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ON p—RING

MOHAMMED KABBOUR

ABsTRACT. In this paper, we introduced the concept of a p-ideal for a given
R[]
(f(z))
where R is a finite p-ring. It is also shown that the amalgamation of rings,
Aaf J is a p-ring if and only if so is A and J is a p-ideal. Finally, we establish
the transfer of this notion to trivial ring extensions.

ring. We provide necessary and sufficient condition for to be a p-ring,

1. INTRODUCTION

All rings considered below are commutative with identity element # 0; and all
modules are unital. Following N.H. McCoy and D. Montgomery [§], a ring R is said
to be a p-ring (p is a prime integer) if 2P = x and px = 0, for each x € R. Thus
a Boolean ring, as a ring in which every element is idempotent, is simply 2-ring
(p = 2). Recall that a ring is said to be reduced if its nilradical is zero.

The following conditions on a ring R are equivalent:

(1) For each a in R, there is some b € R such that a = a?b.

(2) R is a reduced ring and every prime ideal is maximal (i.e R is a reduced
0-dimensional ring).

(3) For any maximal ideal m of R, the localization Ry, at m is a field.

A ring satisfying the conditions as above is called a von Neumann regular ring. See
for instance [4 [5].

Let A be aring, F an A-module and let R = A « FE be the set of pair (a, e) with
pairwise addition and multiplication is giving by (a,e)(b, f) = (ab,af + be), R is
called the trivial ring extension of A by E (also called the idealization of F over A).
Considerable work, part of it summarized in Glaz’s book [4] and Huckaba’s book
[5], has been concerned with trivial ring extensions.

Let A and B be a pair of rings, J an ideal of B and let f : A — B be a ring
homomorphism. The following sub-ring of A x B :

Al J={(a,f(a)+7); ac A jeJ}

is said to be amalgamation of A with B along J with respect to f. Motivations and
some applications of this construction, introduced by M. D’Anna, C.A. Finocchiaro
and M. Fontana, are well discussed with more detail in the recent paper [2].
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The main purpose of this paper is to give new and original families of examples
of p-rings. Also we investigate the transfer of this notion to trivial ring extensions
and amalgamation of rings.

2. MAIN RESULTS
We state formally the definition of a p-ideal for a given ring.

Definition 2.1. Let R be a ring and let p be a prime integer. An ideal I of A is
called a p-ideal if for each x € I :

2P =z and px =0.

From this definition, we can deduce that a ring R is a p-ring if and only if every
principal ideal of R is a p-ideal.
In the next theorem, we give a necessary and sufficient condition for Z/nZ to have
a nonzero p-ideal.

Theorem 2.2. Let n be a nonnegative integer and let p be a prime integer.

o Ifu,(n) =1 (vp(n) is the p-valuation of n) then Z/nZ has a unique nonzero
p-ideal.
e Otherwise (0) is the unique p-ideal of Z/nZ.

Proof. We say that every ideal of Z/nZ has the form kZ/nZ, where k € {0,...,n —
1}. Assume that v,(n) = 0 and let k be an integer such that 1 < &k < n—1. Suppose
that kZ/nZ is p-ideal, then pkx € nZ for each element x in Z. Thus n divides pk
and so n divides k, witch is absurd. We deduce that (0) is the unique p-ideal of
Z/nZ.

We shall need to use the following property:

Let Ry, ..., R, be rings then every ideal of Ry X - -+ X R,, has the form I; x --- x I,,
where I, is an ideal of Ry, for each k € {1,...,n}.

On the other hand, it is easy to see that I; X - -+ x I, is a p-ideal if and only if so is
I, for all k € {1,...,n}. Now suppose that v,(n) = 1 and let ¢ be the integer such
that pg = n. We denote F,, = Z/pZ, the Galois field of order p. From the assump-
tion (since p is relatively prime to g), we can write Z/nZ ~ F, x Z/qZ. From the
previous part of the proof F), X Z/qZ has a unique nonzero p-ideal, which is F,, x (0).

Assume that a = v,(n) > 2. There is some positive integer g, relatively prime to
p, such that n = p%q. Hence Z/nZ ~ 7./p*Z x 7/qZ. Let I be a p-ideal of Z/p*Z.
Since px = 0 for each x € I, there exists some integer k € {0,...,p — 1} such that
I = kp*~'Z/p*Z. From the assumption p divides kz ((kzp®~')P~! — 1) for every
integer x. But p is relatively prime to (kzp®~1)P~! —1, thus p must divides k, there-
fore k = 0. We conclude that I = (0), and so (0) is the unique p-ideal of Z/nZ. O
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For example let R be the ring Z/60Z. Then we have, as follow, the list of all
p-ideals of R, where p ranges over the set of prime integers:

20Z/60Z is the unique nonzero 3-ideal of R.
127Z./60Z is the unique nonzero 5-ideal of R.

R has not a nonzero 2-ideal (since v2(60) = 2).
(0) is a p-ideal for each prime integer p.

Theorem 2.3. Let p be a prime integer and let f(x) € F,lz] be a nonconstant
Iy []
(f ()

at last one simple zero in Iy,

polynomial over Fy,. Then contains a nonzero p-ideal if and only if f(x) has

We need the following lemmas before proving Theorem2.3]

Lemma 2.4. Let R be a p-ring, R[x] the polynomial ring over R in the indetermi-
R
nate x and let f(z) be an element of R[x]. Then [2]

W is a p-ring if and only if
f(x) divides aP — x.

L s a pring. Then (« + (/)7 = 2 + (),
therefore 2P — x € (f(x)). Conversely, assume that f(z) divides 2 — x and let
0 # g(z) € R[z]. By induction on n = degg, the degree of the polynomial g(x),
we claim that (g(z))” = g (2P). Indeed, it is certainly true for n = 0. Assume
that the statement is true for each k¥ < n and that degg = n+ 1. We put g(x) =
ani12" Tt + g1(z), where 0 # a,, 11 € R and g1 (z) € R[z] such that degg; < n. By
the binomial theorem,

(9(2))" = (ans1z™ )" + (g1(2))" = af 127 + g1 ().

Thus (g(x))P = g (aP), as desired.

On the other hand, 2P — x divides 2*P — 2* for each positive integer k. Hence 2P — 2
divides (g(z))? — g(x), and so (g(z) + (f(z)))? = g(z) + (f(x)). Finally, it is easy
to see that p(g(z) + (f(x))) = 0, so we have the desired result. O

Proof. We suppose that

Lemma 2.5. Let f(x) be an irreducible polynomial over F), and let k be a nonneg-
atiwe integer. Then the following statements are equivalent:

F
(1) The ring [7] contains a nonzero p-ideal.

(f*(=))

18 @ p-Ting.

is isomorphic (as a ring) to Fp.

In this case k =1 and deg f = 1.
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Fpla]
_ (f*(x))
J(x)F
{0,...,k — 1} such that I = f(gi)i(ggx]. We get that f*(x) divides
x
F(@)g(@) (F (2)g(@)P~" = 1),
for all g(x) in Fp[x]. Hence f*~7(z) divides f7(P=1)(z) —1 (since F,[x] is an integral
domain). It follows that j = 0, since f(x) is relatively prime with f™(z) — 1 for
Fp[x]
(f*(=))
(2) = (3): By using the above lemma, we get that f*(x) divides 27 — x. We
denote F,, = {ao, ..., ap—1}. For each i € {0, ...,p—1}, a; is a root of the polynomial
aP — x. Therefore a? —x = (x —ag) -+ - (x — ap—1) . We conclude that £ = 1 and
f(z) = — a; for some i in {0,...,p — 1}, and so
Fp[a] Fp[a]

F@)  @—a) 7

Proof. (1) = (2): Let I be a nonzero p-ideal of . There is some j €

every nonnegative integer m. We conclude that I = , as desired.

(3) = (1): Clear O

Proof of Theorem 2.3. Suppose that f(z) = (x — a)g(x), where a is an element
of F,, and g(z) € F,[x] such that g(a) # 0. Then
Folel |, Fylel | Blel | Bl

(f(@)) — (x—a)  (9(2))

has a nonzero p-ideal which is IF,, x (0). The sufficient condition is

Fplz]

(9(z))

now straightforward.

But F,, x

Fp[x]
(f(z))
f(x) is monic polynomial. Let f(x) = fF*(z)...f* () be the irreducible factors
decomposition of f(z) (f;(z) is a monic irreducible polynomial and k; € N*, for
each i € {1,...,n}). By applying Chinese remainder theorem, we deduce that
Ble] | Flel | Fl]
F@) ™ (fir@) (£ @)

On the other hand, the finite product I; x ... X I, of ideals is a p-ideal if and only
if so is Ij, for each k € {1,...,n}. We deduce that there exists ¢ € {1,...,n} such

Conversely, suppose that contains a nonzero p-ideal. We may assume that

F
that # has a nonzero p-ideal. By Lemma [Z0] k; = 1 and deg f; = 1. This
completes the proof of Theorem 2.3 O

Our next theorem is due to N.H. McCoy, for instance see [7, Theorem 1] in the
case where p = 2, and [7, Theorem 8] in the general case. It is shown that any finite
p-ring is isomorphic to a direct sum of copies of IF,,. For the convenience of reader,
we include here a sketch of the proof.
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Theorem 2.6. Let R be a finite ring. Then R is a p-ring with n mazximal ideals if
and only if R ~ (Fp)".

Proof. <) Since every finite direct product Ry x - - - X R,, of rings is p-ring if and
only if so is Ry for each k € {1,...,n}, then R is a p-ring. On the other hand, every

maximal ideal of Ry X -+ - x R, has the form Ry X -+ X Rp_1 XM X Rp1 X - -+ X Ry,
where my; is a maximal ideal of Ry, and k € {1,...,n}. We denote

Jp=Fp x - xFp x(0) xFp, x--- xFp,

(0) in its k' place and F, elsewhere, for each k € {1, ...,n}. Then {.J1, ..., J,, } is the
set of all maximal ideals of (F,)". We conclude that R is a p-ring with n maximal
ideals.

=) Since a? = a for each a in R, then R is a von Neumann regular ring.
Therefore every prime ideal of R is maximal and R is a reduced ring. It follows

that ﬂ m; = (0), where {my,...,m,} is the set of all maximal ideals of R. By

1<i<n
using Chinese remainder theorem we deduce that:
R R R
R=———— ~ — X - X —.
mN..Nmy, mq my

R
Now, we need only shows that every — is isomorphic to F,. Let k € {1,...,n},
my
R . R . .
we denote oo {a1,...,aq}. By the assumption every field o is a p-ring, then
k k

R

each a; is a root of the polynomial 2P — z and so ¢ < p. But o is a finite field of
k

characteristic p, then there exists a nonnegative integer o such that ¢ = p®. Thus

R
g =p and — ~ [, completing the proof of the theorem. O
myg

Remark 2.7. Let R be a semi local p-ring with n maximal ideals. Then
(1) R is a finite p-ring and has p™ elements.
(2) R has 2™ ideals which are all p-ideals.

R
Proof. Under the notations of the above proof, it suffices to show that o is a
k

R
finite field for each k € {1,...,n}. Since every element of o is a root of the poly-
k

nomial 2P — x € mﬁ [x], we have the required property. O
k

R[]

(f(2))

Now, we give a characterization that

is a p-ring, in the case when R is a
finite p-ring.

Theorem 2.8. Let R be a finite p-ring and let {my, ..., m,} be the set of all mazimal
ideals of R. For every polynomial f(xz) in Rlx] and j € {1,...,n}, we denote by
k

fj(x) the reduction of f(x) modulo m; i.e f;i(z) = Z (a; +my)z’ € mﬁ[:v], where
=0 J
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R[z]
(f(z))

R
splits with distinct roots in the field o
J

k
flx) = Z a;z'. Then is a p-ring if and only if for each j € {1,...,n}, f;(z)
i=0

Proof. Under the above hypothesis, we get that R[x] ~ mi[x] X .. X mi[:zr], as a
1 n
ring, via the map: g(z) — (g1(x),..., gn(x)), where g;(x) is the reduction of g(z)

R
modulo m;. For each j € {1,...,n}, we put R; = e Then R; is a p-ring. On the
J
other hand, the map

oy Rl B fa]
P ) < )

defined by ¢(g(z)) = (g1(z) + (f1(x)), ..., gn(x) + (fn(z))) is a surjective rinigz[hi)—

(f (@)

momorphism. Also we have the following equality ker¢ = (f(x)). Thus

is isomorphic to M X o X M It follows that ﬂ is a p-ring if and
" (f1(=)) (fn(2)) (f(x))
only if so is ﬂ, for each j € {1,...,n}. Now we can apply Lemma 24l to prove

(f;(z))

that (?J([I)]) is a p-ring if and only if f;(x) has deg f; distinct roots in R;. This
@

completes the proof of Theorem 2.8 O

The next example illustrates the above results.

Example 2.9. Let p be a prime integer of the form 8n + 1, for some non negative
integer n. Consider the polynomial over Fﬁ defined by

fla) = (1,-1,2,-2) + (0,0,1,1)2% + (1,1,0,0)2"™
Then F?’i
(f(z))

Proof. Under the above notations, we have
fiz) =1+2", fo(z) = =14 2", f3(z) =2+ 2 and fi(z) = -2+ 27

It is easy to see that fi(x) and fo(x) divide 2P~ —1, hence f1(x) and fo(x) split with

distinct roots in Fp,. Also 2™ +1 divides 2? — z, then 2™ + 1 splits. Let a be a root
a4+ 1 2 a®” — 1 2

of the polynomial " + 1 € F[z], hence =2 and = -2
Therefore f3(z) and f4(x) have distinct zeros in Fp, since f4(a) = fi(a) # 0, (fi(x)

J
is the derivative of f;(x)). The result then follows from Theorem O

2n-+4

is a finite p-ring with 2n + 4 maximal ideals and p elements.

In the next theorem we give our main result about the transfer of p-ring property
to amalgamation of rings.
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Theorem 2.10. Let A and B be a pair of rings, J an ideal of B, f: A — B a
ring homomorphism and let A</ J be the amalgamation of A with B along J with
respect to f. Then Al J is a p-ring if and only if so is A and J is a p-ideal of B.

Proof. =) Let a € A and j € J. It is easy to see that (a, f(a))? = (a?, f(aP))
and (0,7)? = (0,47). But (a, f(a))? = (a, f(a)) and (0,5)? = (0,7), then a? = a et
j? = j. Obviously pa = 0 and pj = 0, since p(a, f(a) + j) = 0. We have the desired
implication.

<=) Assume that A is a p-ring and J is a p-ideal of B. Let (a, f(a)+j) € A/ J.
By the binomial theorem (which is valid in any commutative ring),

p—1
(a, f(a) + )" = <ap,f(ap) +iP+ > <Z>jkf(apk)> :
k=1

p
k

(a, f(a) +4)P = (a”, f(a?) + j¥) = (a, f(a) +J)-

On the other hand, p(a, f(a) + ) = (pa, f(pa) + pj) = 0. It follows that A </ J is
a p-ring. (I

Since j* f(a?~F) € J and p divides ( ), for each k € {1,...,p — 1}, then

Example 2.11. Let A be the set of all sequences of elements of ), and let B =
Z/nZ, with n = p(p + 1). By using Theorem{Z.2] the principal ideal (p+ 1)B is a
p-ideal of B. Consider the mapping f : A — B defined by f(a) = (p+ 1)ao, where
a = (ag + pZ),cy - It is easy to see that f is a ring homomorphism. On the other
hand, the set all functions of a non empty set X into a p-ring is also a p-ring. Hence
A is a p-ring. From the above theorem A </ (p + 1)B is a p-ring.

The following corollary is an immediate consequence of the above theorem.

Corollary 2.12. Let A be a ring and let A< I be the amalgamated duplication of
A along an ideal I of A. Then A< is a p-ring if and only if so is A.

We end this paper by giving a necessary and sufficient condition for the trivial
ring extension, A < E, to be a von Neumann regular ring (resp., a p-ring).

Theorem 2.13. Let A be a ring, E an A-module and let A < E be the trivial ring
extension of A by E. Then

(1) A x E is a von Neumann regular ring if and only if so is A and E = {0}.
(2) A x E is a p-ring if and only if so is A and E = {0}.

Proof. (1) We say that every maximal ideal of A o< F has the form m o E, where
m is a maximal ideal of A. Let M be a maximal ideal of A o< E. By [I, Theorem
41], (A x E)p ~ Ay x Ey, where M = m « E. Thus (A « E)y is a field if and
only if so is Ay and Ey, = {0}. We deduce that A &< E is a von Neumann regular
ring if and only if so is A and Ey, = {0}, for all maximal ideal m of A. We have the
desired result.
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(2) Assume that A « F is a p-ring. It is easy to see that every sub-ring of p-ring
is also a p-ring. It follows that A is a p-ring. On the other hand, £ = {0} since
A x E is a von Neumann regular ring. We can also deduce this result from the
following equalities:

(a,2) = (a,z)P = (a¥, pa?~'z) = (a?,0),

since (a,z)" = (a™,na™ ‘x) for every nonnegative integer n, and p(b,y) = 0 for
every element (b,y) of A x E.

The sufficient condition is obvious. O
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