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ON p−RING

MOHAMMED KABBOUR

Abstract. In this paper, we introduced the concept of a p-ideal for a given

ring. We provide necessary and sufficient condition for
R[x]

(f(x))
to be a p-ring,

where R is a finite p-ring. It is also shown that the amalgamation of rings,
A ⊲⊳f J is a p-ring if and only if so is A and J is a p-ideal. Finally, we establish
the transfer of this notion to trivial ring extensions.

1. Introduction

All rings considered below are commutative with identity element 6= 0; and all
modules are unital. Following N.H. McCoy and D. Montgomery [8], a ring R is said
to be a p-ring (p is a prime integer) if xp = x and px = 0, for each x ∈ R. Thus
a Boolean ring, as a ring in which every element is idempotent, is simply 2-ring
(p = 2). Recall that a ring is said to be reduced if its nilradical is zero.

The following conditions on a ring R are equivalent:

(1) For each a in R, there is some b ∈ R such that a = a2b.
(2) R is a reduced ring and every prime ideal is maximal (i.e R is a reduced

0-dimensional ring).
(3) For any maximal ideal m of R, the localization Rm at m is a field.

A ring satisfying the conditions as above is called a von Neumann regular ring. See
for instance [4, 5].

Let A be a ring, E an A-module and let R = A ∝ E be the set of pair (a, e) with
pairwise addition and multiplication is giving by (a, e)(b, f) = (ab, af + be), R is
called the trivial ring extension of A by E (also called the idealization of E over A).
Considerable work, part of it summarized in Glaz’s book [4] and Huckaba’s book
[5], has been concerned with trivial ring extensions.

Let A and B be a pair of rings, J an ideal of B and let f : A −→ B be a ring
homomorphism. The following sub-ring of A×B :

A ⊲⊳f J = {(a, f(a) + j) ; a ∈ A, j ∈ J}

is said to be amalgamation of A with B along J with respect to f. Motivations and
some applications of this construction, introduced by M. D’Anna, C.A. Finocchiaro
and M. Fontana, are well discussed with more detail in the recent paper [2].
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2 MOHAMMED KABBOUR

The main purpose of this paper is to give new and original families of examples
of p-rings. Also we investigate the transfer of this notion to trivial ring extensions
and amalgamation of rings.

2. Main results

We state formally the definition of a p-ideal for a given ring.

Definition 2.1. Let R be a ring and let p be a prime integer. An ideal I of A is
called a p-ideal if for each x ∈ I :

xp = x and px = 0.

From this definition, we can deduce that a ring R is a p-ring if and only if every
principal ideal of R is a p-ideal.
In the next theorem, we give a necessary and sufficient condition for Z/nZ to have
a nonzero p-ideal.

Theorem 2.2. Let n be a nonnegative integer and let p be a prime integer.

• If vp(n) = 1 (vp(n) is the p-valuation of n) then Z/nZ has a unique nonzero
p-ideal.

• Otherwise (0) is the unique p-ideal of Z/nZ.

Proof. We say that every ideal of Z/nZ has the form kZ/nZ, where k ∈ {0, ..., n−
1}. Assume that vp(n) = 0 and let k be an integer such that 1 ≤ k ≤ n−1. Suppose
that kZ/nZ is p-ideal, then pkx ∈ nZ for each element x in Z. Thus n divides pk
and so n divides k, witch is absurd. We deduce that (0) is the unique p-ideal of
Z/nZ.

We shall need to use the following property:
Let R1, ..., Rn be rings then every ideal of R1 × · · · ×Rn has the form I1 × · · · × In,
where Ik is an ideal of Rk for each k ∈ {1, ..., n}.
On the other hand, it is easy to see that I1 × · · ·× In is a p-ideal if and only if so is
Ik for all k ∈ {1, ..., n}. Now suppose that vp(n) = 1 and let q be the integer such
that pq = n. We denote Fp = Z/pZ, the Galois field of order p. From the assump-
tion (since p is relatively prime to q), we can write Z/nZ ≃ Fp × Z/qZ. From the
previous part of the proof Fp×Z/qZ has a unique nonzero p-ideal, which is Fp×(0).

Assume that α = vp(n) ≥ 2. There is some positive integer q, relatively prime to
p, such that n = pαq. Hence Z/nZ ≃ Z/pαZ× Z/qZ. Let I be a p-ideal of Z/pαZ.
Since px = 0 for each x ∈ I, there exists some integer k ∈ {0, ..., p− 1} such that
I = kpα−1

Z/pαZ. From the assumption p divides kx
(

(kxpα−1)p−1 − 1
)

for every

integer x. But p is relatively prime to (kxpα−1)p−1−1, thus p must divides k, there-
fore k = 0. We conclude that I = (0), and so (0) is the unique p-ideal of Z/nZ. �
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For example let R be the ring Z/60Z. Then we have, as follow, the list of all
p-ideals of R, where p ranges over the set of prime integers:

• 20Z/60Z is the unique nonzero 3-ideal of R.
• 12Z/60Z is the unique nonzero 5-ideal of R.
• R has not a nonzero 2-ideal (since v2(60) = 2).
• (0) is a p-ideal for each prime integer p.

Theorem 2.3. Let p be a prime integer and let f(x) ∈ Fp[x] be a nonconstant

polynomial over Fp. Then
Fp[x]

(f(x))
contains a nonzero p-ideal if and only if f(x) has

at last one simple zero in Fp.

We need the following lemmas before proving Theorem2.3

Lemma 2.4. Let R be a p-ring, R[x] the polynomial ring over R in the indetermi-

nate x and let f(x) be an element of R[x]. Then
R[x]

(f(x))
is a p-ring if and only if

f(x) divides xp − x.

Proof. We suppose that
R[x]

(f(x))
is a p-ring. Then (x + (f(x)))p = x + (f(x)),

therefore xp − x ∈ (f(x)). Conversely, assume that f(x) divides xp − x and let
0 6= g(x) ∈ R[x]. By induction on n = deg g, the degree of the polynomial g(x),
we claim that (g(x))

p
= g (xp) . Indeed, it is certainly true for n = 0. Assume

that the statement is true for each k ≤ n and that deg g = n + 1. We put g(x) =
an+1x

n+1 + g1(x), where 0 6= an+1 ∈ R and g1(x) ∈ R[x] such that deg g1 ≤ n. By
the binomial theorem,

(g(x))p =
(

an+1x
n+1
)p

+ (g1(x))
p = apn+1x

p(n+1) + g1 (x
p) .

Thus (g(x))p = g (xp) , as desired.
On the other hand, xp−x divides xkp−xk for each positive integer k. Hence xp−x
divides (g(x))p − g(x), and so (g(x) + (f(x)))p = g(x) + (f(x)). Finally, it is easy
to see that p(g(x) + (f(x))) = 0, so we have the desired result. �

Lemma 2.5. Let f(x) be an irreducible polynomial over Fp and let k be a nonneg-
ative integer. Then the following statements are equivalent:

(1) The ring
Fp[x]

(fk(x))
contains a nonzero p-ideal.

(2)
Fp[x]

(fk(x))
is a p-ring.

(3)
Fp[x]

(fk(x))
is isomorphic (as a ring) to Fp.

In this case k = 1 and deg f = 1.
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Proof. (1) =⇒ (2): Let I be a nonzero p-ideal of
Fp[x]

(fk(x))
. There is some j ∈

{0, ..., k − 1} such that I =
f j(x)Fp[x]

(fk(x))
. We get that fk(x) divides

f j(x)g(x)
(

(f j(x)g(x))p−1 − 1
)

,

for all g(x) in Fp[x]. Hence fk−j(x) divides f j(p−1)(x)−1 (since Fp[x] is an integral
domain). It follows that j = 0, since f(x) is relatively prime with fm(x) − 1 for

every nonnegative integer m. We conclude that I =
Fp[x]

(fk(x))
, as desired.

(2) =⇒ (3): By using the above lemma, we get that fk(x) divides xp − x. We
denote Fp = {a0, ..., ap−1}. For each i ∈ {0, ..., p−1}, ai is a root of the polynomial
xp − x. Therefore xp − x = (x− a0) · · · (x− ap−1) . We conclude that k = 1 and
f(x) = x− ai for some i in {0, ..., p− 1}, and so

Fp[x]

(fk(x))
=

Fp[x]

(x− ai)
≃ Fp

(3) =⇒ (1): Clear �

Proof of Theorem 2.3. Suppose that f(x) = (x− a)g(x), where a is an element
of Fp and g(x) ∈ Fp[x] such that g(a) 6= 0. Then

Fp[x]

(f(x))
≃

Fp[x]

(x− a)
×

Fp[x]

(g(x))
≃ Fp ×

Fp[x]

(g(x))
.

But Fp ×
Fp[x]

(g(x))
has a nonzero p-ideal which is Fp × (0). The sufficient condition is

now straightforward.

Conversely, suppose that
Fp[x]

(f(x))
contains a nonzero p-ideal. We may assume that

f(x) is monic polynomial. Let f(x) = fk1

1 (x)...fkn

n (x) be the irreducible factors
decomposition of f(x) (fi(x) is a monic irreducible polynomial and ki ∈ N

∗, for
each i ∈ {1, ..., n}). By applying Chinese remainder theorem, we deduce that

Fp[x]

(f(x))
≃

Fp[x]
(

fk1

1 (x)
) × ...×

Fp[x]
(

fkn

n (x)
) .

On the other hand, the finite product I1 × ...× In of ideals is a p-ideal if and only
if so is Ik for each k ∈ {1, ..., n}. We deduce that there exists i ∈ {1, ..., n} such

that
Fp[x]

(

fki

i (x)
) has a nonzero p-ideal. By Lemma 2.5, ki = 1 and deg fi = 1. This

completes the proof of Theorem 2.3. �

Our next theorem is due to N.H. McCoy, for instance see [7, Theorem 1] in the
case where p = 2, and [7, Theorem 8] in the general case. It is shown that any finite
p-ring is isomorphic to a direct sum of copies of Fp. For the convenience of reader,
we include here a sketch of the proof.
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Theorem 2.6. Let R be a finite ring. Then R is a p-ring with n maximal ideals if
and only if R ≃ (Fp)

n.

Proof. ⇐=) Since every finite direct product R1× · · ·×Rn of rings is p-ring if and
only if so is Rk for each k ∈ {1, ..., n}, then R is a p-ring. On the other hand, every
maximal ideal of R1×· · ·×Rn has the form R1×· · ·×Rk−1×mk×Rk+1×· · ·×Rn,
where mk is a maximal ideal of Rk, and k ∈ {1, ..., n}. We denote

Jk = Fp × · · · × Fp × (0)× Fp × · · · × Fp,

(0) in its kth place and Fp elsewhere, for each k ∈ {1, ..., n}. Then {J1, ..., Jn} is the
set of all maximal ideals of (Fp)

n. We conclude that R is a p-ring with n maximal
ideals.

=⇒) Since ap = a for each a in R, then R is a von Neumann regular ring.
Therefore every prime ideal of R is maximal and R is a reduced ring. It follows

that
⋂

1≤i≤n

mi = (0), where {m1, ...,mn} is the set of all maximal ideals of R. By

using Chinese remainder theorem we deduce that:

R =
R

m1 ∩ ... ∩mn

≃
R

m1
× · · · ×

R

mn

.

Now, we need only shows that every
R

mk

is isomorphic to Fp. Let k ∈ {1, ..., n},

we denote
R

mk

= {a1, ..., aq}. By the assumption every field
R

mk

is a p-ring, then

each ai is a root of the polynomial xp − x and so q ≤ p. But
R

mk

is a finite field of

characteristic p, then there exists a nonnegative integer α such that q = pα. Thus

q = p and
R

mk

≃ Fp, completing the proof of the theorem. �

Remark 2.7. Let R be a semi local p-ring with n maximal ideals. Then

(1) R is a finite p-ring and has pn elements.
(2) R has 2n ideals which are all p-ideals.

Proof. Under the notations of the above proof, it suffices to show that
R

mk

is a

finite field for each k ∈ {1, ..., n}. Since every element of
R

mk

is a root of the poly-

nomial xp − x ∈
R

mk

[x], we have the required property. �

Now, we give a characterization that
R[x]

(f(x))
is a p-ring, in the case when R is a

finite p-ring.

Theorem 2.8. Let R be a finite p-ring and let {m1, ...,mn} be the set of all maximal
ideals of R. For every polynomial f(x) in R[x] and j ∈ {1, ..., n}, we denote by

fj(x) the reduction of f(x) modulo mj i.e fj(x) =

k
∑

i=0

(ai +mj)x
i ∈

R

mj

[x], where
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f(x) =

k
∑

i=0

aix
i. Then

R[x]

(f(x))
is a p-ring if and only if for each j ∈ {1, ..., n}, fj(x)

splits with distinct roots in the field
R

mj

.

Proof. Under the above hypothesis, we get that R[x] ≃
R

m1
[x] × ... ×

R

mn

[x], as a

ring, via the map: g(x) 7→ (g1(x), ..., gn(x)), where gj(x) is the reduction of g(x)

modulo mj . For each j ∈ {1, ..., n}, we put Rj =
R

mj

. Then Rj is a p-ring. On the

other hand, the map

ϕ : R[x] −→
R1[x]

(f1(x))
× ...×

Rn[x]

(fn(x))

defined by ϕ(g(x)) = (g1(x) + (f1(x)), ..., gn(x) + (fn(x))) is a surjective ring ho-

momorphism. Also we have the following equality kerϕ = (f(x)). Thus
R[x]

(f(x))

is isomorphic to
R1[x]

(f1(x))
× ... ×

Rn[x]

(fn(x))
. It follows that

R[x]

(f(x))
is a p-ring if and

only if so is
Rj [x]

(fj(x))
, for each j ∈ {1, ..., n}. Now we can apply Lemma 2.4 to prove

that
Rj [x]

(fj(x))
is a p-ring if and only if fj(x) has deg fj distinct roots in Rj . This

completes the proof of Theorem 2.8. �

The next example illustrates the above results.

Example 2.9. Let p be a prime integer of the form 8n+ 1, for some non negative
integer n. Consider the polynomial over F

4
p defined by

f(x) = (1,−1, 2,−2) + (0, 0, 1, 1)x2 + (1, 1, 0, 0)xn.

Then
F
4
p[x]

(f(x))
is a finite p-ring with 2n+ 4 maximal ideals and p2n+4 elements.

Proof. Under the above notations, we have

f1(x) = 1 + xn, f2(x) = −1 + xn, f3(x) = 2 + x2 and f4(x) = −2 + x2.

It is easy to see that f1(x) and f2(x) divide xp−1−1, hence f1(x) and f2(x) split with
distinct roots in Fp. Also x4n+1 divides xp−x, then x4n+1 splits. Let a be a root

of the polynomial x4n + 1 ∈ Fp[x], hence

(

a2n + 1

an

)2

= 2 and

(

a2n − 1

an

)2

= −2.

Therefore f3(x) and f4(x) have distinct zeros in Fp, since f ′
3(a) = f ′

4(a) 6= 0 , (f ′
j(x)

is the derivative of fj(x)). The result then follows from Theorem 2.8. �

In the next theorem we give our main result about the transfer of p-ring property
to amalgamation of rings.
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Theorem 2.10. Let A and B be a pair of rings, J an ideal of B, f : A −→ B a
ring homomorphism and let A ⊲⊳f J be the amalgamation of A with B along J with
respect to f. Then A ⊲⊳f J is a p-ring if and only if so is A and J is a p-ideal of B.

Proof. =⇒) Let a ∈ A and j ∈ J. It is easy to see that (a, f(a))p = (ap, f(ap))
and (0, j)p = (0, jp). But (a, f(a))p = (a, f(a)) and (0, j)p = (0, j), then ap = a et
jp = j. Obviously pa = 0 and pj = 0, since p(a, f(a) + j) = 0. We have the desired
implication.

⇐=) Assume that A is a p-ring and J is a p-ideal of B. Let (a, f(a)+j) ∈ A ⊲⊳f J.
By the binomial theorem (which is valid in any commutative ring),

(a, f(a) + j)p =

(

ap, f(ap) + jp +

p−1
∑

k=1

(

p

k

)

jkf(ap−k)

)

.

Since jkf(ap−k) ∈ J and p divides

(

p

k

)

, for each k ∈ {1, ..., p− 1}, then

(a, f(a) + j)p = (ap, f(ap) + jp) = (a, f(a) + j).

On the other hand, p(a, f(a) + j) = (pa, f(pa) + pj) = 0. It follows that A ⊲⊳f J is
a p-ring. �

Example 2.11. Let A be the set of all sequences of elements of Fp and let B =
Z/nZ, with n = p(p + 1). By using Theorem2.2, the principal ideal (p + 1)B is a
p-ideal of B. Consider the mapping f : A −→ B defined by f(a) = (p+1)a0, where
a = (ak + pZ)k∈N

. It is easy to see that f is a ring homomorphism. On the other
hand, the set all functions of a non empty set X into a p-ring is also a p-ring. Hence
A is a p-ring. From the above theorem A ⊲⊳f (p+ 1)B is a p-ring.

The following corollary is an immediate consequence of the above theorem.

Corollary 2.12. Let A be a ring and let A ⊲⊳ I be the amalgamated duplication of
A along an ideal I of A. Then A ⊲⊳ I is a p-ring if and only if so is A.

We end this paper by giving a necessary and sufficient condition for the trivial
ring extension, A ∝ E, to be a von Neumann regular ring (resp., a p-ring).

Theorem 2.13. Let A be a ring, E an A-module and let A ∝ E be the trivial ring
extension of A by E. Then

(1) A ∝ E is a von Neumann regular ring if and only if so is A and E = {0}.
(2) A ∝ E is a p-ring if and only if so is A and E = {0}.

Proof. (1) We say that every maximal ideal of A ∝ E has the form m ∝ E, where
m is a maximal ideal of A. Let M be a maximal ideal of A ∝ E. By [1, Theorem
4.1], (A ∝ E)M ≃ Am ∝ Em, where M = m ∝ E. Thus (A ∝ E)M is a field if and
only if so is Am and Em = {0}. We deduce that A ∝ E is a von Neumann regular
ring if and only if so is A and Em = {0}, for all maximal ideal m of A. We have the
desired result.
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(2) Assume that A ∝ E is a p-ring. It is easy to see that every sub-ring of p-ring
is also a p-ring. It follows that A is a p-ring. On the other hand, E = {0} since
A ∝ E is a von Neumann regular ring. We can also deduce this result from the
following equalities:

(a, x) = (a, x)p = (ap, pap−1x) = (ap, 0),

since (a, x)n = (an, nan−1x) for every nonnegative integer n, and p(b, y) = 0 for
every element (b, y) of A ∝ E.

The sufficient condition is obvious. �
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