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Abstract

In this paper, we consider the endomorphism algebras ofitilfirgenerated tilting modules of the
form Ry @ Ry, /R over tame hereditark-algebrask with k an arbitrary field, wher®, is the universal
localization ofR at an arbitrary setz of simple regulaiR-modules, and show that the derived module
category of End(Ry; @Ry /R) is a recollement of the derived module categoriR) of Rand the derived
module categor@ (A, ) of the adeéle ring\,, associated witliz. Whenk is an algebraically closed field,
the ringA,, can be precisely described in terms of Laurent power seirig((x)) overk. Moreover,
if @ is a union of finitely many cliques, we give two different sifieations of the derived category of
Endk(Ry @ Ry /R) by derived categories of rings, such that the two stratibeatare of different finite
lengths.

1 Introduction

Tilting modules over tame hereditary algebras have playgmbaial role in the development of the representa-
tion theory of algebras: Finite-dimensional tilting moeksibrovide a class of minimal representation-infinite
algebras which can be used together with the covering tgabaiin [[4] to judge whether an algebra is of
finite representation type or not, while infinite-dimensibtilting modules involve the generic modules dis-
covered by Ringel if [27], Prifer modules and adic moduRecently, Angeleri-Hiigel and Sanchez classify
all tilting modules over tame hereditary algebras up toajance in[[3]. One of the main ingredients of
their classification involves the universal localizati@isimple regular modules, which were already studied
by Crawley-Boevey in[[13]. It is worthy to note that Krausedastovicek show very recently in [21] that
over hereditary rings universal localizations and ringregiphisms coincide. For finite-dimensional tilting
modules over tame hereditary algebras, their endomorpaigebras have been well understood from the
view of torsion theory and derived categories (sée [7],,[IB]], [28], and others). Especially, in this case,
there are derived equivalences between the given tameitaeyeigebras and the endomorphism algebras of
titing modules. However, for infinite-dimensional tilirmodules, one cannot get such derived equivalences
any more (see [5]). Nevertheless, if they are good tiltinglaies, then the derived module categories of their
endomorphism rings admit recollements by derived moduiegeaies of the given tame hereditary algebras
themselves on the one side, and of certain universal l@talizs of their endomorphism rings on the other
side, as shown by a general resultlin [8]. Here, not much isvknabout the precise structures of these
universal localizations as well as the composition factdrhese recollements. In fact, it seems to be very
difficult to describe them in general.
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In the present paper, we will study these new recollemermggrfrom a class of good tilting modules
over tame hereditary algebras more explicitly. In this sgdesituation, we can describe precisely the universal
localizations appearing in the recollements in terms ef@dnhgs which occur often in algebraic number the-
ory (seel[24, Chapter V], determine their derived compasifactors, and provide two completely different
stratifications of the derived module categories of the ammphism rings of these tilting modules.

Let R be an indecomposable finite-dimensional tame hereditgsbah over an arbitrary field Of our
interest are simple regul&-modules. Now, we fix a complete sét of all non-isomorphic simple regular
R-modules, and consider the equivalence relatioon . generated by

Ly~ Ly for Ly, Ly €. if Exth(Ly,Ls) #0.

The equivalence classes of this relation are called cli¢gess[13]). It is well known that all cliques are finite,
and all but at most three cliques consist of only one simpalsg module. For a simple regulBrmoduleL,
we denote by#’ (L) the clique containing.. Similarly, for a subset’ of ., we denote by¢’(7) the union
of all cliques? (L) withL € 7.

Let ¢ be a clique an&/ € ¢. Then there is a unique Pruf&module, denoted by [«], such that its
regular socle is equal ¥ (see[[27]). Moreover, for any two non-isomorphic simpleuleagmodules inc, the
endomorphism rings of the Prifer modules correspondirtgeim are isomorphic ( see, for instance, Lemma
[32(3)). Hence we definB(c) to be Eng(V [«]) for an arbitrary but fixed modulé € c. It is shown that
this ring is a (not necessarily commutative) discrete wanaring. Therefore, the so-called division ring
Q(c) of fractions ofD(c) exists, which is the “smallest” division ring containifiif ¢ ) as a subring up to
isomorphism.

Let u C . be a set of simple regular modules, andRgtstand for the universal localization Bfat ¢ in
the sense of Schofield and Crawley-Boevey. Then it is prav§2] ithat theR-moduleT, := R, Ry /Ris a
tilting module. Following[[3, Example 1.3], iff is a union of cliques, thB-moduleTy, is called the Reiten-
Ringel tilting module associated with. This class of modules was studied first(in|[27] and genedlthen
in [25]. As a main objective of the present paper, we will camtcate us on the derived categories of the
endomorphism rings of tilting modulé&g, for arbitrary subsets: of ..

Letk[[x]] andk((x)) be the algebras of formal and Laurent power series kwewone variablex, respec-
tively. For an index sel, we define thé-adele ring ok((x)) by

A= {(fi)iel € IDk((x)) | fi e K[[X]] for almostalli €| },

where[i¢ k((x)) stands for the direct product dfcopies ofk((x)). In particular, ifl is a finite set, then
Ay =k((x)!.

Our main result in this paper is the following theorem, whjmbvides us a class of new recollements
different from the one obtained by the structure of triaagwhatrix rings.

Theorem 1.1. Let R be an indecomposable finite-dimensional tame hergditigebra over an arbitrary
field k. Letur = woUw, be a non-empty set of simple regular R-modules, whgyreontains no cliques and
21 is the union of all cliquegc; }ic contained inu, where | is an index set, and let B be the endomorphism
ring of R, ® Ry, /R, where R stands for the universal localization of R at. Then there is the following
recollement of derived module categories:

TN N

Z(Aq) 7(B) —2(R),
N N

whereA, is the I-ackle ring with respect to the rings(@;) for i € I, that is,

Ay = {(fi)iel € ”Q(Ci) | fi € D(cy) for almost all ie I}.
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In particular, if k is algebraically closed, theA is isomorphic to the I-agle ring A, of the Laurent power
series ring K(x)).

Note that if the fieldk is algebraically closed then the set of all non-isomorphic simple reguld?-
modules can be parameterized by the projectiveliilg), and the adéle rind.pyy is the same as the adele
ring Ay of the rational function fiel&(x) in global class field theory (see [24, Chapter VI] and [16,drieen
2.1.4] for details). Thus, the adele ridg,,) occurs in our recollement of TheorémI1.1 for the Reiten-Ring
titing R-moduleRy» ® R« /R.

As a consequence of Theorédm]1.1, we can obtain new stratfisabf the derived categories of the
endomorphism rings of tilting modules arising from uniaigcalizations at simple regular modules.

Corollary 1.2. Let R be an indecomposable finite-dimensional tame hergditgebra over an algebraically
closed field k. Let r be the number of non-isomorphic simptedgules. Suppose thatis a non-empty finite
subset of? consisting of s cliques. Let B be the endomorphism ring oRiigen-Ringel tilting R-module
associated withz. ThenZ(B) admits two stratifications by derived module categorieg, isrof length s
with the composition factors: r copies of the ring k and s egpf the ring k(x)), and the other is of length
r + s— 1 with the composition factors: + 2 copies of the ring k, s copies of the ring¥| and one copy of a
Dedekind integral domain contained in the ringkk

Observe that iRis the Kronecker algebra amd consists of one simple regular module, then we re-obtain
the stratifications, shown in the exampleldf [8, Section@jyf Corollany1.2.

Now, let us state the structure of this paper. In Section Zjxvsotations and recall some definitions and
basic facts which will be used throughout the paper. In 8ac3i, we first prepare with a few lemmas, and
then prove the main result, Theoréml1.1. In Section 4, wedassider the case of general tame hereditary
algebras, and then turn to the special case of the Kronetdedra. With these preparations in hand, together
with a result in [20], we can determine the derived compasitiactors of the derived categories of the
endomorphism rings of Reiten-Ringel tilting modules, ametéfore get a proof of Corollafy 1.2.

Acknowledgements The author H. X. Chen would like to thank the Doctor Funds eijiBg Normal
University for partial support, and the corresponding autD. C. Xi would like to acknowledge partial sup-
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2 Preliminaries

First, we recall some standard notations which will be ukeolghout this paper.

All rings considered are assumed to be associative and dathtity, all ing homomorphisms preserve
identity, and all full subcategories of a given category are closed under isomorphic images, that i¥ if
andY are objects i, thenY € © whenevelyY ~ X with X € ».

LetRbe aring.

We denote byrR-Mod the category of all unitary lefR-modules, and byr-mod the category of finitely
generated unitary leR-modules. Unless stated otherwise, byRamodule we mean a leR-module. For an
R-moduleM, we denote by add) (respectively, Ad(l\/l)) the full subcategory oR-Mod consisting of all
direct summands of finite (respectively, arbitrary) direatns of copies oM. If | is an index set, we denote
by M() the direct sum of copies ofM.

If f:M — Nis ahomomorphism dr-modules, then the image gfc M underf is denoted by(x) f in-
stead off (x). Also, for anyR-moduleX, the induced morphisms HagtX, f) : Homg(X,M) — Homg(X,N)
and Hong(f,X) : Homg(N, X) — Homg(M, X) are denoted by* and f,, respectively.
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Given a clasa: of R-modules, we denote by () the full subcategory drR-Mod consisting of all those
R-modulesM which have a finite filtration 8 Mg C M3 C --- C My = M such thatM; /M;_ is isomorphic
to a module inu for eachi. We say thaM is a direct union of finite extensions of modulestinif M is the
direct limit of a direct system of submodulesMfbelonging tof (u).

Let Z(R) be the (unbounded) derived categoryRMod, which is the localization of the homotopy
category ofR-Mod at all quasi-isomorphisms. Furthermore, we alwaystifie R-Mod with the full sub-
category ofZ(R) consisting of all stalk complexes concentrated on degree. zé is well known that
Homy ) (X,Y[n]) ~ Extx(X,Y) for anyX,Y € R-Mod andn € N, where[n] stands for the-th shift functor
of Z(R), and that the triangulated catega®(R) has small coproducts, that is, coproducts indexed by sets
existin Z(R).

If Ris an Artink-algebra over a commutative Artin ririgwe denote byD the usual duality, and bythe
Auslander-Reiten translation &

Now, let us recall the definition of recollements of triaregeld categories. This notion was first intro-
duced by Beilinson, Bernstein and Deligne [in [6] to study tii@ngulated categories of perverse sheaves
over singular spaces, and later was used by Cline, Parsttheott in[10] to stratify the derived categories
of quasi-hereditary algebras arising from the represientaiheory of semisimple Lie algebras and algebraic
groups.

Let » be a triangulated category with small coproducts. We delmpfé| the shift functor ofp.

Definition 2.1. [6] Let »’ andD” be triangulated categories. We say thats a recollement ofo” and»”
if there are six triangle functois,i*,i', j', j. andj, as in the following diagram

i* i

T

D i*:i’; D = p!

N NoS
such that

(1) (i*,1,). (ir.i), (jr. j) and(j*, j.) are adjoint pairs,
(2) i, j« and ], are fully faithful,

(3)i'j, = 0 (and thus alsg'i; = 0 andi* j, = 0),

(4) for each objec€ € », there are two triangles in:

ii'(C) — C — j,j"(C) — ii'(C)[1] and jij'(C) — C —i,i*(C) — jij'(C)[1].

In the following, if D is a recollement ofo’ andD”, we also say that there is a recollement amarig
» andD”, or very briefly, thatp admits a recollement.

A well known example of recollements of derived categoriesmms is given by triangular matrix rings:
A M
0 B
ring associated witlh, B andM. Then there is a recollement of derived categories:

Suppose thaf, B are rings, and tha¥l is anA-B-bimodule. LetR = > be the triangular matrix

2(A) 2(R) 2(B) .
N N
A generalization of this situation is the so-called styati) ideals defined by Cline, Parshall and Scott, and
can be found in[10].

Another type of examples of recollements of derived caiegasf rings appears in the tilting theory of
infinitely generated tilting modules over arbitrary ringe€ [8]). Before we state this kind of examples, we
recall first the definition of tilting modules over arbitramngs from [14], and then the notion of universal
localizations which is closely related to constructingrig modules.
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Definition 2.2. An R-moduleT is called a tilting module (of projective dimension at masepif the follow-
ing conditions are satisfied:

(T1) The projective dimension df is at most 1, that is, there exists an exact sequenee:F) — Py —
T — 0 with B, projective fori = 0,1,

(T2) Exty(T, T(®) = 0 for eachi > 1 and each index set, and

(T3) there exists an exact sequence

0—RrR—Tp—T1 —0

of R-modules such thak € Add(T) fori =0,1.
A tilting R-moduleT is called good ifTo and Ty in (T3) lie in addT), and classical ifT is good and
finitely presented.

A special kind of good tilting modules can be constructednfiajective ring epimorphisms, including
particularly certain universal localizations. The foliog result on universal localizations is well known.

Lemma 2.3. (see [12], [29])Let R be a ring andz a set of homomorphisms between finitely generated
projective R-modules. Then there is a ring &d a homomorphisih : R — Ry of rings with the following
properties:

(1) A is Z-inverting, that is, ifa : P — Q belongs t&, then R ®ra : Rs ®rP — Ry ®r Q is an isomor-
phism of R-modules, and

(2) A is universalz-inverting, that is, if S is a ring such that there existZ-#nverting homomorphism
¢ : R— S, then there exists a uniqgue homomorphisnRs — S of rings such thad = Ay.

(3) The homomorphist : R — Ry is a ring epimorphism witfor(Rs,Rs) = 0.

We callA : R — Ry in LemmalZ.B the universal localization 8fat . Recall that, by[[2, Theorem
2.5], if A is injective and thér-moduleRs has projective dimension at most one, th&n® Ry /R s a tilting
R-module.

Of particular interest are the following two kinds of unigal localizations.

The first one is associated with subsets of elements in ribhgs® be a non-empty subset & Then
we consider the universal localization Bfat all homomorphism®, with r € ®, wherep, is the right
multiplication mapR — R defined byx — xr for x € R. For simplicity, we writeRy for this universal
localization, and say thay is the universal localization d® at ®. Note that, by the property of universal
localizations,Ry is also isomorphic to the “right” universal localization Rfat all left multiplication maps
Or : Rr — Rr defined byx — rx for x € @, which are regarded as homomorphisms of righnodules.
Clearly, if 0€ @, thenRg = 0. If O ¢ @, then we consider the smallest multiplicative subseR obntaining
®, and geRp = Ro,. Recall that a subsa® of Ris said to be multiplicative if @ ®, 1 € ®, and it is closed
under multiplication.

From now on, we assume thdtis a multiplicative subset dr.

Under some extra assumptions @nthe ringRy can be characterized by Ore localizations which gen-
eralizes the notion of localizations in commutative ringis.explain this point in detail, we first recall some
relevant definitions about Ore localizations. For moreitietae refer to[[23, Chapter 4].

Definition 2.4. A subset® of R is called a left denominator subset Rfif @ satisfies the following two
conditions: (i) For anya € Rands € ®, there holdgban Rs# 0, and(ii) for anyr € R, if rt =0 for some
t € @, then there exists sontec ® such that’'r = 0. If ® satisfies only the conditiofi), then® is called a
left Ore subset oR.

Similarly, we can define the notions of right denominatos setd right Ore sets, respectively. Clearly,
if Ris commutative, then every multiplicative subsetRois a left and right denominator set. Furthermore,



if Ris a domain, that isR is a (not necessarily commutative) ring which has neithrzlero-divisors nor
right zero-divisors, thefR\ {0} is a left denominator set if and only if it is a left Ore set ifdaanly if
Rri N Rrz # {0} for any non-zero elementg,r, € R. We say thaR is a left Ore domain iR\ {0} is a left
denominator set.

The following lemma explains how left Ore localizationssari and establishes a relationship between
left Ore localizations and universal localizations.

Lemma 2.5. [23, Theorem 10.6, Corollary 10.11kt ® be a left denominator subset of R ahdR — Ro
the universal localization of R ab. Then there is a ring, denoted I8y 'R, and a ring homomorphism
u: R— ® 'R such that

(1) pis®-invertible, that is,(S)p is a unit ind~!R for each & @,

(2) every element ob~ 1R has the forn((t)u)_l(r)u for some £ ® and some E R,

(3) ker(p) = {r € R| sr=0for some & ®}, and

(4) there is a unique isomorphism: ®*R — Ry of rings such thak = pv.

The ring®~1Rin LemmdZ.5 is called a left ring of fractions Bf(with respect tap C R), or alternatively,
a left Ore localization oR at ®. Clearly, for commutative rings, Ore localizations andubkeal localizations
at multiplicative subsets coincide.

Similarly, when® is a right denominator subset Bf we can define a right rinB®—* of fractions ofR.

If @ is a left and right denominator subsetRfthen® 1R is called the ring of fractions dR, or the Ore
localization ofR at ®. Actually, in this case, botb~ 'R andR® 1 are isomorphic t&Re. Furthermore, iR
is a left and right Ore domaiR, then the ring of fractions dR with respect tdR\ {0} is usually denoted by
Q(R). Notice that, up to isomorphisn@(R) is the smallest division ring containiri@ as a subring. So we
call Q(R) the division ring of fractions oR.

The other kind of universal localizations is provided bywansal localizations at injective homomor-
phisms between finitely generated projective modules, lagcttore related to finitely presented modules of
projective dimension at most one.

Suppose that: is a set of finitely presenteld-modules of projective dimension at most one. For each
U € 4, there is a finitely generated projective presentatiod ahat is, an exact sequenceR®imodules

() 0—PLYPy U0,

such thaP; andP, are finitely generated and projective. Set= {fy |U € @ }, and letR,, be the universal
localization ofRatZ. If f, : Q1 — Qo is another finitely generated projective presentatiot) pthen the
universal localization oR atX’ := {f/, |U € «w} is isomorphic toR;,. HenceR, does not depend on the
choices of the injective homomorphismig, and we may say th&,, is the universal localization d? at «.

Clearly, we have T¢t(Ry,U) =0 for alli > 0 andU € u, and therefore T6(R,,X) =0 for alli >0
andX € 7 (u).

Now, we state the promised example of recollements as a gitapo which is a consequence 6ff [8,
Lemma 6.2, Corollary 6.6]. It is worthy to notice that the alfement in this proposition is, in general,
different from the one obtained from the structure of triglag matrix rings.

Proposition 2.6. Let « be a set of finitely presented R-modules of projective dimerane, and lefA :
R — Ry be the universal localization of R at. Suppose thak is injective and that the R-module,fhas
projective dimension at most one. SetEndk(Ry /R), B:= Endk(Ry; © Ry /R) andX .= {Sxg fy |U €
« }. Then there is a recollement of derived module categories:
S S
2&) ——2B8) ——2(R),
N~ SN~

where S is the universal localization of S at



In many cases we can use this proposition repeatedly betaedellowing result states that iterated
universal localizations are again universal localizagion

Lemma 2.7. [29, Theorem 4.6LetZ and[l be sets of homomorphisms between finitely generated pvgect
R-modules. Sdt := {Rx®@gr f | f € ['}. Then the universal localization of R &tJT is isomorphic to the
universal localization of RatT, that is, Rur ~ (Rs)r as rings.

Next, we recall the definition of discrete valuation rings.

Definition 2.8. Aring Ris called a discrete valuation ring (which may not be comunegif the following
conditions hold true:

(1) Ris a local ring, that isR has a unique maximal left ideat,

(2) Nizgm' =0;

(3) m = pR= Rp wherep is some non-nilpotent element &f

We remark that an equivalent definition of discrete valuatiags is the following: A non-division ring
Ris called a discrete valuation ring if it is a local domaintwit the unique maximal ideal d® such that the
only left ideals and the only right ideals Bfare of the formm! for i € N.

The elementp in the above conditior{3) is called a prime element d&®. Clearly, for each invertible
elementv of R, bothvp and pv are prime elements. A discrete valuation ring is said to bepiete if the
canonical magr — I'@i R/m! is an isomorphism. Note that every discrete valuation riag loe embedded
into a complete discrete valuation ring.

The following lemma collects some basic properties of decwaluation rings, which will be frequently
used in our proofs.

Lemma 2.9. ([22, Chapter 1],[[2B3])et R be a discrete valuation ringy the unique maximal ideal of R, and
p a prime element of R. Then the following statements are true

(1) The idealsn' (i € N) are the only left ideals and the only right ideals of R.

(2) For any non-zero elementxR, there are unique elementg % € R\ m such that x=x;p" = p"x
for some ne N.

(3) Ris a left and right Ore domain. In particular, the divisiomg Q(R) of fractions of R exists.

(4) Q(R) is isomorphic to the universal localization of R at the nmx R — R defined by > rp for
reR.

Finally, we prepare several homological results for owrlaroofs.

Lemma 2.10. Let R be a ring and le® — X (f—gg Y®Z MW — 0 be an exact sequence of R-modules.

Assume that f X — Y is injective and that there is a homomorphi§mY — Z with g= f§: X — Z. Then
there exists an automorphisgnof the module ¥5 Z and an isomorphisny : W — Coker(f) & Z such that
the following diagram commutes:

H (1,0) lq) (01) lw

01

0 X Y®Z Cokel(f)Z ——0,

wherert: Y — Coker( f) stands for the canonical surjection.

0
(f,9)¢ = (f,0). Thus, there exists a unique homomorphigmW — Coker(f) @ Z, such that the exact
diagram in Lemm&2.10 is commutative. Cleadhis an isomorphism. This completes the prddf.

Proof. Set¢ = ( 1 f). Then¢ is an automorphism of the modu¥ed Z. Sinceg = f§, we have

The following homological facts are well known in the litaree (see, for example, the bodk [17]).
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Lemma 2.11. Let R be aring.
(1) If {Xa}ael is a direct system of R-modules, then

0] HomR(Ii%n)Xq, M) ~ I% Homg(Xq, M) for any R-module M.
(i) For any finitely presented R-module M, we h&Werm(M,IiLn)xq) ~ Im Homr(M, Xy).
a a
(i) Let n > 0. If M is an R-module with a projective resolution - P, 1 — - =P =P —M =0
such that all R, with0 < j < n+ 1, are finitely generated, then

Extr(M, lim Xq) = lim Extz(M, Xq)

foralli <n.
(iv) If M is a pure-injective R-module (for example, M is oftériength over its endomorphism ring),
then

Extr(lim Xa, M) = ljm Extx(Xa, M)

for all i > 0. Conversely, if this isomorphism is true foil and for every directed system Xhen M is
pure-injective.
(2) If {Yq }aer is an inverse system of R-modules, then, for any R-module M,

Homg(M,lim Yy ) =~ lim Homg(M, Yy).
T

Remarks (1) The statement (iv) is due to Maurice Auslander.
(2) The class of all pure-injectivB-modules is closed under products, direct summands and &imgect
sums. In general, it is not closed under extensions.

Lemma 2.12. Let A be a finite-dimensional k-algebra over a field k, M a fidii@ensional A-module and
N an arbitrary A-module.

(1) If proj.dim(M) < 1, then CExt;(M,N) ~ Homa(N,TM), whereproj.dim(M) stands for the projective
dimension of M.

(2) If inj.dim(M) < 1, thenExtx(N,M) ~ DHoma(t~*M, N)), whereinj.dim(M) stands for the injective
dimension of M.

Proof. It is known that everyA-moduleN is a direct limit of finitely presenteé-modules{ X4 }qci, and
that (1) and (2) hold true for finitely generated modulesThen, it follows from Lemm&a2.11 that

DEXt3(M,N) = DEX;(M,lim Xq) = D lim Extx (M, Xq) = lim DEXG;(M, Xq)
a a a

=~ im Homa (Xy, TM) =~ Homa (lim X, T™) = Homa(N,T™).
a a

This proves (1). The statement (2) can be shown similatly.

3 Proof of the main result

Unless stated otherwise, we assume from now orRligan indecomposable finite-dimensional tame hered-
itary algebra over an arbitrary but fixed fiekd

Let . := Z(R) be a fixed complete set of isomorphism classes of all simgjelaeR-modules. For
eachU € . andn > 0, we denote by [n] the R-module of regular length on the ray

(x) U=U[ljcU2lc---cU[ncUn+1cC---,
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and letU [eo] = lim U [n] be the Prufer module correspondinglo Note thatU [«] has a unique regular

n

submoduleU [n] of regular lengthn, and therefore admits a unique chain of regular submodates,that
each endomorphism &f[e] restricts to an endomorphism dfin] for anyn > 0. For further information on
regular modules and Prifer modules over tame hereditgabeds, we refer t¢ [27, Section 4, 5] ahd|[15].

Recall that we have defined an equivalence relatioon . in Sectior[1. It is known that two simple
regular modules lie in the same clique if and only if they highe same tube. Thus a clique is just the set of
all simple regular modules belonging to a fixed tube.

LetU € . andu C .. We denote by# (U) the clique containindgJ, and byc(U) the cardinality of
%' (U). Similarly, we denote bg’ () the union of all cliquess’(U) with U € «, and byc(« ) the cardinality
of €(u ). As mentioned beforeg(U) is always finite, and furthermore(U) = 1 for almost alll € .. In
fact, there are at most 3 cliques consisting of more than ment. Also, we know that all cliques consist
of one simple regulaR-module if and only ifR has only two isomorphism classes of simple modulek.idf
an algebraically closed field, this is equivalent to tRag Morita equivalent to the Kronecker algebra.

3.1 Endomorphism rings of direct sums of Piifer modules

In this subsection, we shall consider the endomorphismairige direct sum of all Priifer modules obtained
from a given tube. This ring was calculated already in [2%r €onvenience of the reader and also for the
later proof of our main result, we include here some detditkie calculation.

Throughout this subsection, letbe a clique oR-mod,U € ¢, andt the tube of rankn > 1 containing
c. SetU; :=1-(-DU fori € Z. Thent ™U ~U, and¢ = {U1,Uy,--- ,Un_1,Un} which is a complete set
of non-isomorphic simple regular modulestirSinceU; ~U;., for any j € Z, the subscript ot); is always
modulomin our discussion below. Itis well known that Bg(tl; ) is a division algebra and HagiJ;,Uj) =0
for1<i=# j<m and thaDExt%e(Ui,Uj) ~ Endk(U;) if j =i1—1, and zero otherwise. Furthermoteés an
exact abelian subcategory Bfmod, and every indecomposable modulé is serial, that is, it has a unique
regular composition series in For example, for any € Z and j > 0, the moduldJ;[j] admits successive
regular composition factond;,Uj,1,--- ,Ui;j—1 with U; as its unique regular socle and with,j_; as its
unique regular top. For details, see|[28, Section 3.1].

Now, we mention some properties of Priifer modules.

Lemma 3.1. The following statements hold true for the tube

(1) Forany1 < i < m and for any regular module X tnwe haveHomg(U; o], X) = 0 = Exts(X,Uj[o]).
Further, if 1 <i < j <m, thenHomg(U;[n],Uj[e]) =0 for 1 < n < j—i, and Homg(Uj[n],U;[e]) = O for
1<n<m-—j+i

(2) Leti,j e Nwith1 <i < j. Then, forany n> j —i, there is a canonical exact sequence of R-modules:

0 Uilj—i] — Ui “Su;n—(j—i)] —o.

In particular, we get a canonical exact sequence
0 — Ui[j —i] — Ui[eo] L Uj[o0] — O,
whereg; j := “T> & j[n]. Moreover, we have; j = & 1m j+m andg; j €j p = & , for any p> j.
(3) Leti,j e Nwith1 < j—i < m. Therg ; induces an isomorphism of l&nck(U; [])-modules:
(€i,j)" - EndR(Ui[eo]) — Homg(Uj [eo] U [e0] ),
and an isomorphism of righEndz(Uj [])-modules:

(&)« : Enck(Uj[e0]) — Homg(U; [e0], U [co]).
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In particular, we get a ring isomorphisi j : Endk(Uj[o]) — Endr(Uj[e]), f — ' for f € Endg(Uj[e]) and

(4) Supposd <r, s, t <m. Set\; s:= { 2 :I : i Z and defingt s = & s;a, ;m € HOMR(Ur [0, Usia, m|[e0]).
Then
) Thy if Ars+Ast = Dry,
Ths Tt = { T, Ty Otherwise

In particular, we haveT;)¢; ; =1 ; foranyl <i < j<m.
(5) The ring Endkr(U;[e0]) is a complete discrete valuation ring with; as a prime element. If k is an
algebraically closed field, then there is a ring isomorphigmEndz(U;[0]) — K[[x]] which sends; to x.

Proof. (1) Note thatDExts(X,U;[e]) ~ Homg(U;[eo],TX) for any X € t by LemmaZ.IR2(1), and that
every indecomposable moduletitis serial. This means that, to prove the first statement int(sluffices to
show Hong(Ui[e],U;) = 0 for all 1< j <m. In fact, since the inclusion map[n] — Uj[n+ 1] induces a
zero map from Hom(U; [n+ 1},U;) to Homr(U;[n],U;) for all n. This implies that

Homg(Ui[eo],U;) = Homg(lim Ui[n],U;) ~ im Homg(U;[n],U;) = 0.

The last statement in (1) follows from the fact that the abetategory is serial.
(2) For anyn > j —i, we can easily see from the structure of the tutiet there is an exact commutative
diagram ofR-modules:

0——Ui[j—i] — Ui — i (i) ——0

0——Uilj—i] —=Un+ 10" 20— (j—i) +1 —0,

where the mayg; j[n| is induced by the canonical inclusiahj —i] — U;[n]. Thus, by taking the direct limit
of the above diagram, we obtain the following canonical esaquence

(#) 0— Ui[j —i] —> Ui[e0] =55 Uj[o0] —> O,

whereg; j :=1im & | [n]. This finishes the proof of the first assertior{&). In the following, we shall show that
n
€ j = €i+m j+m ande; j€; p = & p forany p > j. In fact, the former clearly follows frorg ;[n] = & m j+m[N]

for anyn > j —i, sinceU; = Ui, andU; = U, by our convention. As for the latter, one can check that,
for anyu > p—i, the composition of

&ij[ul 1 Uilu — Ujlu=(j—1)] and &jplu—(j—i)]:Ujlu—(j—i)] — Uplu—(p—i)]

coincides withg; p[u] : Uj[u] — Up[u— (p—1i)]. So, we have; j[u]€j p[lu— (j —i)] = & p[u]. Consequently,
by taking the direct limit of the two-sides of the equalitye Waveg; j €j , = & , for any p > j. This completes
the proof of(2).

(3) If we apply Hong(U;[], —) to the sequencéx) in the proof of(2), then we can get the following
exact sequence:

0 Hormg(Ui[eo], Ui i) — Hom(Ui[eo], Ui oo]) 25 Hom(U eo], Uj [o]) — Exth(Ui[eo], Ui ).

Note that Horg(U; [o],U;j[j —i]) = 0 by (1). Thus, to prove tha; j)* is an isomorphism, it suffices to show
Exti(Uj o], Ui [j —i]) = 0. In fact, this follows from Ex§(Uj o], U;[j —i]) ~ DHomg (T~ (U;[j —i]),Uj[e0]) =~
DHomg(Ui;1[j — i],Ui[e] = 0, where the last equality holds ford j —i < mby (1).

10



Next, if we apply Homg(—,U;[]) to the sequence:], then we get the following exact sequence:

0 — Enck(U;[0]) ™25 Homi(Ui[eo], Ui eo]) — Homg(Ui[ — i, Uj [e]).

Since 1< j —i < m, we have Hom(U;[j —i],Uj[«]) = 0, and thereforée; ;). is an isomorphism.
Now, it follows from the isomorphismé; j)* and(g; ). that the map

¢i j : Enck(Ui[eo]) — Enck(Uj[])

in (3) is well-defined and thus a ring isomorphism.
(4) By definition, for 1<r, s,t < m, one can check

ThsTst = ErstAsmEst+agym = ErstArsMESLA s t+(Agt+Drs) M = Ert+(Ars+Agy) M-

On the one hand, for any > r andq > r, we infer from(2) thate; , = & q if and only if p=g. On the other
hand, we always hau s+ Asy — At € {0,1}. Consequently, the first statement in (4) follows. In paittc,
this implies thatrg ;1 ; = 175 ; for 1 <i < j < m. By the definition ofg; ; in (3), we can prove the second
statement in (4).

(5) SetD; := Endk(Uj[x]). It follows from [27, Section 4.4] thab; is a complete discrete valuation
ring. Letm be the unique maximal ideal &;. We shall prove thatg; is a prime element ob;, that is,
m =T5;D; = DiTg;. Indeed, by applying Hog(—,Uj[]) to the following exact sequence:

0 — Ui[m] — Uj[e0] 2 Uj[oo] —> 0,
we obtain another exact sequence of ribfdmodules:

0—s D ™% p; — Homg(Us[mi, Uifee]) — O,

due to Exg(Uj[eo],Uj[e0]) = 0, which follows from [27, Section 4.5]. To show = 15;D;, we first claim that
Homg(U;[m|,U;[e0]) ~ Homg(U;,U;[]) ~ D;/m as rightD;-modules.
Let

0— U — Uim "y jm—1 — 0

be the exact sequence defined in (2). Then we get the follogtagt sequence gfmodules:
Homg (Ui, 1[m— 1],U;[e]) — Homg(U;[m],U;[e]) — Homg(U;,U;[0]) — Exts(Uj,1[m— 1],Uj[e]).

Since Hong(Uj;1[m — 1],Ui[e0]) = 0 = Exth(Ui,1[m— 1],U;[]) by (1), we have Hom(U;[m],U;[eo]) ~
Homg(U;,U;[e]) as rightD;-modules.

It remains to show Hog(U;,U;[e]) ~ D; /m as rightDj-modules. Let

C €iit+1
0 — U; — Uj[o0o] —5 Uj;1[0] — O

be the exact sequence defined in (2) wjtthe canonical inclusion. Since BXtU; 1)[e],U;j[»]) = 0 by
[27, Section 4.5], we infer that, for anf/ : U; — Uj[eo], there isg € D; such thatf = {g. This means
Homg(U;,U;[e0]) = CD;. Clearly,{D; ~ D;/N as rightD;-modules, wheré\ := {h € D; | ¢h= 0}. As the
canonical ring homomorphism froBy; to Endk(U;) via the map induces a ring isomorphism froB; /m to
Endk(U;), we havelm = 0, that is,m C N. SinceD; is a local ring andN C D;, we getN = m, and therefore
Homg(U;,U;[e]) ~ D;j /m as rightDj-modules. This finishes the claim.

From the above claim, we conclude thatcoincides with the image dfrg; )., that is,m = 15;D;. Simi-
larly, we can proven = D;Tg ;. This means that ; is a prime element db;. As for the second statement in
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(5), we note that, for anyp € N and 1< g < m, the canonical inclusion mag[pm-+ q] — U;[pm-+ g+ 1]
induces an isomorphism:

Homg(Ui[pm-+q + 1, Ui [e0]) —> Homg (Ui [pm-+ g, U [e0]).
Consequently, we have the following isomorphisms of abgji@ups:
D = HomR(Iim Ui[n],Uj [eo] ) =~ L Homg (Ui[n], U[ ])
N# HomR(U.[(n 1)m+1], UI ) N# m K[x]/(x") ~ K[[X]].

Here we need the assumption thais algebraically closed field. Now, one can check directlgt tthe
composition of the above isomorphisms yields a ring isorisr ¢; : Di — Kk[[x]], which sendst; to x.
This finishes the proof.]

By Lemma3.1(3), the rings ErdJ;[e]), with 1 <i < m, are all isomorphic. From now on, we always
identify these rings, and simply denote themdc). Further, we writem(¢) andQ(¢) for the maximal
ideal of D(¢) and the division ring of fractions dD(c), respectively. In particulam(c) = 15;D(¢C) =
D(c)T,.

Suppose that is aZ-module anct € C. For 1< i, j <m, we denote by j(c) themx mmatrix which
has the(i, j)-entry ¢, and the other entries 0. For simplicity, we wrig; for E; (1) if C is a ring with the
identity 1.

Lemma 3.2. For 1 <i,j <m, letrg ; be the homomorphisms defined in Lenima 3.1(4). Then therérigar
isomorphism

D(c) D(c) D(c)

p: Enoh(égui[oo]) —T(c):= m(c) D(c)
- Lo D(c)
m(c) -+ m(c) D(c)

mxm

which sends F1(Tim1) t0 Em1(Tmm) and E;1(Thr+1) to E 41 for 1 <r < m, where the maximal ideal
m(c) of the ring D(¢) is generated by the elememf m.

Proof. For any 1<i < m, by Lemmd3.11(2) an(#), we have the following exact sequenceRafmodules:
0 — Uj[m—i] — Uj[eo] =% Uppfoo] — O.

Summing up these sequences, we can get the following exgotisee:

m-1 m
0— DUIM—i] — @Uj[eo] — Up[eo] ™ — 0,
i=1 j=1
whereé = diag(n17m, Tom, -, Th-1,m, 1), the m x m diagonal matrix withrg n, in the (i,i)-position for

1 <i< m, and with 1 in thg m, m)-position.

m
Let D := Enck(Um[]), and letm be the unique maximal ideal &. SetA := Enoh(@uj[oo]). Since
j=1
HomR(Ui [m—il, Um[oo]) = 0for 1<i < m, we see that, for ang € A, there exists a unique homomorphism
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f and a uniqgue homomorphishsuch that the following diagram is commutative:

m-1 m
0—> PUim—i] —= PUje] — > Yyfeo] ™ — 0
i=1 j=1 |
| |
f gl h
A |
m-1 m £ y
00— PUim—i] — P[] — > Up[eo]™ — 0.
i=1 =1

This yields a ring homomorphism: A — M (D) defined byg — h. More precisely, ify= (guy) eN
with gy,v € Homg(Uy[eo],Uy[e0]), thenh = (hyy) € My (D) with h,, € D satisfying

(@) QuvThym = Tymhyy if U< mandv <m,

(0) hmy = OmyTm if U= mandv < m,

(€) gum = Tymhym if U< mandv=m, and

(d) hmm = gmm-

In particular, the magp sendsE, in A to E, in Mm(D). In this sense, we may wrife = (puN)
wherepyy : Homg(Uy[e],Uy[]) — D is defined bygy,.y — hyy.

Clearly, p is injective since Hom(Uj[e],Ujim—i]) =0 for 1< j <mand 1<i < mby Lemm&3.]1(1).
In the following, we shall determine the imagemfwhich is clearly a subring df1(D).

On the one hand, for ang € Endkr(Uy[o]), b € Homg(Uy[e],Uy[e0]) and ¢ € Enck(Uy[e]), we have
(abo)puy = (@)puu(b)puv(c)pyy.- OnN the other hand, it follows from Lemnha B.1(3) timat, is always a
ring isomorphism, and the left ERfUy[e])-module Hong(Uy[e],Uy[e0]) is freely generated by, for 1 <
u# v <m. This implies that the image @f coincides with them x m matrix ring havingD (Ti,y)pyy in the
(u,v)-position if 1< u=v<m, andD otherwise. Moreover, by Lemmdia B.1(3) and (4), €5 <t <m
and 1< w < m, we can form the following commutative diagrams:

1<uv<m

1<uv<m

1<uv<m’

Tsm

Tk m Thym

Usl[m] — Um‘[m] Utr] — Uml[m] Uml[m] . Uml[m] UWJ/[”] - Um‘[m]
Tist Tk s Timm Tmw Timm Thym
Urfoo] =" Un[eo],  Usleo] = Upn[oo],  U[oo] - Upnfeo],  Upnoo] == Upo[e].

In other words, we havéri;)pst = 1 = (Tym)Pwm and (Tg s)Pt.s = Tm = (Timw)Pmw- Thus, the image of
p is equal to them x m matrix ring havingD Tim, as the(p, g)-entry for 1< g < p <m, andD as the other
entries. By Lemma&_311(5), we know = D 1t ,. Now, by identifyingD with D(¢) andm with m(c¢), we
infer that the image of coincides with the rind” (¢) defined in Lemm&3]2. Therefore, we conclude that
p:A—T(c) is aring isomorphism which send,1(Tin1) t0 Em1(Timm) andE;,+1(Thr11) to Eri1 for
1 <r < m. This completes the proofl]

Combining Lemma 3]1(5) with Lemnia_3.2, we then obtain théo¥ahg result which will be used for
the calculation of stratifications of derived module categgin the next section.

Corollary 3.3. For 1 <i, j <m, lettg ; be the homomorphisms defined in Lenim& 3.1(4). Assume that k is
an algebraically closed field. Then there exists a ring isgehizsm

KIX] K] - K]

0: End(@Uiw]) —r(m:= | @ KM
)
0 o 00 KK

which sends F1(Tn1) t0 En1(X) and B 1(Ter41) t0 Erpq for 1<r <m.
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3.2 Universal localizations at simple regular modules

From now on, let us fix a non-empty subgebf ., where.# is a complete set of isomorphism classes of all
simple regulaiR-modules. Denote bk : R — Ry, the universal localization dR at «. It follows from [29,
Theorems 4.9, 5.1, and 5.3] thais injective andR,, is hereditary. Moreover, it is shown inl[2, Corollary
4.6(2), 4.7] andB] that thB-module

Ty =Ry ®Ry /R

is a tilting module with Hom(R, /R Ry ) = 0.
Suppose
(*) 0— R Ry 5 Ry/R—0,

is the canonical exact sequenceRfmodules withtt the canonical surjection. S&:= Endk(Ty), S:=
Endk(Ry /R) andX := {S®r fu |U € u}. Recall that the right multiplication map: R — S defined by
r— (y—yr) forr € Randy € S/R, is a ring homomorphism, which endo@svith a naturalR-R-bimodule
structure.

Let u* be the full subcategory d®-Mod, defined by

u* :={X € R-Mod | Ext;(U,X) =0 for all U € w andalli € N}.

For example, the Prifer modWge] forV € .\ @ lies inu* by Lemmd31L(1).
This subcategory has the following characterization, dJ&ltProposition 3.8].

Lemma 3.4. u* coincides with the image of the restriction funciar: R;,-Mod — R-Mod. In particular,
for any Ye @, the unit adjunctiomy : Y — Ry ®RrY, defined by v+ 1@y forye Y, is an isomorphism of
R-modules.

Thus, for arR-moduleY € ¢, we may endow it with afR,,-module structure via the isomorphistg,
and in this way, we consider tiemoduleY as anR;-module. Note that thi&k,-module structure ol
extended from th&module structure is unique.

Concerning the universal localizatid®, of R at u, we have the following facts (seel [3, Proposition

1.10], [29] and[[13]).

Lemma 3.5. (1) Suppose that: contains no cliques. Then.Ris a finite-dimensional tame hereditary k-
algebra. In particular, the tilting R-module,Tis classical. Moreovef R, @RV |V € .\« } is a complete
set of non-isomorphic simple regular,Rnodules, andR, ®rV )] ~ Vo] as R,-modules for each \&
L\U.

(2) Suppose that: contains cliques. Then.Ris a hereditary order. MoreovefR, ®grV |V € S\ u }is
a complete set of non-isomorphic simplg-Riodules, and the injective envelope of theiRodule R, ®rV
is isomorphic to o] for each Ve .7\ u.

(3) Supposer C #\u. Then R,y = (Ru)7, where? := {R, ®rV |V € ¢}. In particular, there are
injective ring epimorphisms R— R, ,,», and R, ,, — R~.

As remarked in[[1B3], in the case of Leminal3.5(1), the set opEmegularR,-modules in a clique is of
the form
{R‘u @RV |V ec,V ¢ ‘U},

wherec is a clique ofR. Further, by Lemm&315(1), for eathe ¢\ u, the Prifer modules corresponding
to Ry ®RV and toV are isomorphic. In particular, they have the isomorphicoemorphism ring.

Thus, if ¢1, C2,- -+ ,andcs are all cliques from non-homogeneous tubes ar i§ a union ofc(¢j) — 1
simple regulaR-modules from eacly;, then each clique dR,, consists of only one single element. This im-
plies thatR,, has only two isomorphism classes of simple modules. If, thtamh, the fieldk is algebraically
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closed, therR,, is Morita equivalent to the Kronecker algebra. In this casece the set of cliques of the
Kronecker algebra are parameterizedyk), we see that the set of cliques of an arbitrary tame hergditar
k-algebra can be indexed B} (k).

A description of the structure of the moduR, /R was first given in[[30], and a further substantial
discussion is carried out recently id [3]. Especially, thikofving lemma is proved iri 3], where the fiekds
required to be algebraically closed. In fact, one can chieak tf k is an arbitrary field, all of the arguments
in the proof of the lemma ir [3] are still valid except somedrihanges. For instance, the fisdddhould be
replaced by certain division rings in most of the proofs.

Lemma 3.6. (1) The R-module R/R is a direct union of finite extensions of modulesiin
(2) Lett € R-mod be a tube of rank m- 1, and letu = {U1,Uz,--- ,Un_1} be a set of m- 1 simple
regular modules it such that Y, =t~ U; forall 1 <i <m-—1. Then

Ry /R~Ui[m—1]®) g Uy[m—2]%2) q... Um_l[l](éum—ﬁ,
with &y, := dimgngyu;) EXt]é(Uj,R) for 1 < j <m- 1. Moreover, R, ®rUm ~ Uy[m| as R,;-modules.
(3) If @ is a union of cliques, then, for any finitely generated projecR-module P,
R(Ru/R) ®rP = P U [eo] @),

Ucu
wheredy p 1= diMgngyu) EXt(U,P).

Next, we shall show th&,, and Eng(R /R) can be interpreted as the tensor product and direct sum of
some rings, respectively.

Lemma 3.7. Letu = ugUu1 C .# such thatu contains no cliques and ; is a union of cliques. Then the
following statements are true:

(1) up C uf, u1 C U, Ry ~ Ry, @rRy, @s Ry, -Ryy-bimodules, and R/Ry, ~ Ry, ®r(Ry,/R) as
Ry, -R-bimodules.

(2) There is a ring isomorphism

¢ : Entk(Ry /R) — ENdR(Ry,/R) x Endk, (Ru /Ru,).-

Proof. (1) By the assumption o, if U € g andV € w; then they belong to different tubes, and
thereforeto C u; andu; C 1.

By Lemmd& 3.4, the unit adjunctian, : U — Ry, ®rU is an isomorphism oR-modules for any) € «.
This implies that every module in; can be endowed with a uniqu®,,-module structure that preserves
the givenR-module structure via the universal localizatidp: R — Ry,. Consequently, it follows from
Lemmd3.5(3) thaR, = (Ry,)w,.- Moreover, we can construct the following exact commueatliagram of
R-modules:

0 0
A
0 R—=2 > Ryy — 2 >Ry, /R——=0
L
(%) 0 R— Ry —™ ~Ry/R 0
™ ™
Rru/Rruo —_— R‘U/R‘Uo
0 0,
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whereA is the universal localization dR., at 71, andA is the canonical injection induced i, and
whereTy, Ty andTp are canonical surjections.

Clearly, Ry, is a finite-dimensional tame hereditary algebra by Lerhmkl3.5-romR,, = (Ry,)«, We
see thaRy, /Ry, is a direct union of finite extensions of moduleszin by Lemmd3.6(1). SincBy, is the
universal localization oR at 711, we have Tq?(Rﬂl,V) =0 for anyi > 0 andV € u1. Note that the-th left
derived functor Td¥(Ry,,, —) : R-Mod — Z-Mod commutes with direct limits. Thus TRy, Ry /Ry,) =0
for anyi > 0, which implies that the homomorphisiRg, ®rA1 andRy;; ®rA, are isomorphisms. Moreover,
by Lemmd2.l7, we hav, = (Ruy ), With g :={Ry, ®rU |U € 1}, and therefor®R,, can be regarded
as arRy,-module. Consequently, the canonical multiplication mapR,, ®rRy; — Ry, is an isomorphism.

Now we apply the tensor funct®,;, ®r — to the diagran(x), and get the following exact commutative
diagram ofR,;,-R-bimodules:

Ru; ®RAo Ry, ®RTO
R‘le ®R R 1—> R‘le ®R R’Uo 1—> R'Ul ®R (R‘UO/R) - O
H NlRﬂl@R)\l NlR‘“1®R)\2
Ry, @RA Ry, @RTT
Ru; ®RR - Ru, ®RRy - Ra;, @R (Ru /R) ——0
|
2‘/\)1 :lVZ |
N
0 Ru, Ry Ru/Ru, 0,

wherev; is the multiplication map. ThuR, ~ Ry, ®r Ry, asRqy,-Ry,-bimodules, andRy, /Ry, ~ Ry, ®r
(Ryy/R) asRy,-R-bimodules.
(2) Note thatuy C u0+ and ug C uf and thatug and w4 consist of finitely presented modules of
projective dimension one. By Lemmatal3.5(1) 3.6(1), arewriteR, /Ry, = IiLn>Xq with X4 € 7 (u1).
a

Then, by Lemm&2.11, we have the following isomorphisms:

—
a

() Exth(Ruo/R Ru /Rug) = lim Exth(Ry/R Xa) = 0= jm EXth(Xe, Ruo/R) ~ EXth(Ru /Rusg, Rug/R)
a
for any j > 0. Particularly, the canonical exact sequence

0— Ryg/R 2% Ry /R% Ry /Ry, — 0

splits inR-Mod, that is,R;, /R~ Ry,/R & Ry /Ry, asR-modules. Sinc&®k — Ry, is a ring epimorphism,
we have Enf(Ry /Ry,) = Entk, (Ru/Ry,). Thus it follows from ¢x) for j = 0 that

Enck(Ry /R) = Enck(Ru,/R) X Enck, (Ru /Rus)-

This completes the proof of (2]

3.3 Proof of Theorem 1.1

Before we start with the proof of the main result, Theofenh Wé have to make the following preparations.

Lemma 3.8. Letu = ugUwu C . such thatu is a union of cliques andig does not contain any cliques.
Set/\ = Enck, (Ru /Ry,) and® 1= {A®Rr, (Ruo®rfv) [V € U1}, Si= Enck(Ry /R) andX 1= {S®r fu |
U € u}. Then $ is isomorphic to the universal localizatiohg of A at ©.
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Proof. By Lemma[3.%, we hav®,, ®rV ~V asR-modules for eaclV € @;. Combining this with
Lemmal3.5(1), we see that; can be seen as a set of simple regiar-modules, and thereforR, =
(Ruy)u, by Lemmd3.5(3). More precisely, for akye w4, we fix a minimal projective presentation

0P YsPy—sV -0
of V in R-mod, and get a projective presentatiorVaih Rq,,-mod :

Rfuo®RfV
0— Ry ®rP1 — Ry, ®rPo—V — 0.

This is due to the fact that TRfRy,,V) = ToR(Ryg, Ru, @rV) ~ Tor ™ (Rug, Rug ®RV) = 0. Thus Ry is
the universal localization d®y,, at the se{ Ry, ®r fv |V € u1}. Note thatRy,, is a tame hereditari-algebra
by Lemmd3.5(1).

Let A i= Enck, (Ru/Ru,) and® = {A®g,, (Ru, ®r fv) |V € u1}. In the following, we shall show
thatSs is isomorphic to\e.

Let I := Endk(Ry,/R) andd = (¢o,91) : S— T x A, wheredo : S— I andd, : S— A are the ring
homomorphisms given in Lemnia B.7(2). Recall thatR — Sis the right multiplication map. Sefy =
Ubo: R—T andpy = pd; : R— A. Clearly, bothyy andpy are ring homomorphisms, through whigh
andl" have a righiR-module structure, respectively. Now, we wiie= {Sxg fy |U € u } as® x W with
®:={Terfy|Ucu}and¥ :={Axrfy |U € u}. Consequently, the ring isomorphigpnmplies that
S ~ o x Ayw. To finish the proof, it suffices to prove thag = 0 andAy ~ Ap.

Indeed, we writed = ®y U P with @y := {I Rr fy |U € up} and®; := {I @r fy |U € u1}. Then,
by Lemmd 2.V, we havEg ~ (F¢0)51, where®; := {[o, ®r fu |U € u;}. To provel ¢ = 0, it suffices to
provel o, = 0. Consider the canonical exact sequencB-afodules:

0— R2% Ry, 2% Ryy/R— 0,

By Lemmal[3.5(1), the modul&,, := Ry, ® Ry, /R is a classical tiltingR-module, and therefor& (R) is
triangle equivalent t&(Ends(Ty,)) in the recollement o7 (R), Z(Enck(Ty,)) and Z(I" »,) by Proposition
[28. Thus o, =0andlr = 0.

It remains to show\y ~ Ag. Letpp : Ry, — A be the right multiplication map defined Iby— (X +— xr)
forr € Ry, andx € Ry, /Ry,. Then, along the diagraifx) in the proof of Lemm&3]7, one can check that the
following diagram of ring homomorphisms

A
RHO R‘Uo

P, b

S——A
commutes. Now, we writdd = WoU W, with
Wo:={A®rfy|Ucuo} and Wi:={Axrfy|Vcu},

and claimAy, = A. It suffices to show thaf\ ®r fy is an isomorphism for any € uo. However, this
follows from A ®g fy ~ /\®Rﬂ0 (Ry, ®r fu) and Ry, ®r fu being an isomorphism by the definition of
universal localizations. Hendey, = A.

Now, we have¥; := {Ay, @ah| h€ W1} = W;. It follows from Lemmd 2.7 thaf\y ~ (Ao, = Ay,
Further, we havé\ g fy ~ N®Ry, (Ry, ®r fy) for anyV € w1. By comparing the elements @ with the
ones inW4, one knows immediately th#ty ~ Ag, and therefor&: ~ Ag, finishing the proof]

17



Next, we shall show that the universal localizations ofriest for us take actually the form of adéle rings
in the algebraic number theotly [24]. Before stating theofelhg lemma, we first recall some notations.

Let ¢ be a cliqgue oR-mod. Recall thaD(¢ ) stands for the endomorphism ring of a Prifer modjle]
with V € ¢. Note thatD(¢) is a discrete valuation ring with the division ri@(c) of fractions ofD(¢).
Clearly,Q(¢) containsD(c) as a subring.

Lemma 3.9. Suppose that: C .# is a union of cliques, sayi = Ui ¢; with | an index set. Let S=
Endk(Ry/R) andX = {Sxg fu |U € w}. Then § is Morita equivalent to the a&le ring

Ay = {(fi)iel € ”Q(Ci) | fi € D(ci) for almost all ie I}.

Proof. For any finitely generated projecti®moduleP, we always hav8xrP ~ Homg(R; /R, (R /R) ®r
P) asSmodules. Thus, we can rewriie= {Homg(R /R, (Ry /R)®r fv) |V € u}. The whole proof of
Lemmd3.9 will be proceeded in three steps.

Step(1). We provide an alternative form of the homomorphifRy, /R) ®r fy for anyV € «.

In fact, this procedure can be done for each cligue «. Let us give the details: Fix a cligue C «

and an elementt € ¢, and choose a projective resolution —6> P; i> Py — U — 0ofU in R-mod,
whereP; andP, are finitely generated projectii@modules. As\ : R— Ry, is the universal localization of
Rat u, we know thatR,, ®r fu : Ry ®rP1 — Ry ®r Py is an isomorphism. This yields the following exact
and commutative diagram &modules:

0
0 U
U]
A@RP: P
0—— P LR, @rPL 2L (Ry /R) @rPL — 0
fu ~ | Ry ®rfu (Ru/R)®rfu
)\@RPQ T[®RPO

0—— P ——= Ry ®@rPo —— (R4 /R) @rPo ——0

0.

Consider the following short exact sequencd&kahodules:

(Rfu/R)@RfU
_ >

(@ 0—=U—2+ (Ry/R)@rPy (Ry /R) ®rPy — 0.

On the one hand, by Lemrha B.6(3), we have
(R /R) @rPL~ D P Vo™

iel Veg

for someny € N, whereny is non-zero sincé) can be embedded inf®,, /R) ®r P1. On the other hand, for
W € «, we have Hom(U,W|w]) =0 if W 22U, and Hong(U,U [e]) ~ Endk(U ). Now, let

0-—U U] ™ (17U)[eo] — 0
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be the canonical exact sequence defined in Leinnia 3.1(2) ewbeis the canonical inclusion. Sé& :=
Endk(U[]). ThenD is a discrete valuation ring. Particularly, it is a localgiwith a unique maximal ideal
m. By the proof of Lemm&3]1(5), we know that HaJ,U [»]) = {yD ~ D/m as rightD-modules. This
means that, for ang : U — U], there is a homomorphisifd € D such thato = {y3. Moreover, if the
above homomorphism is non-zero, thefd must be an isomorphism.

Keeping these details in mind, we can form the following cammetive diagram:

w
H (Cu.9) l

U9 Ule] & E,

whereE is an R-module andg : U — E is an R-homomorphism which factorizes through. Then, by
applying Lemm&2.70 and combinirig) with (b), we can construct the following exact and commutative
diagram:

(Ry /R)@rfu

0——=U — (Ry/R) @rP (Ru/R) ®@rPo——=0
0 ﬂ @O Yok — ) Y] E o,

Suppose” = {U3,Uz, -+ ,Un-1,Un} withm> 1 such that ~U; = U;;; for any 1< i <m, where the subscript
of U; is always modulom. SupposeJ = U; for some 1< j < m. This means thaty coincides with
TG j4+1 : Uj[oo] — Ujy1[e0] defined in Lemm&3]1(4), wherg,m:1 = Tim1 by our convention.

Set

M:=PUi[»], A:=Enck(M) and M :={Homg(M,Ts;1)|1<s<m}.
i=1

Step (2). We proveAn =~ Mm(Q(c)), them x mmatrix ring over the division rin@(c).

For convenience, if K u,v < m, we denote byE,, the m x m matrix unit which has 1 in théu,v)
position, and 0 elsewhere.

By Lemma[3.2, there is a ring isomorphigmm A — I'(¢), which send<Ey,1(Tin 1) t0 Em1(Tm) and
Esst1(Thst1) t0 Essiq for 1 <s<m-—1 (see Lemm&3]2 for notations). L : M (C)Emm — M(C)E11
andds: '(c)Ess — I'(C)Es1.s+1 be the canonical homomorphisms induced by multiplying enright by
Em1(Tmm) andEss, 1 for 1 <s<m-—1, respectively, and defir@:= {¢m} U{ds| 1 <s<m—1}. Asaresult,
we getAn ~ I'(C)e. It remains to prové (¢)e ~ Mm(Q(c)). In fact, by Lemm&213, one can check that the
canonical inclusion fronfr (¢) to Mn(D(c¢)) is the universal localization df(c) at {¢s |1 <s< m—1}.
Observe that the universal localizati®{¢ )r,,, of D(¢) at Tinm is equal toQ(c) by LemmaZ.B. Now,
combining Lemm&2]7 with Corollary[8, Corollary 3.4], weviea

F(C)o ~Mm(D(C))4, = Mmn(D(C)mnn) ~ Mm(Q(C)),

whered, : Mim(D(C))Emm — Mm(D(¢))Ex is the canonical homomorphism inducedBy: (Tinm). Thus
An =~ Mmn(Q(c)).

Step (3). We show thaf; is Morita equivalent to the adele rimy,, defined in Lemm&_3]9.

Indeed, by Lemma3.6(3), we haRe, /R~ @ic; By, V], wheredy := dimgng,v) EX(V,R) =
dimgngyv)or (TV) # 0. We claim that there exists € N such thady < dforallV € .

In fact, let{S; | 1 < j <r} be a complete set of isomorphism classes of sirRgteodules for some € N.
For eachX € R-mod, denote by dif{ € N' the dimension vector of. Now, let< —, — >:N' x N' — Z be the
Euler form of the tame hereditakyalgebreR, that is,< dimY, dimZ >:= dimy Homg(Y, Z) — dimy Exty(Y, Z)
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withY,Z € R-mod, and further, lefj: N" — Z be the quadratic form d®, that is,q(dimY) :=< dimY, dimY >,
and leth = (h;)1<i<, be the minimal positive radical vector gf It is known thath is equal to the sum of
the dimension vectors of all simple reguRimodules int’ for an arbitrary tube’ of R. Therefore, we have
Oy < dim(tU) < (3ih)(3;dimgS)) < oo for U € .. In particular, if we taked = (3; hi)(3;dimgSj), then
oy <dforallV € u, as claimed.
Set
N:=€P Vo] and I :=Enck(N).

iel Vegi
By the above claim, one can check that HgR, /R,N) is a finitely generated, projective generator for
SMod, and therefores is Morita equivalent td”. Note that Morita equivalences preserve universal local-
izations by [[8, Corollary 3.4]. Thus, we conclude from Stép and the definition of that S; is Morita
equivalent td” ¢ with

®:={Homg(N, %) |V € U }.

Now, letu = £ Uw be an arbitrary decomposition such tlzais a union of cliques with i in an index
setlpg and thatw is a union of cliqueg™; with j in an index set;. Note thatl = loUl1. Moreover, ifi, j € |
with i # j, then Hong(U [],V [0]) = 0 for allU € ¢j andV € ¢j. Thus, by LemmB3]2, we get the following

isomorphisms:
(%) T ”Endq( P V(w]) ~ |"r(a) ~ [T (c)x [T (c).

VEC iclp icly

We writelg := ic, [ (¢i) andl 1 := i, I (¢) and decompos® = ®p U @1 where
®g:= {Homgr(N,T%/) |V €2} and @1:={Homg(N,Ti)|W e W }.

Under these isomorphisn{s), we can regard, (respectively®;) as the set of homomorphisms between
finitely generated projectivieg-modules (respectively,;-modules). With these identifications, one can prove
Mo~ (To)og X (M),

Next, we assume that each cliquezin is of rank one, and each cligqliec £ is of rank greater than one.
Clearly, £ is a finite set.

On the one hand, by the foregoing discussion and &gpwve obtain

(Moo ~ [ Mee) (QUcH) )-

i€lp

On the other hand, we haVg = [, D(¢i). Now, we claim(l'1)e, ~ A, , where

A, = {(fi)ial € |‘| Q(ci) | fi € D(¢) for almost alli € Il}.

i€ly

This ring is similar to the so called adele ring appearinthmalgebraic number theory (s€el[24, Chapter 5,
Section 1]).

Actually, for eachi € |1, the cliquec; consists of only one simple regular module. Hence we write
D(ci) = Endk(ci), which is a discrete valuation ring with a unique maximakidgenerated bys.

We defineg := ([3,-)1.ell el byBi=1andBj=0if j#i, and define; := ((9,-)J.€|1 €l by =mand
Bj=1if j#i. Letd;: 16 — I'16 be the right multiplication map defined loy— g for anyg € D(¢).

Under the isomorphisméx), we can identify®; with {¢; | j € I1}. Note that the right multiplication
mapg; defined byg; has the following form:

_ i 0
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SetW:= {g; | j € I1}. Itis easy to see thdl 1)e, is isomorphic to the universal localizatigi1)y of 'y
at W. We consider the minimal multiplicative subsétof I'; containing alle; for j € 11. Clearly, (I'1)y
is isomorphic to the universal localization bf at Y, that is, the universal localization &f; at all right
multiplication maps induced by the elementsYofOne can check

Y= {(fi)iell € [1{(m)" Ine N} | fi = 1for almost alli € Il} Cry.

i€ly

We claim thatY is a left and right denominator subsetlaf (see Definitio Z4).

Indeed, le = (&)icl, € M1 ands= (1" )ic;, € YWwith nj € N. SinceD(c;) is a discrete valuation ring for
eachi € |1, we haveD(¢) " = 11"D(c;), and thereford 1= [J;c;, D(¢I)T" = [Tic;, ' D(¢i). This means
sae YanTs+# 0, which verifies the conditiorfi) in Definition[2.4. On the other hand, #s= 0, then
am" = 0. Sincer" £ 0 andD(c;) is a domain foii € I;, we havea = 0, and sca = 0, which verifies the
condition ii) in Definition[2.4. ThusY is a left denominator subset bf. Similarly, we can prove tha(is
also a right denominator subsetlof.

It remains to prover 1y ~ A,,. In fact, it follows from Lemma 2]5 that the universal loaliion of
1 atY'is the same as the Ore localizatign'l'; of ' atY. Moreover, by LemmB& 219, we see that, for each
j € 11, the Ore localization oD(c;) at{(1;)" | n € N} is the division ringQ(¢j) of fractions ofD(c¢j). Thus,
by the definition of Ore localizations (see Lemimd 2.5), omeesasily provey Iy ~ A, .

Summing up what we have proved, we get

o~ (Mo)op % (Mo, 2= [ Mee) (QUGH)) x Ay,

i€|0

the latter is Morita equivalent td,. As S is Morita equivalent td ¢, we see tha&s is Morita equivalent to
Ay . This completes the whole prodi]

Proof of Theorem[1.1. Recall thatB = Endk(Ry, & Ry, /R) andS:= Endk(R, /R). By Corollary[2.6,
there is a recollement of derived module categories:

(x)  2(S) 7(B) 7(R),
~N_ ~

where$s is the universal localization $at> := {Seg fy |U € u }.

Now we write 4 = ugU 11 C ¥ such thatug contains no cliques and; is a union of cliques’;
with i € I, an index set. We conclude from Leminal3.8 tBaiis isomorphic to the universal localization
No of A at © with A = Endqﬂo(Rﬂ/Rﬂo) and® := {A SRy, (Ry, ®r fv) |V € w1}. Note thatRy, is a
finite-dimensional tame hereditakyalgebra, and thati; is a union of cliques when regarded as a set of
simple regulaiR,,-modules. Now, by applying Lemna3.9/,, and 1, we can deduce thd{g is Morita
equivalent to the adeéle ringy;, in Theoreni 1.11.

Thus, we have proved th& is Morita equivalent td\,, . If we substituteZ(S;) by 2(A4) in (x), then
we obtain the desired recollement of derived module categam Theorenh 1]1:

=T =N
P2(Aq) 2(B) —— 9(R) .
N N
This completes the proof of the first part of Theofen] 1.1.

As for the second part, we note thatkifs algebraically closed, then, for each cligueof R, the rings
D(c) andQ(c) are isomorphic t&[[x]] andk((x)) by Lemmd3.1L(5), respectively. Now, combining this with
the first part of Theorefn 1.1, we know thég, is isomorphic tad,. This finishes the proof]
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If we take u = .7, then the tiltingR-moduleR» @ R»~ /R is a Reiten-Ringel tilting module (sele [27]).
This tilting module is actually of the forr®™ @ @ .., U[o]®), whereG is the unique generig-module
with n = dimgpg,c) G, anddy = dimgng,u) Exth(U,R) for U € .7 (see[[3, Proposition 1.8]). Recall that
is parameterized by the projective lifié(k) if k is algebraically closed. As a consequence of Thedrein 1.1,
we have the following corollary.

Corollary 3.10. If k is an algebraically closed field and T is the Reiten-Rirtgtng R-module T, then
there is a recollement

LT T T
~— S~~~

4  Stratifications of derived module categories

In this section, we shall use Theorém]1.1 to get stratifioatiof the derived categories of the endomorphism
rings of tilting modules of the fornR,, & Ry, /R. It turns out that our consideration for general tame hered-
itary algebras is converted into understanding the caspetfial tame hereditary algebras consisting of two

isomorphism classes of simple modules. In particulak, i an algebraically closed field, we are led to the

Kronecker algebra. In this way, we shall prove Corollaryif.this section.

4.1 Universal localizations of general tame hereditary algbras

In this subsection, we shall discuss the endomorphism edgedd tilting modules associated with universal
localizations of tame hereditary algebras at simple reguladules. The consideration here will be served as
a part of preparations for stratifications of derived catiegan Subsection 4.3.

Throughout this subsectioR is an indecomposable finite-dimensional tame hereditaygbmh over an
arbitrary fieldk, and.” := .#(R) is the complete set of isomorphism classes of all simplelaefamodules.

Let u be an arbitrary subset o¥. The following result gives a characterization of the urseé local-
izationR,, of Rat « from the view of derived equivalences.

Lemma4.l. Letu C.¥. Thenthere existg’ C . with 7 N9 = 0such that, forw := « U4/, the following
statements are true.

(1) There is a finite-dimensional tame hereditary k-algeAnaith only two non-isomorphic simple mod-
ules, and a set of simple regularA-modules such that R coincides with the universal localizatioh; of
Aats.

(2) The R,-module T:=R,, ®R,, /Ry is a classical tilting module. In particular, Rand Endz, (T)
are derived-equivalent.

Proof. Supposeu = 1oy C . such thatig contains no cliques andy is a union of cliques. Observe
that we may assumag = 0. In fact, if ug is not empty, we can repla¢eby R, andu by @3 sinceRy, is
a tame hereditary algebra and can be seen as a set of simple regégg-modules.

From now on, we supposgg = 0, that is,« is a union of cliques. Let’ be a maximal subset o¥ with
respect to the following property? N« = 0 and%’ contains no cliques. In other words, from each cligue
not contained iruz, we choose(¢) — 1 elements, and le¥’ be the union of all these elements. Clearly, the
choice of is not unique in general.

Let w := « Uv, and letu 1 be the union of all cliquesic| in u of rank greater than one, whelrés a
finite set. We choose(c;) — 1 elements from each fori € I, and let?’ be the set consisting of all of these
elements. Now, we define = ¥ U4/ and writew = £ UM .

We claim that the statemeril) holds true. Indeed, it follows from Lemnia 8.5(1) tHat is a tame
hereditary algebra such that all cliquesRyf consist of only one simple regular module. This means that
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R, has exactly two isomorphism classes of simple modules. Byrha3.5(3), we havR,, = (R, )ar With
o ={R, ®gL|L € a}. Thus, setting\ := R, ands := 2/, we get the stateme(t).

In the following, we shall show the statemé&@y. Note thatt’ contains no cliques. Thus, it follows from
Lemma3.5(1) thaR,, is a tame hereditary algebra aRg /R s a finitely presente@®-module. By Lemma
B7(1), R, /Ry ~ Ry ®r (R, /R) as Ry-R-bimodules. This implies thaR,, /Ry, is a finitely presented
R.,-module, and so is the;,-moduleT. Hence,T is a classicaR;-module.]

As a consequence of Lemrha 4.1, we obtain the following reswhich describedR,, up to derived
equivalence by a triangular matrix ring such that the rimgthe diagonal are relatively simple.

Corollary 4.2. Suppose that: C .7 is a union of cliquesic; with | an index set. Let/ be a maximal
subset of” such thaty’ N« =0 and+’ contains no cliques, and 1&f(7) = Ujcycj with J an index set.
Definew := u U and T, := Ry @ Ry /R. Then the following statements hold true:

(1) There is a canonical ring isomorphism:

_( Ry Homg(Ry,Ry/R)
Enoh(Tu)—<o E:oh(Ru/R) >

(2) Enck(Ry /R) is Morita equivalent tq;c; I (¢i), wherel (¢) is defined in Lemn{a3.2 for each clique
c of R.
(3) Ry, is derived-equivalent to the following triangular matrixg

R H R, ,R, /Ry
Endk, (R, @Rw/RU):< o ogﬁ&( (Tlg;y/wlgq/z) ) )

such that

(a) R,, is the universal localizatior\; of a finite-dimensional tame hereditary k-algel¥xawhich has
two isomorphism classes of simple modules, at & sd@tsimple regularA-modules, and

(b) Enck, (R, /Ry) is Morita equivalent tq7 ey Ter;)-1( Enck(Vj) ), where \f € ¢; is a fixed element
for each je J, and F(A) stands for the x n upper triangular matrix ring over a ring A.

Proof. Clearly, (1) follows fromA : R — Ry, being a ring epimorphism and HaitR,, /R,Ry, ) = 0. (2)
follows from () in Step(3) of the proof of Lemma&a=3]9. As t(8), we first show the statemeftt). In fact, by
the proof of Lemma4l1, we kno®,, /R, ~ Ry ®r (R, /R) asRy-R-bimodules. Sinca’ C u*, we have
Ry ®r(Ry/R) ~ R, /R asR-modules by LemmBR3.4, and therefd®g, /R, ~ R,, /R asR-modules. This
implies that End,, (R,, /Ry ) ~ Enck(R,, /Ry ) ~ Enck(R,, /R). Now, by Lemmad 3.6(2), one can prove

-1

R, /R~ @ EB Uijlc(c) —i]@),

jed =1

whered; ; >0and” N¢j={U;j|1<i<c(cj)} suchthati, ;1 =1"Uj;forall 1 <i<c(cj)—1. Further,
for any j € J, one can check

c(cj)—1

Enck( €D Uijlc(c)) —i]) ~ Toep)-1(Enck(Vj) ),

i=1

whereV; is a fixed element ofj with j € J. Note that Eng(V;) is independent of the choice of elements of
Cj up to isomorphism. Thus ERg(R,, /Ry ) is Morita equivalent tq ;< Te(¢;) - 1(Enck(V))), since there is
no non-trivial homomorphism between two different tubes.

Note that the other conclusions (i8) are consequences of Lemmal4.1 and of properties of injedtige
epimorphisms (see alsa [8, Lemma 6.4(2)]). This complétegptoof.[]
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Thus, by Corollary4]2(3), the consideration of the derigatbgoryZ (R, ) needs first to understand uni-
versal localizations of tame hereditary algebras with tsamorphism classes of simple modules, at simple
regular modules. Ik is an algebraically closed field, then each tame hereditlggbea with two isomor-
phism classes of simple modules is Morita equivalent to thenkcker algebra. So, in the next subsection,
we shall focus our attention on the universal localizatiohthe Kronecker algebra.

4.2 Universal localizations of the Kronecker algebra at simple regular modules

In this subsection, we shall consider the particular tantreditary algebra, the Kronecker algebra. The
results obtained here will be served again as a preparadiothé discussion of stratifications of derived

module categories in the next subsection.
2

Throughout this subsectiork, is a field, andR is the Kronecker algebr< l(; kk ) where thek-k-

bimodule structure ok? is given bya(b,c)d = (abd,acd) with a,b,c,d € k. It is known thatR can be
interpreted as the path algebra of the quiver

Q: 2 :a; 1,
and thatR-Mod (respectivelyR-mod) is equivalent to the category of (respectively, fhtitmensional) rep-

resentations o overk.

. _ _ 0
In this subsection, we denote Bythe representatlork$ k. By Lemma[2.B, one can check that

Ry = M2(Kk[X]), and the universal localizatiokh: R — Ry is given by( g (C’bd) > — ( g czdx > for

a,b,c,d € k. In particular, the restriction functay, : R,-Mod — R-Mod induced byA is fully faithful. Let

e= < é 8 > € Ry. Clearly, the tensor functd®, e®y, — : k[x-Mod — Ry-Mod is an equivalence. Now,

we defineF : k[x]-Mod — R-Mod to be the composition of the functdRy ey — andA.. ThenF is a fully

, _ 1
faithful exact functor, and sends eddi]-moduleM to the representatiom —=M. Moreover, we have
the following result.

Lemma 4.3.[26, Theorem 4T he functor F induces an equivalence between the categfinitefdimensional
k[x]-modules and the category of finite-dimensional regular &thafes with regular composition factors not
isomorphic to V.

Let 7 be the set of all monic irreducible polynomialskix|. For eachp(x) € 7, we denote b the

extension fielk[x] /(p(x)) of k, and byV,x) the representatiorky ) % Kp(x) , which is the image oy

underF. Since simplek[x]-modules are parameterized by monic irreducible polyntsmiafollows from
Lemma 4.8 that” := {V}U{Vyy | P(X) € 2} is a complete set of isomorphism classes of simple regular
R-modules. Ifkis algebraically closed, then = {x—a| a € k}, and therefore#” can be identified with the
projective lineP (k).

The following corollary gives a characterization of the emsrphisms rings of Prifer modules.

Corollary 4.4. Lett be a variable and (x) € #. Then there are isomorphisms of rings:

Enck(V[eo]) ~K[[t]] and Endr(Vpn[o]) > Ky [[t]]-
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Proof. Recall that, for any simple regul&-moduleU, we have Enﬁl( ) L m Endk(U ])
rings. IfU =V, then Eng(U[n]) ~ K[t]/(t") for anyn > 0, and therefore ErgU [c]) ~ M KIt]

k[[t]]. Suppos&) = V). It follows from Lemma4.B thalt) [n] ~ F (k[x]/(p(x)" )) asR-modnuIes and that
Enck(U|[n]) ~ End (kX /(p(¥)")) ~ k[X]/(p(x)") for anyn > 0. Thus Eng(U [e]) ~ L m K[X]/(p(x)").

This implies that End(U []) is a complete commutative discrete valuation ring (see La(5)), and
therefore it is a regular ring of Krull dimension 1. Recalhtla regular ring is by definition a commutative
noetherian ring of finite global dimension. For regular gnthe global dimension agrees with the Krull
dimension.

It remains to provgjnk[x] /(P(X)") =~ kpx [[t]]. Actually, this follows straightforward from the followin

n
classical result (see [L1, Theorem 15] for details):
Let Sbe a complete regular local ring of Krull dimensionwith the residue class field. If Scontains
a field, thenSis isomorphic to the formal power series rikg[ts, - - - ,tm]] overK in variabledts, - - - ,tm,.

Hence Eng(U [o]) ~ L m K[x] ~ Ky x [[t]], which finishes the proof]

In the remainder of this subsection, Iete a subset of, and letwu = {V} U{Vyy | p(x) € A}. We
define theA-adele ring ok[x| as follows:

A(D) == k((1)) x {(ep(x))p(x>€A S LT t)) | Bpx) € Kpy [[t]] for almost all p(x) € A}.

Combining Theorer 111 with Corollaky 4.4, we get the follogiiresult.

Corollary 4.5. Let B be the endomorphism ring of the tilting R-moduledRR,, /R. Then there is a recolle-
ment of derived categories:
N VN
P(A(D)) 2B) —— 2(R) .
N~ N~

In Corollary[4.5, ifA = », then ther-adele ringA(#) of k[X] coincides with the adele ring,,, of the
fraction fieldk(x), which appears in global class field theory (see [24, Chafiieand [16, Theorem 2.1.4]).

Finally, we prove the following lemma as the last preparafir the proof of Corollary 1J2.

Lemma 4.6. Let D be the smallest subring of the fraction fie[atkof k[x] containing both k] and ( ; with

all p(x) € A. Then R, ~ M3(D), the2 x 2 matrix ring over D. In particular, R is Morita equivalent to the
Dedekind integral domain D.

Proof. Definew := {Ry ®rVpy | P(X) € A}. ThenRy = (Ry),, by Lemm&3.b(3). Recall thak, =
Mz (K[x]) andA : R— Ry is the universal localization d? atV. On the one hand, for eagiix) € A, it follows
from Vg = F (ko) = A (Ry @15 Ky ) that

Ry @R Vp(x) 2 Vpx) = Ry @Qypy Kpx) = < o0 >
Ko
asRy-modules. On the other hand, hy [8, Corollary 3.4], Moritaigglences preserve universal localiza-
tions. Consequently, we ha®, = (M2(k[x])),, ~ M2z(k[Xle) with © := {kp | p(x) € A} C k[X-Mod.
Now, one may readily see thkix|o coincides with the localization d&fx] at the smallest multiplicative sub-
set ofk[x] containing{p(x) | p(x) € A}, which is exactly the rind® defined in Lemm&4]6. Sinddx is a
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Dedekind integral domain and since localizations of Deagkntegral domains are again Dedekind integral
domains, we see thél is a Dedekind integral domain. As a result, we h&e~ M;(D). This completes
the proof.(]

Remarks(1) If kis an algebraically closed field, then, for any simple regRlanoduleU, we can choose
an automorphisno : R— R, such that the induced functor, : R-Mod — R-Mod by ¢ is an equivalence with
0.(U) =~ V. This implies that, up to isomorphism, Lemfmal4.6 providesramlete description dr,, for any
subsety of .. In particular,R,, is Morita equivalent to a Dedekind integral domain.

(2) If we localizeR at all non-isomorphic simple regular module$ which is indexed by all monic
irreducible polynomials, then, by Lemrhald.6, we h&e ~ M, (k(x)) since the smallest subring containing
the inverses of all irreducible polynomigtgx) is justk(x).

4.3 Stratifications of derived module categories

The main purpose of this subsection is to prove Coro[lar}y W first recall the definition of stratifications
of derived categories of rings.

As in [1], the derived module categogy(A) of a ringA is called derived simple if it is not a non-trivial
recollement of any derived categories of rings. A stratificaof (A) of a ring A by derived categories of
rings is defined to be a sequence of iterated recollementsedbtiowing form: a recollement oA, if it is
not derived simple, P P

P(A) 7(A) ()
N N
a recollement of the ringy, if it is not derived simple,

T T
P (A1) — 2(A1) —— Z2(A12)
\_/ \_/

and a recollement of the ringyp, if it is not derived simple,

N TN
P(A21) D(A2) P(A22)
~— ~—

and recollements of the ring§; with 1 <i, j <2, if they are not derived simple, and so on, until one arrives
at derived simple rings at all positions, or continue to idim. All the derived simple rings appearing in this
procedure are called composition factors of the stratificat The cardinality of the set of all composition
factors (counting the multiplicity) is called the lengthtbe stratification. If the length of a stratification is
finite, we say that this stratification is finite or of finite &gh.

Proof of Corollary Under the assumption th&tis an algebraically closed field, the following
two facts are knownia) For any simple regulaR-moduleU, the algebras EngU) and Eng(U [«]) are
isomorphic tok andk|[x]] (see Lemm&a3]1(5)), respectively, afi] each tame hereditary algebra having two
isomorphism classes of simple modules is Morita equivateitte Kronecker algebra.

One the one hand, it follows from Theordm]1.1 th&(B) is stratified byZ(R) and 2(4A,), where
I ={1,2,---,s} is an index set of the cliques containeddn and the ringd, is defined in Introduction.
Sincew is a union of finitely many cliques of”, we know thatd, is equal tok((x))®, the direct product of
scopies ofk((x)). ThusZ(A,) has a stratification by derived module categories witbmposition factors
k((x)). Note thatZ(R) has a stratification by derived module categories witlopies of the composition
factork, wherer is the number of non-isomorphic simgRemodules. ThusZ(B) has a stratification of length
r + swith the composition factok of multiplicity r, and the composition factd((x)) of multiplicity s.

On the other hand, by Corolldry 4.2, we know thaiB) can be stratified by (R,, ), Z(Endg, (R;, /Ru))
and Z(Endk(Ry /R)), wherew is defined in Corollary4]2. Here, we have used the known faadt évery
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2 x 2 triangular matrix ring yields a recollement of derived ratedcategories of the rings in the diagonal. In
the following, we shall calculate composition factorsfB).

First, it follows from Corollary{4.P(3) and Lemnia 4.6 tHa}, is Morita equivalent to a Dedekind in-
tegral domain and that ERg(R,, /Ry ) is Morita equivalent tqjc Te(c;)-1(K). It is known from [1] that
every Dedekind domain is derived simple. THRg contributes one composition factor #@(B). It is
easy to see thav (Te;)-1(k)) has a stratification witle(cj) — 1 copies of the composition factér Thus
2(Enck, (Ryy /Ry )) admits a stratification witfy jc; (c(cj) — 1) copies of the composition factér

Second, combining Corollafy 4.2(2) with Corollary13.3, vee shat End(R,, /R) is Morita equivalent to
M1 (c(ci)), wherew is assumed to be a union stliquesc; with 1 <i <'s, and wherd™ (m) is defined
in Corollary[3.3 for each positive integet. Note that the canonical inclusidnof I (m) into Mpy,(k[[X]]) is a
ring epimorphism and thafl,,(k[[x]]) is projective as a leff (m)-module. Thus the sequence

0 I(m) - M (K[[X]]) — coker(f) — 0

is an addr" (m)Eqm)-split sequence in the category of all I&ftm)-modules, and therefore Eqgh ('(m) &
Mm(K[[X]])) and Engm (Mm(K[[X]]) & coker(f)) are derived-equivalent by [20, Theorem 1.1]. Clearly, the
former ring is Morita equivalent t& (m) and the latter is Morita equivalent to Engly (Mm(K[[X]])Emm &
coker(f)). Hencel (m) is derived-equivalent to Engh, (Mm(K[[X]]) & coker(f)) which is just the following
matrix ring:

K[X] O 0
Kk Kk
: .0
k o koK)

For a general consideration of derived equivalences betsekrings of matrix rings, we refer ta [9]. Thus,
we see tha® (" (m)) has a stratification with the composition fackfjix]| of multiplicity one, and the compo-
sition factork of multiplicity m— 1. ThereforeZ(Endkr(Ry, /R)) admits a stratification with the composition
factors:s copies ofk[[x]] andy7_; (c(ci) — 1) copies ofk.

Finally, by summarizing up the above discussions, we catecthatZ(B) has a stratification of length
r + s— 1 with the following composition factors: — 2 copies ok, s copies ofk[[x]] and one copy of a fixed
Dedekind domain. Here, we use the well known fagt: (C(C) — 1) =r — 2, wherec runs over all of the
cliques ofR. Thus the proof is completedl

Let us end this section by mentioning the following questisnggested by our results.

(1) For tilting modules of the formR,, & Ry, /R, we have provided a recollement of the derived categories
of their endomorphism rings. It would be interesting to hawmilar result for tilting modules of other types
described in[[B].

(2) In Corollary[1.2, it would be nice to know that(B) has no other composition factors (up to derived
equivalence) except the ones displayed there.

(3) It would be interesting to generalize the results in @per to hereditary orders.

(4) Suppose the derived catega®(A) of a ring A admits a stratification of finite length by derived
categories of rings. Doe®(A) then have only finitely many derived composition factorsp t@ derived
equivalence).
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