ON p-**RING**

MOHAMMED KABBOUR

ABSTRACT. In this paper, we introduced the concept of a *p*-ideal for a given ring. We provide necessary and sufficient condition for $\frac{R[x]}{(f(x))}$ to be a *p*-ring, where *R* is a finite *p*-ring. It is also shown that the amalgamation of rings, $A \bowtie^f J$ is a *p*-ring if and only if so is *A* and *J* is a *p*-ideal. Finally, we establish the transfer of this notion to trivial ring extensions.

1. INTRODUCTION

All rings considered below are commutative with identity element $\neq 0$; and all modules are unital. Following N.H. McCoy and D. Montgomery [8], a ring R is said to be a *p*-ring (*p* is a prime integer) if $x^p = x$ and px = 0, for each $x \in R$. Thus a Boolean ring, as a ring in which every element is idempotent, is simply 2-ring (p = 2). Recall that a ring is said to be reduced if its nilradical is zero.

The following conditions on a ring R are equivalent:

- (1) For each a in R, there is some $b \in R$ such that $a = a^2 b$.
- (2) R is a reduced ring and every prime ideal is maximal (i.e R is a reduced 0-dimensional ring).
- (3) For any maximal ideal \mathfrak{m} of R, the localization $R_{\mathfrak{m}}$ at \mathfrak{m} is a field.

A ring satisfying the conditions as above is called a von Neumann regular ring. See for instance [4, 5].

Let A be a ring, E an A-module and let $R = A \propto E$ be the set of pair (a, e) with pairwise addition and multiplication is giving by (a, e)(b, f) = (ab, af + be), R is called the trivial ring extension of A by E (also called the idealization of E over A). Considerable work, part of it summarized in Glaz's book [4] and Huckaba's book [5], has been concerned with trivial ring extensions.

Let A and B be a pair of rings, J an ideal of B and let $f : A \longrightarrow B$ be a ring homomorphism. The following sub-ring of $A \times B$:

$$A \bowtie^{f} J = \{(a, f(a) + j) ; a \in A, j \in J\}$$

is said to be amalgamation of A with B along J with respect to f. Motivations and some applications of this construction, introduced by M. D'Anna, C.A. Finocchiaro and M. Fontana, are well discussed with more detail in the recent paper [2].

²⁰⁰⁰ Mathematics Subject Classification. 13D05, 13D02.

Key words and phrases. von Neumann regular ring, p-ring, trivial rings extension and amalgamation of rings.

The main purpose of this paper is to give new and original families of examples of *p*-rings. Also we investigate the transfer of this notion to trivial ring extensions and amalgamation of rings.

2. Main results

We state formally the definition of a *p*-ideal for a given ring.

Definition 2.1. Let R be a ring and let p be a prime integer. An ideal I of A is called a p-ideal if for each $x \in I$:

 $x^p = x$ and px = 0.

From this definition, we can deduce that a ring R is a p-ring if and only if every principal ideal of R is a p-ideal.

In the next theorem, we give a necessary and sufficient condition for $\mathbb{Z}/n\mathbb{Z}$ to have a nonzero p-ideal.

Theorem 2.2. Let n be a nonnegative integer and let p be a prime integer.

- If v_p(n) = 1 (v_p(n) is the p-valuation of n) then ℤ/nℤ has a unique nonzero p-ideal.
- Otherwise (0) is the unique p-ideal of $\mathbb{Z}/n\mathbb{Z}$.

Proof. We say that every ideal of $\mathbb{Z}/n\mathbb{Z}$ has the form $k\mathbb{Z}/n\mathbb{Z}$, where $k \in \{0, ..., n-1\}$. Assume that $v_p(n) = 0$ and let k be an integer such that $1 \le k \le n-1$. Suppose that $k\mathbb{Z}/n\mathbb{Z}$ is p-ideal, then $pkx \in n\mathbb{Z}$ for each element x in \mathbb{Z} . Thus n divides pk and so n divides k, witch is absurd. We deduce that (0) is the unique p-ideal of $\mathbb{Z}/n\mathbb{Z}$.

We shall need to use the following property:

Let $R_1, ..., R_n$ be rings then every ideal of $R_1 \times \cdots \times R_n$ has the form $I_1 \times \cdots \times I_n$, where I_k is an ideal of R_k for each $k \in \{1, ..., n\}$.

On the other hand, it is easy to see that $I_1 \times \cdots \times I_n$ is a *p*-ideal if and only if so is I_k for all $k \in \{1, ..., n\}$. Now suppose that $v_p(n) = 1$ and let q be the integer such that pq = n. We denote $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$, the Galois field of order p. From the assumption (since p is relatively prime to q), we can write $\mathbb{Z}/n\mathbb{Z} \simeq \mathbb{F}_p \times \mathbb{Z}/q\mathbb{Z}$. From the previous part of the proof $\mathbb{F}_p \times \mathbb{Z}/q\mathbb{Z}$ has a unique nonzero p-ideal, which is $\mathbb{F}_p \times (0)$.

Assume that $\alpha = v_p(n) \geq 2$. There is some positive integer q, relatively prime to p, such that $n = p^{\alpha}q$. Hence $\mathbb{Z}/n\mathbb{Z} \simeq \mathbb{Z}/p^{\alpha}\mathbb{Z} \times \mathbb{Z}/q\mathbb{Z}$. Let I be a p-ideal of $\mathbb{Z}/p^{\alpha}\mathbb{Z}$. Since px = 0 for each $x \in I$, there exists some integer $k \in \{0, ..., p-1\}$ such that $I = kp^{\alpha-1}\mathbb{Z}/p^{\alpha}\mathbb{Z}$. From the assumption p divides $kx \left((kxp^{\alpha-1})^{p-1}-1\right)$ for every integer x. But p is relatively prime to $(kxp^{\alpha-1})^{p-1}-1$, thus p must divides k, therefore k = 0. We conclude that I = (0), and so (0) is the unique p-ideal of $\mathbb{Z}/n\mathbb{Z}$. \Box

ON p-RINGS

For example let R be the ring $\mathbb{Z}/60\mathbb{Z}$. Then we have, as follow, the list of all p-ideals of R, where p ranges over the set of prime integers:

- $20\mathbb{Z}/60\mathbb{Z}$ is the unique nonzero 3-ideal of R.
- $12\mathbb{Z}/60\mathbb{Z}$ is the unique nonzero 5-ideal of R.
- R has not a nonzero 2-ideal (since $v_2(60) = 2$).
- (0) is a *p*-ideal for each prime integer p.

Theorem 2.3. Let p be a prime integer and let $f(x) \in \mathbb{F}_p[x]$ be a nonconstant polynomial over \mathbb{F}_p . Then $\frac{\mathbb{F}_p[x]}{(f(x))}$ contains a nonzero p-ideal if and only if f(x) has at last one simple zero in \mathbb{F}_p .

We need the following lemmas before proving Theorem2.3

Lemma 2.4. Let R be a p-ring, R[x] the polynomial ring over R in the indeterminate x and let f(x) be an element of R[x]. Then $\frac{R[x]}{(f(x))}$ is a p-ring if and only if f(x) divides $x^p - x$.

Proof. We suppose that $\frac{R[x]}{(f(x))}$ is a *p*-ring. Then $(x + (f(x)))^p = x + (f(x))$, therefore $x^p - x \in (f(x))$. Conversely, assume that f(x) divides $x^p - x$ and let $0 \neq g(x) \in R[x]$. By induction on $n = \deg g$, the degree of the polynomial g(x), we claim that $(g(x))^p = g(x^p)$. Indeed, it is certainly true for n = 0. Assume that the statement is true for each $k \leq n$ and that $\deg g = n + 1$. We put $g(x) = a_{n+1}x^{n+1} + g_1(x)$, where $0 \neq a_{n+1} \in R$ and $g_1(x) \in R[x]$ such that $\deg g_1 \leq n$. By the binomial theorem,

$$(g(x))^{p} = (a_{n+1}x^{n+1})^{p} + (g_{1}(x))^{p} = a_{n+1}^{p}x^{p(n+1)} + g_{1}(x^{p}).$$

Thus $(g(x))^p = g(x^p)$, as desired.

On the other hand, $x^p - x$ divides $x^{kp} - x^k$ for each positive integer k. Hence $x^p - x$ divides $(g(x))^p - g(x)$, and so $(g(x) + (f(x)))^p = g(x) + (f(x))$. Finally, it is easy to see that p(g(x) + (f(x))) = 0, so we have the desired result.

Lemma 2.5. Let f(x) be an irreducible polynomial over \mathbb{F}_p and let k be a nonnegative integer. Then the following statements are equivalent:

The ring \$\frac{\mathbb{F}_p[x]}{(f^k(x))}\$ contains a nonzero p-ideal.
\$\frac{\mathbb{F}_p[x]}{(f^k(x))}\$ is a p-ring.
\$\frac{\mathbb{F}_p[x]}{(f^k(x))}\$ is isomorphic (as a ring) to \$\mathbb{F}_p\$.

In this case k = 1 and deg f = 1.

MOHAMMED KABBOUR

Proof. (1) \implies (2): Let I be a nonzero p-ideal of $\frac{\mathbb{F}_p[x]}{(f^k(x))}$. There is some $j \in \{0, ..., k-1\}$ such that $I = \frac{f^j(x)\mathbb{F}_p[x]}{(f^k(x))}$. We get that $f^k(x)$ divides $f^j(x)g(x)\left((f^j(x)g(x))^{p-1}-1\right)$,

for all g(x) in $\mathbb{F}_p[x]$. Hence $f^{k-j}(x)$ divides $f^{j(p-1)}(x) - 1$ (since $\mathbb{F}_p[x]$ is an integral domain). It follows that j = 0, since f(x) is relatively prime with $f^m(x) - 1$ for every nonnegative integer m. We conclude that $I = \frac{\mathbb{F}_p[x]}{(f^k(x))}$, as desired.

(2) \implies (3): By using the above lemma, we get that $f^k(x)$ divides $x^p - x$. We denote $\mathbb{F}_p = \{a_0, ..., a_{p-1}\}$. For each $i \in \{0, ..., p-1\}$, a_i is a root of the polynomial $x^p - x$. Therefore $x^p - x = (x - a_0) \cdots (x - a_{p-1})$. We conclude that k = 1 and $f(x) = x - a_i$ for some i in $\{0, ..., p-1\}$, and so

$$\frac{\mathbb{F}_p[x]}{(f^k(x))} = \frac{\mathbb{F}_p[x]}{(x-a_i)} \simeq \mathbb{F}_p$$

 $(3) \Longrightarrow (1)$: Clear

Proof of Theorem 2.3. Suppose that f(x) = (x - a)g(x), where a is an element of \mathbb{F}_p and $g(x) \in \mathbb{F}_p[x]$ such that $g(a) \neq 0$. Then

$$\frac{\mathbb{F}_p[x]}{(f(x))} \simeq \frac{\mathbb{F}_p[x]}{(x-a)} \times \frac{\mathbb{F}_p[x]}{(g(x))} \simeq \mathbb{F}_p \times \frac{\mathbb{F}_p[x]}{(g(x))}.$$

But $\mathbb{F}_p \times \frac{\mathbb{F}_p[x]}{(g(x))}$ has a nonzero *p*-ideal which is $\mathbb{F}_p \times (0)$. The sufficient condition is now straightforward.

Conversely, suppose that $\frac{\mathbb{F}_p[x]}{(f(x))}$ contains a nonzero *p*-ideal. We may assume that f(x) is monic polynomial. Let $f(x) = f_1^{k_1}(x)...f_n^{k_n}(x)$ be the irreducible factors decomposition of f(x) ($f_i(x)$ is a monic irreducible polynomial and $k_i \in \mathbb{N}^*$, for each $i \in \{1, ..., n\}$). By applying Chinese remainder theorem, we deduce that

$$\frac{\mathbb{F}_p[x]}{(f(x))} \simeq \frac{\mathbb{F}_p[x]}{\left(f_1^{k_1}(x)\right)} \times \ldots \times \frac{\mathbb{F}_p[x]}{\left(f_n^{k_n}(x)\right)}.$$

On the other hand, the finite product $I_1 \times ... \times I_n$ of ideals is a *p*-ideal if and only if so is I_k for each $k \in \{1, ..., n\}$. We deduce that there exists $i \in \{1, ..., n\}$ such that $\frac{\mathbb{F}_p[x]}{\left(f_i^{k_i}(x)\right)}$ has a nonzero *p*-ideal. By Lemma 2.5, $k_i = 1$ and deg $f_i = 1$. This

complètes the proof of Theorem 2.3.

Our next theorem is due to N.H. McCoy, for instance see [7, Theorem 1] in the case where p = 2, and [7, Theorem 8] in the general case. It is shown that any finite p-ring is isomorphic to a direct sum of copies of \mathbb{F}_p . For the convenience of reader, we include here a sketch of the proof.

Theorem 2.6. Let R be a finite ring. Then R is a p-ring with n maximal ideals if and only if $R \simeq (\mathbb{F}_p)^n$.

Proof. \Leftarrow) Since every finite direct product $R_1 \times \cdots \times R_n$ of rings is *p*-ring if and only if so is R_k for each $k \in \{1, ..., n\}$, then R is a *p*-ring. On the other hand, every maximal ideal of $R_1 \times \cdots \times R_n$ has the form $R_1 \times \cdots \times R_{k-1} \times \mathfrak{m}_k \times R_{k+1} \times \cdots \times R_n$, where \mathfrak{m}_k is a maximal ideal of R_k , and $k \in \{1, ..., n\}$. We denote

$$J_k = \mathbb{F}_p \times \cdots \times \mathbb{F}_p \times (0) \times \mathbb{F}_p \times \cdots \times \mathbb{F}_p,$$

(0) in its k^{th} place and \mathbb{F}_p elsewhere, for each $k \in \{1, ..., n\}$. Then $\{J_1, ..., J_n\}$ is the set of all maximal ideals of $(\mathbb{F}_p)^n$. We conclude that R is a *p*-ring with n maximal ideals.

 \implies) Since $a^p = a$ for each a in R, then R is a von Neumann regular ring. Therefore every prime ideal of R is maximal and R is a reduced ring. It follows that $\bigcap_{1 \leq i \leq n} \mathfrak{m}_i = (0)$, where $\{\mathfrak{m}_1, ..., \mathfrak{m}_n\}$ is the set of all maximal ideals of R. By

using Chinese remainder theorem we deduce that:

$$R = \frac{R}{\mathfrak{m}_1 \cap \ldots \cap \mathfrak{m}_n} \simeq \frac{R}{\mathfrak{m}_1} \times \cdots \times \frac{R}{\mathfrak{m}_n}.$$

Now, we need only shows that every $\frac{R}{\mathfrak{m}_k}$ is isomorphic to \mathbb{F}_p . Let $k \in \{1, ..., n\}$, we denote $\frac{R}{\mathfrak{m}_k} = \{a_1, ..., a_q\}$. By the assumption every field $\frac{R}{\mathfrak{m}_k}$ is a *p*-ring, then each a_i is a root of the polynomial $x^p - x$ and so $q \leq p$. But $\frac{R}{\mathfrak{m}_k}$ is a finite field of characteristic *p*, then there exists a nonnegative integer α such that $q = p^{\alpha}$. Thus q = p and $\frac{R}{\mathfrak{m}_k} \simeq \mathbb{F}_p$, completing the proof of the theorem. \Box

Remark 2.7. Let R be a semi local p-ring with n maximal ideals. Then

- (1) R is a finite p-ring and has p^n elements.
- (2) R has 2^n ideals which are all p-ideals.

Proof. Under the notations of the above proof, it suffices to show that $\frac{R}{\mathfrak{m}_k}$ is a finite field for each $k \in \{1, ..., n\}$. Since every element of $\frac{R}{\mathfrak{m}_k}$ is a root of the polynomial $x^p - x \in \frac{R}{\mathfrak{m}_k}[x]$, we have the required property.

Now, we give a characterization that $\frac{R[x]}{(f(x))}$ is a *p*-ring, in the case when R is a finite *p*-ring.

Theorem 2.8. Let R be a finite p-ring and let $\{\mathfrak{m}_1, ..., \mathfrak{m}_n\}$ be the set of all maximal ideals of R. For every polynomial f(x) in R[x] and $j \in \{1, ..., n\}$, we denote by $f_j(x)$ the reduction of f(x) modulo \mathfrak{m}_j i.e $f_j(x) = \sum_{i=0}^k (a_i + \mathfrak{m}_j) x^i \in \frac{R}{\mathfrak{m}_j}[x]$, where

MOHAMMED KABBOUR

$$f(x) = \sum_{i=0}^{\kappa} a_i x^i. \text{ Then } \frac{R[x]}{(f(x))} \text{ is a } p\text{-ring if and only if for each } j \in \{1, ..., n\}, \ f_j(x)$$

splits with distinct roots in the field $\frac{R}{\mathfrak{m}_j}.$

Proof. Under the above hypothesis, we get that $R[x] \simeq \frac{R}{\mathfrak{m}_1}[x] \times \ldots \times \frac{R}{\mathfrak{m}_n}[x]$, as a ring, via the map: $g(x) \mapsto (g_1(x), \ldots, g_n(x))$, where $g_j(x)$ is the reduction of g(x) modulo \mathfrak{m}_j . For each $j \in \{1, \ldots, n\}$, we put $R_j = \frac{R}{\mathfrak{m}_j}$. Then R_j is a *p*-ring. On the other hand, the map

$$\varphi: R[x] \longrightarrow \frac{R_1[x]}{(f_1(x))} \times \ldots \times \frac{R_n[x]}{(f_n(x))}$$

defined by $\varphi(g(x)) = (g_1(x) + (f_1(x)), ..., g_n(x) + (f_n(x)))$ is a surjective ring homomorphism. Also we have the following equality $\ker \varphi = (f(x))$. Thus $\frac{R[x]}{(f(x))}$ is isomorphic to $\frac{R_1[x]}{(f_1(x))} \times ... \times \frac{R_n[x]}{(f_n(x))}$. It follows that $\frac{R[x]}{(f(x))}$ is a *p*-ring if and only if so is $\frac{R_j[x]}{(f_j(x))}$, for each $j \in \{1, ..., n\}$. Now we can apply Lemma 2.4 to prove that $\frac{R_j[x]}{(f_j(x))}$ is a *p*-ring if and only if $f_j(x)$ has deg f_j distinct roots in R_j . This completes the proof of Theorem 2.8.

The next example illustrates the above results.

Example 2.9. Let p be a prime integer of the form 8n + 1, for some non negative integer n. Consider the polynomial over \mathbb{F}_p^4 defined by

$$f(x) = (1, -1, 2, -2) + (0, 0, 1, 1)x^{2} + (1, 1, 0, 0)x^{n}.$$

Then $\frac{\mathbb{F}_p^4[x]}{(f(x))}$ is a finite *p*-ring with 2n + 4 maximal ideals and p^{2n+4} elements.

Proof. Under the above notations, we have

$$f_1(x) = 1 + x^n$$
, $f_2(x) = -1 + x^n$, $f_3(x) = 2 + x^2$ and $f_4(x) = -2 + x^2$.

It is easy to see that $f_1(x)$ and $f_2(x)$ divide $x^{p-1}-1$, hence $f_1(x)$ and $f_2(x)$ split with distinct roots in \mathbb{F}_p . Also $x^{4n} + 1$ divides $x^p - x$, then $x^{4n} + 1$ splits. Let a be a root of the polynomial $x^{4n} + 1 \in \mathbb{F}_p[x]$, hence $\left(\frac{a^{2n}+1}{a^n}\right)^2 = 2$ and $\left(\frac{a^{2n}-1}{a^n}\right)^2 = -2$. Therefore $f_3(x)$ and $f_4(x)$ have distinct zeros in \mathbb{F}_p , since $f'_3(a) = f'_4(a) \neq 0$, $(f'_j(x))$ is the derivative of $f_j(x)$). The result then follows from Theorem 2.8.

In the next theorem we give our main result about the transfer of p-ring property to amalgamation of rings.

ON p-RINGS

Theorem 2.10. Let A and B be a pair of rings, J an ideal of B, $f : A \longrightarrow B$ a ring homomorphism and let $A \bowtie^f J$ be the amalgamation of A with B along J with respect to f. Then $A \bowtie^f J$ is a p-ring if and only if so is A and J is a p-ideal of B.

Proof. \Longrightarrow) Let $a \in A$ and $j \in J$. It is easy to see that $(a, f(a))^p = (a^p, f(a^p))$ and $(0, j)^p = (0, j^p)$. But $(a, f(a))^p = (a, f(a))$ and $(0, j)^p = (0, j)$, then $a^p = a$ et $j^p = j$. Obviously pa = 0 and pj = 0, since p(a, f(a) + j) = 0. We have the desired implication.

 \iff) Assume that A is a p-ring and J is a p-ideal of B. Let $(a, f(a)+j) \in A \bowtie^f J$. By the binomial theorem (which is valid in any commutative ring),

$$(a, f(a) + j)^{p} = \left(a^{p}, f(a^{p}) + j^{p} + \sum_{k=1}^{p-1} \binom{p}{k} j^{k} f(a^{p-k})\right)$$

Since $j^k f(a^{p-k}) \in J$ and p divides $\binom{p}{k}$, for each $k \in \{1, ..., p-1\}$, then

 $(a, f(a) + j)^p = (a^p, f(a^p) + j^p) = (a, f(a) + j).$

On the other hand, p(a, f(a) + j) = (pa, f(pa) + pj) = 0. It follows that $A \bowtie^f J$ is a *p*-ring.

Example 2.11. Let A be the set of all sequences of elements of \mathbb{F}_p and let $B = \mathbb{Z}/n\mathbb{Z}$, with n = p(p+1). By using Theorem2.2, the principal ideal (p+1)B is a p-ideal of B. Consider the mapping $f: A \longrightarrow B$ defined by $f(a) = (p+1)a_0$, where $a = (a_k + p\mathbb{Z})_{k \in \mathbb{N}}$. It is easy to see that f is a ring homomorphism. On the other hand, the set all functions of a non empty set X into a p-ring is also a p-ring. Hence A is a p-ring. From the above theorem $A \bowtie^f (p+1)B$ is a p-ring.

The following corollary is an immediate consequence of the above theorem.

Corollary 2.12. Let A be a ring and let $A \bowtie I$ be the amalgamated duplication of A along an ideal I of A. Then $A \bowtie I$ is a p-ring if and only if so is A.

We end this paper by giving a necessary and sufficient condition for the trivial ring extension, $A \propto E$, to be a von Neumann regular ring (resp., a *p*-ring).

Theorem 2.13. Let A be a ring, E an A-module and let $A \propto E$ be the trivial ring extension of A by E. Then

- (1) $A \propto E$ is a von Neumann regular ring if and only if so is A and $E = \{0\}$.
- (2) $A \propto E$ is a p-ring if and only if so is A and $E = \{0\}$.

Proof. (1) We say that every maximal ideal of $A \propto E$ has the form $\mathfrak{m} \propto E$, where \mathfrak{m} is a maximal ideal of A. Let M be a maximal ideal of $A \propto E$. By [1, Theorem 4.1], $(A \propto E)_M \simeq A_{\mathfrak{m}} \propto E_{\mathfrak{m}}$, where $M = \mathfrak{m} \propto E$. Thus $(A \propto E)_M$ is a field if and only if so is $A_{\mathfrak{m}}$ and $E_{\mathfrak{m}} = \{0\}$. We deduce that $A \propto E$ is a von Neumann regular ring if and only if so is A and $E_{\mathfrak{m}} = \{0\}$, for all maximal ideal \mathfrak{m} of A. We have the desired result.

MOHAMMED KABBOUR

(2) Assume that $A \propto E$ is a *p*-ring. It is easy to see that every sub-ring of *p*-ring is also a *p*-ring. It follows that A is a *p*-ring. On the other hand, $E = \{0\}$ since $A \propto E$ is a von Neumann regular ring. We can also deduce this result from the following equalities:

$$(a, x) = (a, x)^p = (a^p, pa^{p-1}x) = (a^p, 0),$$

since $(a, x)^n = (a^n, na^{n-1}x)$ for every nonnegative integer n, and p(b, y) = 0 for every element (b, y) of $A \propto E$.

The sufficient condition is obvious.

Acknowledgements. The author thank the referee for his/her careful reading of this work.

References

- 1. D. D. Anderson and M. Winders; *Idealization of a module*, J. Commutative Algebra, Volume 1, (2009), 3-56.
- M. D'Anna, C.A. Finocchiaro, and M. Fontana; Properties of chains of prime ideals in amalgamated algebra along an ideal, arxiv 1001.0472v1(2010).
- M. D'Anna and M. Fontana; An amalgamated duplication of a ring along an ideal: the basic proerties, J. Algebra Appl.6 (2007), 443-459.
- 4. S. Glaz; *Commutative coherent rings*, Springer-Verlag, Lecture Notes in Mathematics, 1371 (1989).
- 5. J.A. Huckaba; Commutative rings with zero divisors, Marcel Dekker, New York-Basel, 1988.
- 6. S. Lang; *Undergraduate algebra*, Springer, Ungraduate Texts in Mathematics, Third edition (2005).
- N.H. McCoy; Subdirect sums of rings, Bull. Amer. Math. Soc. Volume 55, No. 9. (1947), 856-877.
- N.H. McCoy and D. Montgomery; A representation of generalised Boolean rings, Duk. Math, No. 3. (1937), 455-459.

Mohammed Kabbour, Department of Mathematics, Faculty of Science and Technology of Fez, Box 2202, University S.M. Ben Abdellah Fez, Morocco.

E-mail address: mkabbour@gmail.com