ON $p-$ RING

MOHAMMED KABBOUR

Abstract

In this paper, we introduced the concept of a p-ideal for a given ring. We provide necessary and sufficient condition for $\frac{R[x]}{(f(x))}$ to be a p-ring, where R is a finite p-ring. It is also shown that the amalgamation of rings, $A \bowtie^{f} J$ is a p-ring if and only if so is A and J is a p-ideal. Finally, we establish the transfer of this notion to trivial ring extensions.

1. Introduction

All rings considered below are commutative with identity element $\neq 0$; and all modules are unital. Following N.H. McCoy and D. Montgomery [8], a ring R is said to be a p-ring (p is a prime integer) if $x^{p}=x$ and $p x=0$, for each $x \in R$. Thus a Boolean ring, as a ring in which every element is idempotent, is simply 2 -ring $(p=2)$. Recall that a ring is said to be reduced if its nilradical is zero.

The following conditions on a ring R are equivalent:
(1) For each a in R, there is some $b \in R$ such that $a=a^{2} b$.
(2) R is a reduced ring and every prime ideal is maximal (i.e R is a reduced 0 -dimensional ring).
(3) For any maximal ideal \mathfrak{m} of R, the localization $R_{\mathfrak{m}}$ at \mathfrak{m} is a field.

A ring satisfying the conditions as above is called a von Neumann regular ring. See for instance [4, 5].

Let A be a ring, E an A-module and let $R=A \propto E$ be the set of pair (a, e) with pairwise addition and multiplication is giving by $(a, e)(b, f)=(a b, a f+b e), R$ is called the trivial ring extension of A by E (also called the idealization of E over A). Considerable work, part of it summarized in Glaz's book 44 and Huckaba's book [5], has been concerned with trivial ring extensions.

Let A and B be a pair of rings, J an ideal of B and let $f: A \longrightarrow B$ be a ring homomorphism. The following sub-ring of $A \times B$:

$$
A \bowtie^{f} J=\{(a, f(a)+j) ; a \in A, j \in J\}
$$

is said to be amalgamation of A with B along J with respect to f. Motivations and some applications of this construction, introduced by M. D'Anna, C.A. Finocchiaro and M. Fontana, are well discussed with more detail in the recent paper [2].

[^0]The main purpose of this paper is to give new and original families of examples of p-rings. Also we investigate the transfer of this notion to trivial ring extensions and amalgamation of rings.

2. Main Results

We state formally the definition of a p-ideal for a given ring.

Definition 2.1. Let R be a ring and let p be a prime integer. An ideal I of A is called a p-ideal if for each $x \in I$:

$$
x^{p}=x \quad \text { and } \quad p x=0 .
$$

From this definition, we can deduce that a ring R is a p-ring if and only if every principal ideal of R is a p-ideal.
In the next theorem, we give a necessary and sufficient condition for $\mathbb{Z} / n \mathbb{Z}$ to have a nonzero p-ideal.

Theorem 2.2. Let n be a nonnegative integer and let p be a prime integer.

- If $v_{p}(n)=1\left(v_{p}(n)\right.$ is the p-valuation of $\left.n\right)$ then $\mathbb{Z} / n \mathbb{Z}$ has a unique nonzero p-ideal.
- Otherwise (0) is the unique p-ideal of $\mathbb{Z} / n \mathbb{Z}$.

Proof. We say that every ideal of $\mathbb{Z} / n \mathbb{Z}$ has the form $k \mathbb{Z} / n \mathbb{Z}$, where $k \in\{0, \ldots, n-$ $1\}$. Assume that $v_{p}(n)=0$ and let k be an integer such that $1 \leq k \leq n-1$. Suppose that $k \mathbb{Z} / n \mathbb{Z}$ is p-ideal, then $p k x \in n \mathbb{Z}$ for each element x in \mathbb{Z}. Thus n divides $p k$ and so n divides k, witch is absurd. We deduce that (0) is the unique p-ideal of $\mathbb{Z} / n \mathbb{Z}$.

We shall need to use the following property:
Let R_{1}, \ldots, R_{n} be rings then every ideal of $R_{1} \times \cdots \times R_{n}$ has the form $I_{1} \times \cdots \times I_{n}$, where I_{k} is an ideal of R_{k} for each $k \in\{1, \ldots, n\}$.
On the other hand, it is easy to see that $I_{1} \times \cdots \times I_{n}$ is a p-ideal if and only if so is I_{k} for all $k \in\{1, \ldots, n\}$. Now suppose that $v_{p}(n)=1$ and let q be the integer such that $p q=n$. We denote $\mathbb{F}_{p}=\mathbb{Z} / p \mathbb{Z}$, the Galois field of order p. From the assumption (since p is relatively prime to q), we can write $\mathbb{Z} / n \mathbb{Z} \simeq \mathbb{F}_{p} \times \mathbb{Z} / q \mathbb{Z}$. From the previous part of the proof $\mathbb{F}_{p} \times \mathbb{Z} / q \mathbb{Z}$ has a unique nonzero p-ideal, which is $\mathbb{F}_{p} \times(0)$.

Assume that $\alpha=v_{p}(n) \geq 2$. There is some positive integer q, relatively prime to p, such that $n=p^{\alpha} q$. Hence $\mathbb{Z} / n \mathbb{Z} \simeq \mathbb{Z} / p^{\alpha} \mathbb{Z} \times \mathbb{Z} / q \mathbb{Z}$. Let I be a p-ideal of $\mathbb{Z} / p^{\alpha} \mathbb{Z}$. Since $p x=0$ for each $x \in I$, there exists some integer $k \in\{0, \ldots, p-1\}$ such that $I=k p^{\alpha-1} \mathbb{Z} / p^{\alpha} \mathbb{Z}$. From the assumption p divides $k x\left(\left(k x p^{\alpha-1}\right)^{p-1}-1\right)$ for every integer x. But p is relatively prime to $\left(k x p^{\alpha-1}\right)^{p-1}-1$, thus p must divides k, therefore $k=0$. We conclude that $I=(0)$, and so (0) is the unique p-ideal of $\mathbb{Z} / n \mathbb{Z}$.

For example let R be the ring $\mathbb{Z} / 60 \mathbb{Z}$. Then we have, as follow, the list of all p-ideals of R, where p ranges over the set of prime integers:

- $20 \mathbb{Z} / 60 \mathbb{Z}$ is the unique nonzero 3 -ideal of R.
- $12 \mathbb{Z} / 60 \mathbb{Z}$ is the unique nonzero 5 -ideal of R.
- R has not a nonzero 2-ideal (since $v_{2}(60)=2$).
- (0) is a p-ideal for each prime integer p.

Theorem 2.3. Let p be a prime integer and let $f(x) \in \mathbb{F}_{p}[x]$ be a nonconstant polynomial over \mathbb{F}_{p}. Then $\frac{\mathbb{F}_{p}[x]}{(f(x))}$ contains a nonzero p-ideal if and only if $f(x)$ has at last one simple zero in \mathbb{F}_{p}.

We need the following lemmas before proving Theorem2.3

Lemma 2.4. Let R be a p-ring, $R[x]$ the polynomial ring over R in the indeterminate x and let $f(x)$ be an element of $R[x]$. Then $\frac{R[x]}{(f(x))}$ is a p-ring if and only if $f(x)$ divides $x^{p}-x$.

Proof. We suppose that $\frac{R[x]}{(f(x))}$ is a p-ring. Then $(x+(f(x)))^{p}=x+(f(x))$, therefore $x^{p}-x \in(f(x))$. Conversely, assume that $f(x)$ divides $x^{p}-x$ and let $0 \neq g(x) \in R[x]$. By induction on $n=\operatorname{deg} g$, the degree of the polynomial $g(x)$, we claim that $(g(x))^{p}=g\left(x^{p}\right)$. Indeed, it is certainly true for $n=0$. Assume that the statement is true for each $k \leq n$ and that $\operatorname{deg} g=n+1$. We put $g(x)=$ $a_{n+1} x^{n+1}+g_{1}(x)$, where $0 \neq a_{n+1} \in R$ and $g_{1}(x) \in R[x]$ such that $\operatorname{deg} g_{1} \leq n$. By the binomial theorem,

$$
(g(x))^{p}=\left(a_{n+1} x^{n+1}\right)^{p}+\left(g_{1}(x)\right)^{p}=a_{n+1}^{p} x^{p(n+1)}+g_{1}\left(x^{p}\right) .
$$

Thus $(g(x))^{p}=g\left(x^{p}\right)$, as desired.
On the other hand, $x^{p}-x$ divides $x^{k p}-x^{k}$ for each positive integer k. Hence $x^{p}-x$ divides $(g(x))^{p}-g(x)$, and so $(g(x)+(f(x)))^{p}=g(x)+(f(x))$. Finally, it is easy to see that $p(g(x)+(f(x)))=0$, so we have the desired result.

Lemma 2.5. Let $f(x)$ be an irreducible polynomial over \mathbb{F}_{p} and let k be a nonnegative integer. Then the following statements are equivalent:
(1) The ring $\frac{\mathbb{F}_{p}[x]}{\left(f^{k}(x)\right)}$ contains a nonzero p-ideal.
(2) $\frac{\mathbb{F}_{p}[x]}{\left(f^{k}(x)\right)}$ is a p-ring.
(3) $\frac{\mathbb{F}_{p}[x]}{\left(f^{k}(x)\right)}$ is isomorphic (as a ring) to \mathbb{F}_{p}.

In this case $k=1$ and $\operatorname{deg} f=1$.

Proof. $(1) \Longrightarrow(2)$: Let I be a nonzero p-ideal of $\frac{\mathbb{F}_{p}[x]}{\left(f^{k}(x)\right)}$. There is some $j \in$ $\{0, \ldots, k-1\}$ such that $I=\frac{f^{j}(x) \mathbb{F}_{p}[x]}{\left(f^{k}(x)\right)}$. We get that $f^{k}(x)$ divides

$$
f^{j}(x) g(x)\left(\left(f^{j}(x) g(x)\right)^{p-1}-1\right)
$$

for all $g(x)$ in $\mathbb{F}_{p}[x]$. Hence $f^{k-j}(x)$ divides $f^{j(p-1)}(x)-1$ (since $\mathbb{F}_{p}[x]$ is an integral domain). It follows that $j=0$, since $f(x)$ is relatively prime with $f^{m}(x)-1$ for every nonnegative integer m. We conclude that $I=\frac{\mathbb{F}_{p}[x]}{\left(f^{k}(x)\right)}$, as desired.
$(2) \Longrightarrow(3)$: By using the above lemma, we get that $f^{k}(x)$ divides $x^{p}-x$. We denote $\mathbb{F}_{p}=\left\{a_{0}, \ldots, a_{p-1}\right\}$. For each $i \in\{0, \ldots, p-1\}, a_{i}$ is a root of the polynomial $x^{p}-x$. Therefore $x^{p}-x=\left(x-a_{0}\right) \cdots\left(x-a_{p-1}\right)$. We conclude that $k=1$ and $f(x)=x-a_{i}$ for some i in $\{0, \ldots, p-1\}$, and so

$$
\frac{\mathbb{F}_{p}[x]}{\left(f^{k}(x)\right)}=\frac{\mathbb{F}_{p}[x]}{\left(x-a_{i}\right)} \simeq \mathbb{F}_{p}
$$

$(3) \Longrightarrow(1)$: Clear

Proof of Theorem 2.3. Suppose that $f(x)=(x-a) g(x)$, where a is an element of \mathbb{F}_{p} and $g(x) \in \mathbb{F}_{p}[x]$ such that $g(a) \neq 0$. Then

$$
\frac{\mathbb{F}_{p}[x]}{(f(x))} \simeq \frac{\mathbb{F}_{p}[x]}{(x-a)} \times \frac{\mathbb{F}_{p}[x]}{(g(x))} \simeq \mathbb{F}_{p} \times \frac{\mathbb{F}_{p}[x]}{(g(x))}
$$

But $\mathbb{F}_{p} \times \frac{\mathbb{F}_{p}[x]}{(g(x))}$ has a nonzero p-ideal which is $\mathbb{F}_{p} \times(0)$. The sufficient condition is now straightforward.

Conversely, suppose that $\frac{\mathbb{F}_{p}[x]}{(f(x))}$ contains a nonzero p-ideal. We may assume that $f(x)$ is monic polynomial. Let $f(x)=f_{1}^{k_{1}}(x) \ldots f_{n}^{k_{n}}(x)$ be the irreducible factors decomposition of $f(x)\left(f_{i}(x)\right.$ is a monic irreducible polynomial and $k_{i} \in \mathbb{N}^{*}$, for each $i \in\{1, \ldots, n\})$. By applying Chinese remainder theorem, we deduce that

$$
\frac{\mathbb{F}_{p}[x]}{(f(x))} \simeq \frac{\mathbb{F}_{p}[x]}{\left(f_{1}^{k_{1}}(x)\right)} \times \ldots \times \frac{\mathbb{F}_{p}[x]}{\left(f_{n}^{k_{n}}(x)\right)}
$$

On the other hand, the finite product $I_{1} \times \ldots \times I_{n}$ of ideals is a p-ideal if and only if so is I_{k} for each $k \in\{1, \ldots, n\}$. We deduce that there exists $i \in\{1, \ldots, n\}$ such that $\frac{\mathbb{F}_{p}[x]}{\left(f_{i}^{k_{i}}(x)\right)}$ has a nonzero p-ideal. By Lemma 2.5, $k_{i}=1$ and $\operatorname{deg} f_{i}=1$. This completes the proof of Theorem 2.3.

Our next theorem is due to N.H. McCoy, for instance see [7, Theorem 1] in the case where $p=2$, and [7, Theorem 8] in the general case. It is shown that any finite p-ring is isomorphic to a direct sum of copies of \mathbb{F}_{p}. For the convenience of reader, we include here a sketch of the proof.

Theorem 2.6. Let R be a finite ring. Then R is a p-ring with n maximal ideals if and only if $R \simeq\left(\mathbb{F}_{p}\right)^{n}$.
Proof. $\Longleftarrow)$ Since every finite direct product $R_{1} \times \cdots \times R_{n}$ of rings is p-ring if and only if so is R_{k} for each $k \in\{1, \ldots, n\}$, then R is a p-ring. On the other hand, every maximal ideal of $R_{1} \times \cdots \times R_{n}$ has the form $R_{1} \times \cdots \times R_{k-1} \times \mathfrak{m}_{k} \times R_{k+1} \times \cdots \times R_{n}$, where \mathfrak{m}_{k} is a maximal ideal of R_{k}, and $k \in\{1, \ldots, n\}$. We denote

$$
J_{k}=\mathbb{F}_{p} \times \cdots \times \mathbb{F}_{p} \times(0) \times \mathbb{F}_{p} \times \cdots \times \mathbb{F}_{p}
$$

(0) in its $\mathrm{k}^{t h}$ place and \mathbb{F}_{p} elsewhere, for each $k \in\{1, \ldots, n\}$. Then $\left\{J_{1}, \ldots, J_{n}\right\}$ is the set of all maximal ideals of $\left(\mathbb{F}_{p}\right)^{n}$. We conclude that R is a p-ring with n maximal ideals.
$\Longrightarrow)$ Since $a^{p}=a$ for each a in R, then R is a von Neumann regular ring. Therefore every prime ideal of R is maximal and R is a reduced ring. It follows that $\bigcap_{1 \leq i \leq n} \mathfrak{m}_{i}=(0)$, where $\left\{\mathfrak{m}_{1}, \ldots, \mathfrak{m}_{n}\right\}$ is the set of all maximal ideals of R. By using Chinese remainder theorem we deduce that:

$$
R=\frac{R}{\mathfrak{m}_{1} \cap \ldots \cap \mathfrak{m}_{n}} \simeq \frac{R}{\mathfrak{m}_{1}} \times \cdots \times \frac{R}{\mathfrak{m}_{n}}
$$

Now, we need only shows that every $\frac{R}{\mathfrak{m}_{k}}$ is isomorphic to \mathbb{F}_{p}. Let $k \in\{1, \ldots, n\}$, we denote $\frac{R}{\mathfrak{m}_{k}}=\left\{a_{1}, \ldots, a_{q}\right\}$. By the assumption every field $\frac{R}{\mathfrak{m}_{k}}$ is a p-ring, then each a_{i} is a root of the polynomial $x^{p}-x$ and so $q \leq p$. But $\frac{R}{\mathfrak{m}_{k}}$ is a finite field of characteristic p, then there exists a nonnegative integer α such that $q=p^{\alpha}$. Thus $q=p$ and $\frac{R}{\mathfrak{m}_{k}} \simeq \mathbb{F}_{p}$, completing the proof of the theorem.

Remark 2.7. Let R be a semi local p-ring with n maximal ideals. Then
(1) R is a finite p-ring and has p^{n} elements.
(2) R has 2^{n} ideals which are all p-ideals.

Proof. Under the notations of the above proof, it suffices to show that $\frac{R}{\mathfrak{m}_{k}}$ is a finite field for each $k \in\{1, \ldots, n\}$. Since every element of $\frac{R}{\mathfrak{m}_{k}}$ is a root of the polynomial $x^{p}-x \in \frac{R}{\mathfrak{m}_{k}}[x]$, we have the required property.

Now, we give a characterization that $\frac{R[x]}{(f(x))}$ is a p-ring, in the case when R is a finite p-ring.

Theorem 2.8. Let R be a finite p-ring and let $\left\{\mathfrak{m}_{1}, \ldots, \mathfrak{m}_{n}\right\}$ be the set of all maximal ideals of R. For every polynomial $f(x)$ in $R[x]$ and $j \in\{1, \ldots, n\}$, we denote by $f_{j}(x)$ the reduction of $f(x)$ modulo \mathfrak{m}_{j} i.e $f_{j}(x)=\sum_{i=0}^{k}\left(a_{i}+\mathfrak{m}_{j}\right) x^{i} \in \frac{R}{\mathfrak{m}_{j}}[x]$, where
$f(x)=\sum_{i=0}^{k} a_{i} x^{i}$. Then $\frac{R[x]}{(f(x))}$ is a p-ring if and only if for each $j \in\{1, \ldots, n\}, f_{j}(x)$ splits with distinct roots in the field $\frac{R}{\mathfrak{m}_{j}}$.
Proof. Under the above hypothesis, we get that $R[x] \simeq \frac{R}{\mathfrak{m}_{1}}[x] \times \ldots \times \frac{R}{\mathfrak{m}_{n}}[x]$, as a ring, via the map: $g(x) \mapsto\left(g_{1}(x), \ldots, g_{n}(x)\right)$, where $g_{j}(x)$ is the reduction of $g(x)$ modulo \mathfrak{m}_{j}. For each $j \in\{1, \ldots, n\}$, we put $R_{j}=\frac{R}{\mathfrak{m}_{j}}$. Then R_{j} is a p-ring. On the other hand, the map

$$
\varphi: R[x] \longrightarrow \frac{R_{1}[x]}{\left(f_{1}(x)\right)} \times \ldots \times \frac{R_{n}[x]}{\left(f_{n}(x)\right)}
$$

defined by $\varphi(g(x))=\left(g_{1}(x)+\left(f_{1}(x)\right), \ldots, g_{n}(x)+\left(f_{n}(x)\right)\right)$ is a surjective ring homomorphism. Also we have the following equality $\operatorname{ker} \varphi=(f(x))$. Thus $\frac{R[x]}{(f(x))}$ is isomorphic to $\frac{R_{1}[x]}{\left(f_{1}(x)\right)} \times \ldots \times \frac{R_{n}[x]}{\left(f_{n}(x)\right)}$. It follows that $\frac{R[x]}{(f(x))}$ is a p-ring if and only if so is $\frac{R_{j}[x]}{\left(f_{j}(x)\right)}$, for each $j \in\{1, \ldots, n\}$. Now we can apply Lemma 2.4 to prove that $\frac{R_{j}[x]}{\left(f_{j}(x)\right)}$ is a p-ring if and only if $f_{j}(x)$ has $\operatorname{deg} f_{j}$ distinct roots in R_{j}. This completes the proof of Theorem 2.8.

The next example illustrates the above results.

Example 2.9. Let p be a prime integer of the form $8 n+1$, for some non negative integer n. Consider the polynomial over \mathbb{F}_{p}^{4} defined by

$$
f(x)=(1,-1,2,-2)+(0,0,1,1) x^{2}+(1,1,0,0) x^{n}
$$

Then $\frac{\mathbb{F}_{p}^{4}[x]}{(f(x))}$ is a finite p-ring with $2 n+4$ maximal ideals and $p^{2 n+4}$ elements.
Proof. Under the above notations, we have

$$
f_{1}(x)=1+x^{n}, f_{2}(x)=-1+x^{n}, f_{3}(x)=2+x^{2} \text { and } f_{4}(x)=-2+x^{2}
$$

It is easy to see that $f_{1}(x)$ and $f_{2}(x)$ divide $x^{p-1}-1$, hence $f_{1}(x)$ and $f_{2}(x)$ split with distinct roots in \mathbb{F}_{p}. Also $x^{4 n}+1$ divides $x^{p}-x$, then $x^{4 n}+1$ splits. Let a be a root of the polynomial $x^{4 n}+1 \in \mathbb{F}_{p}[x]$, hence $\left(\frac{a^{2 n}+1}{a^{n}}\right)^{2}=2$ and $\left(\frac{a^{2 n}-1}{a^{n}}\right)^{2}=-2$. Therefore $f_{3}(x)$ and $f_{4}(x)$ have distinct zeros in \mathbb{F}_{p}, since $f_{3}^{\prime}(a)=f_{4}^{\prime}(a) \neq 0,\left(f_{j}^{\prime}(x)\right.$ is the derivative of $\left.f_{j}(x)\right)$. The result then follows from Theorem 2.8.

In the next theorem we give our main result about the transfer of p-ring property to amalgamation of rings.

Theorem 2.10. Let A and B be a pair of rings, J an ideal of $B, f: A \longrightarrow B a$ ring homomorphism and let $A \bowtie^{f} J$ be the amalgamation of A with B along J with respect to f. Then $A \bowtie^{f} J$ is a p-ring if and only if so is A and J is a p-ideal of B.
Proof. $\Longrightarrow)$ Let $a \in A$ and $j \in J$. It is easy to see that $(a, f(a))^{p}=\left(a^{p}, f\left(a^{p}\right)\right)$ and $(0, j)^{p}=\left(0, j^{p}\right)$. But $(a, f(a))^{p}=(a, f(a))$ and $(0, j)^{p}=(0, j)$, then $a^{p}=a$ et $j^{p}=j$. Obviously $p a=0$ and $p j=0$, since $p(a, f(a)+j)=0$. We have the desired implication.
$\Longleftarrow)$ Assume that A is a p-ring and J is a p-ideal of B. Let $(a, f(a)+j) \in A \bowtie^{f} J$. By the binomial theorem (which is valid in any commutative ring),

$$
(a, f(a)+j)^{p}=\left(a^{p}, f\left(a^{p}\right)+j^{p}+\sum_{k=1}^{p-1}\binom{p}{k} j^{k} f\left(a^{p-k}\right)\right)
$$

Since $j^{k} f\left(a^{p-k}\right) \in J$ and p divides $\binom{p}{k}$, for each $k \in\{1, \ldots, p-1\}$, then

$$
(a, f(a)+j)^{p}=\left(a^{p}, f\left(a^{p}\right)+j^{p}\right)=(a, f(a)+j)
$$

On the other hand, $p(a, f(a)+j)=(p a, f(p a)+p j)=0$. It follows that $A \bowtie^{f} J$ is a p-ring.

Example 2.11. Let A be the set of all sequences of elements of \mathbb{F}_{p} and let $B=$ $\mathbb{Z} / n \mathbb{Z}$, with $n=p(p+1)$. By using Theorem 2.2, the principal ideal $(p+1) B$ is a p-ideal of B. Consider the mapping $f: A \longrightarrow B$ defined by $f(a)=(p+1) a_{0}$, where $a=\left(a_{k}+p \mathbb{Z}\right)_{k \in \mathbb{N}}$. It is easy to see that f is a ring homomorphism. On the other hand, the set all functions of a non empty set X into a p-ring is also a p-ring. Hence A is a p-ring. From the above theorem $A \bowtie^{f}(p+1) B$ is a p-ring.

The following corollary is an immediate consequence of the above theorem.
Corollary 2.12. Let A be a ring and let $A \bowtie I$ be the amalgamated duplication of A along an ideal I of A. Then $A \bowtie I$ is a p-ring if and only if so is A.

We end this paper by giving a necessary and sufficient condition for the trivial ring extension, $A \propto E$, to be a von Neumann regular ring (resp., a p-ring).

Theorem 2.13. Let A be a ring, E an A-module and let $A \propto E$ be the trivial ring extension of A by E. Then
(1) $A \propto E$ is a von Neumann regular ring if and only if so is A and $E=\{0\}$.
(2) $A \propto E$ is a p-ring if and only if so is A and $E=\{0\}$.

Proof. (1) We say that every maximal ideal of $A \propto E$ has the form $\mathfrak{m} \propto E$, where \mathfrak{m} is a maximal ideal of A. Let M be a maximal ideal of $A \propto E$. By [1, Theorem 4.1], $(A \propto E)_{M} \simeq A_{\mathfrak{m}} \propto E_{\mathfrak{m}}$, where $M=\mathfrak{m} \propto E$. Thus $(A \propto E)_{M}$ is a field if and only if so is $A_{\mathfrak{m}}$ and $E_{\mathfrak{m}}=\{0\}$. We deduce that $A \propto E$ is a von Neumann regular ring if and only if so is A and $E_{\mathfrak{m}}=\{0\}$, for all maximal ideal \mathfrak{m} of A. We have the desired result.
(2) Assume that $A \propto E$ is a p-ring. It is easy to see that every sub-ring of p-ring is also a p-ring. It follows that A is a p-ring. On the other hand, $E=\{0\}$ since $A \propto E$ is a von Neumann regular ring. We can also deduce this result from the following equalities:

$$
(a, x)=(a, x)^{p}=\left(a^{p}, p a^{p-1} x\right)=\left(a^{p}, 0\right),
$$

since $(a, x)^{n}=\left(a^{n}, n a^{n-1} x\right)$ for every nonnegative integer n, and $p(b, y)=0$ for every element (b, y) of $A \propto E$.

The sufficient condition is obvious.

Acknowledgements. The author thank the referee for his/her careful reading of this work.

References

1. D. D. Anderson and M. Winders; Idealization of a module, J. Commutative Algebra, Volume 1, (2009), 3-56.
2. M. D'Anna, C.A. Finocchiaro, and M. Fontana; Properties of chains of prime ideals in amalgamated algebra along an ideal, arxiv 1001.0472v1(2010).
3. M. D'Anna and M. Fontana; An amalgamated duplication of a ring along an ideal: the basic proerties, J. Algebra Appl. 6 (2007), 443-459.
4. S. Glaz; Commutative coherent rings, Springer-Verlag, Lecture Notes in Mathematics, 1371 (1989).
5. J.A. Huckaba; Commutative rings with zero divisors, Marcel Dekker, New York-Basel, 1988.
6. S. Lang; Undergraduate algebra, Springer, Ungraduate Texts in Mathematics, Third edition (2005).
7. N.H. McCoy; Subdirect sums of rings, Bull. Amer. Math. Soc. Volume 55, No. 9. (1947), 856-877.
8. N.H. McCoy and D. Montgomery; A representation of generalised Boolean rings, Duk. Math, No. 3. (1937), 455-459.

Mohammed Kabbour, Department of Mathematics, Faculty of Science and Technology of Fez, Box 2202, University S.M. Ben Abdellah Fez, Morocco.

$$
E-\text { mail address : mkabbour@gmail.com }
$$

[^0]: 2000 Mathematics Subject Classification. 13D05, 13D02.
 Key words and phrases. von Neumann regular ring, p-ring, trivial rings extension and amalgamation of rings.

