J,−). Since R′ is a local arithmetical ring, there

exists c ∈ m′ such that I = cR′ for all I ∈ X . As am′ is not finitely generated, I 6= am′.
Using Lemma 4.5(ii), we obtain that the natural projection R′/I → R′/am′ induces a
trivial homomorphism 0 : Torn(R

′/I,−) → Torn(R
′/am′,−). Thus the canonical homo-

morphism Torn(R
′/I,−) → lim−→J∈X

Torn(R
′/J,−) is trivial for all I ∈ X . This implies

lim−→J∈X
Torn(R

′/J,−) = 0. �

Theorem 4.8. Let (R,m) be a local Gaussian ring with nilradical m. If m is not nilpotent,
then w. gl. dim(R) = ∞.

Proof. Suppose the theorem is not true, then the w. gl. dim(R) = n < ∞. Using Proposi-
tion 3.6, we obtain that n ≥ 3. We divide the proof into two cases.

Case 1. R does not satisfy Property (4.1).
Hence there exists x ∈ D \ 0 and a ∈ R \D such that (0 : x) = aR +D. Thus we have

an isomorphism R/(aR+D) ∼= xR. Using Lemma 3.2 and noting that xR ⊂ R, we obtain
an inclusion Torn(R/(aR +D),−) →֒ Torn(R,−). Hence Torn(R/(aR +D),−) = 0. But
using Lemma 4.5(iii), we obtain that w. gl. dimR(R/(aR +D)) = n, a contradiction.

Case 2. R satisfies Property (4.1).
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Consider the short exact sequence 0 → aR′/am′ → R′/am′ → R′/aR′ → 0. From the
corresponding long exact sequence of Tor groups, consider the following segment

Torn(R
′/am′,−) → Torn(R

′/aR′,−) → Torn−1(aR
′/am′,−) .

Applying Lemma 4.7, we obtain that Torn(R
′/am′,−) = 0. Observing that aR′/am′ ∼= R/m

and using Lemma 4.3 yields Torn−1(aR
′/am′,−) = 0. Hence Torn(R

′/aR′,−) = 0. But
using Lemma 4.5 (iii), we obtain that w. gl. dimR(R

′/aR′) = n, a contradiction. �

5. Conjecture

In this section, we restate [2, Theorem 6.4] with an additional hypothesis and prove the
theorem under this additional hypothesis. We also give an example to show that the proof
of Theorem 6.4 as given in [2] is not complete. We need the next lemma to give a proof
of the modification of [2, Theorem 6.4]. We can use the same idea to give a proof of our
Main Theorem.

Lemma 5.1. Let R be a local Gaussian ring with nilradical N . If N 6= D, then the
maximal ideal of RN is non-zero.

Proof. Using Theorem 2.5, it follows that the nilradical N is the unique minimal prime
ideal of R. Thus the maximal ideal and the nilradical of RN coincide and let us denote it
by N ′. We want to show that N ′ 6= 0. Towards that end, let x ∈ N \ D. We will show
that 0 6= x

1
∈ RN . Suppose not, then there exists y ∈ R \ N such that xy = 0. Using

Theorem 2.6(iv), it follows that x2 = 0 or y2 = 0, a contradiction. �

Noting that the nilpotency degree of an ideal I of R is the smallest k ∈ N such that
Ik = 0, we now restate and prove Theorem 6.4 of [2].

Theorem 5.2. Let R be a Gaussian ring admitting a maximal ideal m such that the
nilradical N of the localization Rm is a non-zero nilpotent ideal. If the nilpotency degree of
N ≥ 3, then w. gl. dim(R) = ∞.

Proof. Let m be a maximal ideal of R such that Rm has a non-zero nilpotent nilradical
N . Using Theorem 2.5, it follows that N is the unique minimal prime ideal. Recall that
the Nilradical(S−1R)=S−1(Nilradical(R)) for any multiplicative closed set S ⊂ R. Hence
N = S−1n, where n is the nilradical of R and S = R \ m is a multiplicatively closed set
in R. Furthermore n is a prime ideal of R. It is clear that the maximal ideal of Rn is
nilpotent. It follows from Lemma 5.1 that the maximal ideal of Rn is non-zero. The rest
of the proof follows [2, Theorem 6.4] mutatis mutandis. �

Remark. The hypotheses that the nilpotency degree of N ≥ 3 in the above Theorem
ensures that N 6= D.

We now give an example to show that the hypothesis on the nilpotency degree in Theorem
5.2 is necessary for the conclusion of Lemma 5.1 to hold.



ON A CONJECTURE ON THE WEAK GLOBAL DIMENSION OF GAUSSIAN RINGS 11

Example 5.3. let k be a field and k[X, Y ] be a polynomial ring in two variables. Consider
a set S ⊂ k[X, Y ]/(XY, Y 2) defined by

S = {a + bY + a1X + a2X
2 + · · ·+ anX

n, a, b, ai ∈ k, a 6= 0, n ≥ 0}.

Then S is multiplicative set in k[X, Y ]/(XY, Y 2). Define R = S−1
(

k[X, Y ]/(XY, Y 2)
)

. It
is easy to see that the unique maximal ideal of R is given by m = {xf(x) + b1y | f(x) ∈
k[x] and b1 ∈ k}, where x, y are the images of X, Y in R. Any c, d ∈ m has the form,
c = λ1y + c1x + c2x

2 + · · · cnx
n and d = λ2y + d1x + d2x

2 + · · ·+ dmx
m, where m,n ∈ N

and ci, dj ∈ k for 1 ≤ i ≤ n and 1 ≤ j ≤ m. Let i, j ∈ N be such that ci 6= 0 and dj 6= 0
and let i, j be the least natural numbers with this property. Then one can rewrite c, d as
c = λ1y + xi(ci + c′i+1x + · · · + c′nx

n−i) and d = λ2y + xj(dj + d′j+1x + · · · + d′mx
m−j),

where c′t = ct+1c
−1

i and d′s = ds+1d
−1

j for all i ≤ t ≤ n − i and j ≤ s ≤ n − j. Observe

that ci + c′i+1x+ · · ·+ c′nx
n−i and dj + d′j+1x+ · · ·+ d′mx

m−j are units in R. Furthermore

(c, d)2 = (c2, cd, d2), c2 = x2iu2
1, d

2 = x2ju2
2 and cd = xi+ju1u2, where u1, u2 /∈ m. Now

using Theorem 2.6(iv), it can be verified that R is a local Gaussian ring. Its nilradical
n = (y) ⊂ R is not trivial, while the nilradical of Rn is trivial as y

1
= xy

x
= 0.

We now prove our Main Theorem.

Theorem 5.4 (Main Theorem). Let R be a non-reduced local Gaussian ring with nilradical
N . If N 6= D, then w. gl. dim(R) = ∞.

Proof. By Theorem 2.5, the nilradical N is the unique minimal prime ideal. Thus the
maximal ideal and the nilradical of RN coincide and let us denote it by N ′. Since
w. gl. dim(R) ≥ w. gl. dim(RN ), it suffices to show that w. gl. dim(RN ) = ∞. Using Lemma
5.1, it follows that N ′ 6= 0. Hence we have a local Gaussian ring (RN ,N ′) with N ′ 6= 0. If
N is nilpotent, then Theorem 5.2 implies that w. gl. dim(RN ) = ∞. If N is not nilpotent,
then Theorem 4.8 implies that w. gl. dim(RN ) = ∞. �

We claim that to prove the Bazzoni-Glaz Conjecture, it remains to consider the case of
a local Gaussian ring with nilradical n = D 6= 0. Let R be a Gaussian ring (not necessarily
local) and let np denote the nilradical of Rp for any p ∈ Spec(R). We have the following
cases:

(i) Rp is domain for all p ∈ Spec(R);
(ii) there exists a p ∈ Spec(R) such that the np 6= 0 and n2p 6= 0;
(iii) there exists a p ∈ Spec(R) such that np 6= 0 and n2

p
= 0.

We remind the reader that if Rp is not a domain, then np 6= 0 and hence all possible
cases are listed above. In case (i) w. gl. dim(R) ≤ 1, while in case (ii) w. gl. dim(R) = ∞.
Hence to prove the Bazzoni-Glaz Conjecture it remains to show the following conjecture.

Conjecture. Let R be a non-reduced local Gaussian ring with nilradical N . If N 2 = 0,
then w. gl. dim(R) = ∞.
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