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RANDOM ITERATION WITH PLACE DEPENDENT

PROBABILITIES

RAFA L KAPICA AND MACIEJ ŚLȨCZKA

Abstract. Markov chains arising from random iteration of functions
Sθ : X → X , θ ∈ Θ, where X is a Polish space and Θ is arbitrary set
of indices are considerd. At x ∈ X , θ is sampled from distribution ϑx

on Θ and ϑx are different for different x. Exponential convergence to
a unique invariant measure is proved. This result is applied to case of
random affine transformations on R

d giving existence of exponentially
attractive perpetuities with place dependent probabilities.

1. Introduction

We consider Markov chain of the form X0 = x0, X1 = Sθ0(x0), X2 =

Sθ1 ◦ Sθ0(x0) and inductively

Xn+1 = Sθn(Xn), (1)

where Sθ0 , Sθ1,...,Sθn are randomly chosen from a family {Sθ : θ ∈ Θ} of

functions that map a state space X into itself. If chain is at x ∈ X then

θ ∈ Θ is sampled from distribution ϑx on Θ, where ϑx are, in general,

different for different x. We are interested in the rate of convergence to

stationary distribution µ∗ on X , i.e.

P{Xn ∈ A} → µ∗(A) as n → ∞. (2)

In case of constant probabilities, i.e. ϑx = ϑy for x, y ∈ X , the basic tool

when studying asymptotics of (1) are backward iterations

Yn+1 = Sθ0 ◦ Sθ1 ◦ ... ◦ Sθn(x).

Since Xn and Yn are identically distributed and, under suitable conditions,

Yn converge almost surely at exponential rate to some random element Y ,

one obtains exponential convergence in (2) (see [6] for bibliography and

excellent survey of the field). For place dependent ϑx we need different ap-

proach because distributions of Xn and Yn are not equal.

The simplest case when Θ = {1, ..., n} is treated in [2] and [20], where exis-

tence of a unique attractive invariant measure is established. Similar result
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holds true when Θ = [0, T ] and ϑx are absolutely continuous (see [13]). Re-

cently it was shown that the rate of convergence in case of Θ = {1, ..., n} is

exponential (see [21]).

In this paper we treat general case of place dependent ϑx for arbitrary Θ and

prove the existence of a unique exponentially attractive invariant measure

for (1). Our approach is based on coupling method which can be briefly

described as follows. For arbitrary starting points x, x̄ ∈ X we consider

chains (Xn)n∈N0
, (X̄n)n∈N0

with X0 = x0, X̄0 = x̄0 and try to build corre-

lations between (Xn)n∈N0
and (X̄n)n∈N0

in order to make their trajectories

as close as possible. This can be done because transition probability func-

tion Bx,y(A) = P{(Xn+1, X̄n+1) ∈ A | (Xn, X̄n) = (x, y)} of the coupled

chain (Xn, X̄n)n∈N0
taking values in X2 can be decomposed (see [11]) in the

following way

Bx,y = Qx,y +Rx,y,

where sub-probabilistic measures Qx,y are contractive in metric d on X :
∫

X2

d(u, v)Qx,y(du, dv) ≤ αd(x, y)

for some constant α ∈ (0, 1).

Since transition probabilities for (1) can be mutually singular for even very

close points, one cannot expect that chains (Xn)n∈N0
and (X̄n)n∈N0

couple

in finite time (Xn = X̄n for some n ∈ N0) as in classical coupling construc-

tions ([16]) leading to convergence in total variation norm. On the contrary,

they only couple at infinity (d(Xn, X̄n) → 0 as n → ∞) so this method is

sometimes called asymptotic coupling ([12]) and gives convergence in *-weak

topology.

The paper is organized as follows. In Section 2 we formulate and prove the-

orem which assures exponential convergence to invariant measure for a class

of Markov chains. This theorem is applied in Section 3 to chains generated

by random iteration of functions. In Section 4 we discuss special class of

such functions, random affine transformations on R
d, thus generalizing the

notion of perpetuity to place dependent case.

2. An exponential convergence result

2.1. Notation and basic definitions. Let (X, d) be a Polish space, i.e.

a complete and separable metric space and denote by BX the σ-algebra

of Borel subsets of X . By Bb(X) we denote the space of bounded Borel-

measurable functions equipped with the supremum norm, Cb(X) stands

for subspace of bounded continuous functions. By Mfin(X) and M1(X)
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we denote the sets of Borel measures on X such that µ(X) < ∞ for µ ∈

Mfin(X) and µ(X) = 1 for µ ∈ M1(X). Elements of M1(X) are called

probability measures. Elements of Mfin(X) for which µ(X) ≤ 1 are called

sub-probabilistic. By supp µ we denote the support of the measure µ. We

also define

ML
1 (X) = {µ ∈ M1(X) :

∫

X

L(x)µ(dx) < ∞}

where L : X → [0,∞) is arbitrary Borel measurable function and

M1
1(X) = {µ ∈ M1(X) :

∫

X

d(x̄, x)µ(dx) < ∞},

where x̄ ∈ X is fixed. Definition of M1
1(X) is independent of the choice of

x̄.

The space M1(X) is equipped with the Fourtet-Mourier metric:

‖µ1 − µ2‖FM = sup{|

∫

X

f(x)(µ1 − µ2)(dx)| : f ∈ F},

where

F = {f ∈ Cb(X) : |f(x)− f(y)| ≤ 1 and |f(x)| ≤ 1 for x, y ∈ X}.

The space M1
1(X) is equipped with the Wasserstein metric:

‖µ1 − µ2‖W = sup{|

∫

X

f(x)(µ1 − µ2)(dx)| : f ∈ W},

where

W = {f ∈ Cb(X) : |f(x)− f(y)| ≤ 1 for x, y ∈ X}.

By ‖ · ‖ we denote the total variation norm. If the measure µ is nonnegative

then ‖µ‖ is simply the total mass of µ.

Let P : Bb(X) → Bb(X) be the Markov operator, i.e. linear operator

satisfying P1X = 1X and Pf(x) ≥ 0 if f ≥ 0. Denote by P ∗ the dual

operator, i.e operator P ∗ : Mfin(X) → Mfin(X) defined as follows

P ∗µ(A) :=

∫

X

P1A(x)µ(dx) for A ∈ BX .

We say that µ∗ ∈ M1(X) is invariant for P if
∫

X

Pf(x)µ∗(dx) =

∫

X

f(x)µ∗(dx) for every f ∈ Bb(X)

or, alternatively, we have P ∗µ∗ = µ∗.

By {Px : x ∈ X} we denote the transition probability function for P , i.e.

the family of measures Px ∈ M1(X) for x ∈ X such that maps x 7→ Px(A)

are measurable for every A ∈ BX and

Pf(x) =

∫

X

f(y)Px(dy) for x ∈ X and f ∈ Bb(X)
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or equivalently P ∗µ(A) =
∫
X
Px(A)µ(dx) for A ∈ BX and µ ∈ Mfin(X).

2.2. Formulation of the theorem.

Definition 2.1. A coupling for {Px : x ∈ X} is a family {Bx,y : x, y ∈ X}

of probabilistic measures on X × X such that for every B ∈ BX2 the map

X2 ∋ (x, y) 7→ Bx,y(B) is measurable and

Bx,y(A×X) = Px(A), Bx,y(X ×A) = Py(A)

for every x, y ∈ X and A ∈ BX .

In the following we assume that there exists the family {Qx,y : x, y ∈ X}

of sub-probabilistic measures on X2 such that maps (x, y) 7→ Qx,y(B) are

measurable for every Borel B ⊂ X2 and

Qx,y(A×X) ≤ Px(A) and Qx,y(X ×A) ≤ Py(A)

for every x, y ∈ X and Borel A ⊂ X .

Measures {Qx,y : x, y ∈ X} allow us to construct coupling for {Px : x ∈ X}.

Define on X2 the family of measures {Rx,y : x, y ∈ X}, which on rectangles

A×B are given by

Rx,y(A×B) =
1

1−Qx,y(X2)
(Px(A)−Qx,y(A×X))(Py(B)−Qx,y(X×B)),

when Qx,y(X
2) < 1 and Rx,y(A×B) = 0 otherwise. A simple computation

shows that family {Bx,y : x, y ∈ X} of measures on X2 defined by

Bx,y = Qx,y +Rx,y for x, y ∈ X

is coupling for {Px : x ∈ X}.

For every r > 0 define Dr = {(x, y) ∈ X2 : d(x, y) < r }.

Now we list assumptions on Markov operator P and transition probabilities

{Qx,y : x, y ∈ X}.

A0 P is a Feller operator, i.e. P (Cb(X)) ⊂ Cb(X).

A1 There exists a Lapunov function for P , i.e. continuous function L :

X → [0,∞) such that L is bounded on bounded sets, limx→∞ L(x) = +∞

and for some λ ∈ (0, 1), c > 0

PL(x) ≤ λL(x) + c for x ∈ X.

A2 There exist F ⊂ X2 and α ∈ (0, 1) such that suppQx,y ⊂ F and
∫

X2

d(u, v)Qx,y(du, dv) ≤ αd(x, y) for (x, y) ∈ F. (3)

A3 There exist R > 0, δ > 0, l > 0 and ν ∈ (0, 1] such that

1− ‖Qx,y‖ ≤ ld(x, y)ν and Qx,y(Dαd(x,y)) ≥ δ (4)
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for (x, y) ∈ DR ∩ F .

A4 There exist β ∈ (0, 1) and C̃ > 0 such that for

κ( (xn, yn)n∈N0
) = inf{n ∈ N0 : (xn, yn) ∈ DR ∩ F}

we have

Ex0,y0β
−κ ≤ C̃ whenever L(x0) + L(y0) <

4c

1− λ
,

where Ex0,y0 denotes here expectation with respect to chain starting from

(x0, y0) and with trasition function {Bx,y : x, y ∈ X}.

Remark. Condition A4 means that dynamics quickly enters the domain

of contractivity F . In this paper we discuss Markov chains generated by ran-

dom iteration of functions for which always F = X2 and L(x) = d(x, x̄) with

some fixed x̄ ∈ X , so A4 is trivially fulfilled when R = 4c
1−λ

. There are, how-

ever, examples of random dynamical systems for which F is a proper subset

of X2. Indeed, in contractive Markov systems introduced by I. Werner in

[22] we have X =
∑n

i=1Xi but F =
∑n

i=1Xi ×Xi. They will be studied in

a subsequent paper.

Now we formulate the main result of this section. Its proof is given in

Section 2.4.

Theorem 2.1. Assume A0 – A4. Then operator P possesses a unique

invariant measure µ∗ ∈ ML
1 (X), which is attractive, i.e.

lim
n→∞

∫

X

P nf(x)µ(dx) =

∫

X

f(x)µ(dx) for f ∈ Cb(X), µ ∈ M1(X).

Moreover, there exist q ∈ (0, 1) and C > 0 such that

‖P ∗nµ− µ∗‖FM ≤ qnC(1 +

∫

X

L(x)µ(dx)) (5)

for µ ∈ ML
1 (X) and n ∈ N.

2.3. Measures on the pathspace. For fixed (x0, y0) ∈ X2 the next step

of the chain with transition probability function Bx,y = Qx,y + Rx,y can

be drawn according to Qx0,y0 or according to Rx0,y0. To distinguish these

two cases we introduce augmented space X̂ = X2 × {0, 1} and transition

function {B̂x,y,θ : (x, y, θ) ∈ X̂} on X̂ given by

B̂x,y,θ = Qx,y × δ1 +Rx,y × δ0.

Parameter θ ∈ {0, 1} is responsible for choosing measures Qx,y and Rx,y.

If Markov chain with transition function B̂x,y,θ at time n stays in the set

X2×{1} it means that the last step was drawn according to Qx,y, for some
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(x, y) ∈ X2.

For every x ∈ X finite-dimensional distributions P0,...,n
x ∈ M1(X

n+1) are

defined by

P0,...,n
x (B) =

∫

X

µ(dx0)

∫

X

Px1
(dx2)...

∫

X

Pxn−1
(dxn)1B(x0, ..., xn)

for n ∈ N0, B ∈ BXn+1 . By Kolmogorov extension theorem we obtain

measure P∞
x on pathspace X∞. Similarly we define measures B∞

x,y, B̂
∞
x,y,θ

on (X ×X)∞ and X̂∞. These measures have the following interpretation.

Consider Markov chain (Xn, Yn)n∈N0
on X ×X , starting from (x0, y0), with

transition function {Bx,y : x, y ∈ X}, obtained by canonical Kolmogorov

construction, i.e. Ω = (X×X)∞ is sample space equipped with probability

measure P = B∞
x0,y0

, Xn(ω) = xn, Yn(ω) = yn, where ω = (xk, yk)k∈N0
∈ Ω,

and n ∈ N0. Then (Xn)n∈N0
, (Yn)n∈N0

are Markov chains in X , starting

from x0 and y0, with transition function {Px : x ∈ X}, and P∞
x , P∞

y are

their measures on pathspace X∞.

In this paper we often consider marginals of measures on the pathspace. If

µ is a measure on a measurable space X and f : X → Y is a measurable

map, then f#µ is the measure on Y defined by f#µ(A) = µ(f−1(A)). So, if

we denote by pr the projection map from a product space to its component,

then pr#µ is simply the marginal of µ on this component.

In the following we consider Markov chains on X̂ with transition function

{B̂x,y,θ : x, y ∈ X, θ ∈ {0, 1}}. We adopt as a convention that θ0 = 1, that

is Φ always starts from X2 × {1}, and define

B̂∞
x,y := B̂∞

x,y,1.

For b ∈ Mfin(X
2) we write

B̂∞
b (B) =

∫

X

B̂∞
x,y(B) b(dx, dy), B ∈ BX̂∞

and

Qb(A) =

∫

X2

Qx,y(A) b(dx, dy), A ∈ BX2 .

When studying asymptotics of chain (Xn)n∈N0
with transition function {Px :

x ∈ X} it is particularly interesting whether coupled chain (Xn, Yn)n∈N0

is moving only accordingly to contractive part Qx,y of transition function
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Bx,y. For every sub-probabilistic measure b ∈ Mfin(X
2) we define sub-

probabilistic finite-dimensional distributions Q0,...,n
b ∈ Mfin((X ×X)n+1)

Q
0,...,n
b (B) =

∫

X2

b(dx0, dy0)

∫

X2

Qx0,y0(dx1, dy1)...

...

∫

X2

Qxn−1,yn−1
1B((x0, y0), ..., (xn, yn)),

where B ∈ B(X×X)n+1 , n ∈ N0. Since family {Q0,...,n
b : n ∈ N0} need not be

consistent, we cannot use Kolmogorov extension theorem to obtain measure

on the whole pathspace X̂∞. However, defining for every b ∈ Mfin(X
2)

measure Q∞
b ∈ Mfin(X̂

∞) by

Q∞
b (B) = B̂∞

b (B ∩ (X2 × {1})∞),

where B ∈ BX̂∞ , one can easily check that for every cylindrical set B =

A× X̂∞, A ∈ BX̂n , we have

Q∞
b (B) = lim

n→∞
Q

0,...,n
b (pr(X2)n+1(A)).

2.4. Proof of Theorem 2.1. Before proceeding to the proof of Theorem

2.1 we formulate two lemmas. The proof of the first one is due to C. Odasso

and can be found in [19] as a part of larger reasoning. Since it is very useful

in coupling constructions we formulate it here explicitly and reproduce its

proof.

Lemma 2.1. Let Y be a metric space and V : Y → [0,∞) a measurable

function. Let (Y y0
n )n∈N0

be a family of Markov chains with common tran-

sition function, indexed by starting point y0 ∈ Y . Suppose that there exist

constants V0 > 0, λ ∈ (0, 1), C̃ > 0 such that for

ρ((yk)k∈N0
) = inf{k ∈ N0 : V (yk) < V0}

we have

Ey0λ
−ρ ≤ C̃(V (y0) + 1)} for y0 ∈ Y,

where Ey0 is expectation induced by (Y y0
n )n∈N0

.

Let B ⊂ Y ∞ be measurable and such that for some p > 0 we have Py0(B) > p

for every y0 satisfying V (y0) < V0. Then there exist constants γ ∈ (0, 1)

and C > 0 such that for

τB((yk)k∈N0
) = inf{n ∈ N0 : (yn+k)k∈N0

∈ B}

we have

Ey0γ
−τB ≤ C(V (y0) + 1) for y0 ∈ Y.
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Proof of Lemma 2.1.

Fix y0 ∈ Y . Define the time of n-th visit in {y ∈ Y : V (y) < V0}:

ρ1 = ρ

ρn+1 = ρn + ρ ◦ Tρn for n > 1,

where Tn((yk)k∈N0
) = (yk+n)k∈N0

. Strong Markov property implies that

Ey0(λ
−ρ ◦ Tρn |Fρn) = EYρn

(λ−ρ) for n ∈ N,

where Fρn is σ -algebra in Y ∞ generated by ρn. Since V (Yρn) < V0 we have

Ey0(λ
−ρn+1) = Ey0(λ

−ρnEy0(λ
−ρ ◦ Tρn |Fρn)) = Ey0(λ

−ρnEYρn
(λ−ρ)) ≤

≤ Ey0(λ
−ρn)[C̃(V0 + 1)].

Taking a = C̃(V0 + 1) we obtain

Ey0(λ
−ρn+1) ≤ anC̃(V (y0) + 1).

Define

τ̂B((yk)k∈N0
) = inf{n ∈ N0 : V (yn) < V0 and (yk+n)k∈N0

∈ B}

and

σ = inf{n ≥ 1 : τ̂B = ρn}.

By assumption we have Py0(σ = k) ≤ (1− p)k−1 for k ≥ 1.

Let r > 1. Hölder inequality implies that

Ey0(λ
−

τ̂B
r ) ≤

∞∑

k=1

Ey0(λ
ρk
r 1σ=k) ≤

≤

∞∑

k=1

[Ey0(λ
ρk)]

1

rPy0(σ = k)1−
1

r ≤

≤

∞∑

k=1

[ak−1C̃(V (y0) + 1)]
1

r (1− p)(1−k)(1− 1

r
) ≤

≤ C̃(1 + V (y0))

∞∑

k=1

[(
a

1− p
)
1

r (1− p)]k.

Choosing sufficiently large r and setting γ = λ
1

r we obtain

Ey0(γ
−τ̂B) ≤ C(V (y0) + 1)

for some C > 0. Since τB ≤ τ̂B, the proof is complete. �

Lemma 2.2. Let (Y y0
n )n∈N0

with y0 ∈ Y be a family of Markov chains in

metric space Y. Suppose that V : Y → [0,∞) is Lapunov function for their
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transition function {πy : y ∈ Y }, i.e. there exist a ∈ (0, 1) and b > 0 such

that ∫

Y

V (x)πy(dx) ≤ aV (y) + b for y ∈ Y.

Then there exist λ ∈ (0, 1) and C̃ > 0 such that for

ρ((yk)k∈N0
) = inf{k ∈ N0 : V (yk) <

2b

1− a
}

we have

Ey0λ
−ρ ≤ C̃(V (y0) + 1) for y0 ∈ Y.

Proof of Lemma 2.2.

Chains (Y y0
n )n∈N0

, y0 ∈ Y are defined on common probability space (Ω,F ,P).

Fix max{a, 1+a
2
} < α < 1 and set V0 =

b
α−a

. Define

ρ̃((yk)k∈N0
) = inf{k ∈ N0 : V (yk) ≤ V0}

For every y0 ∈ Y let Fn ⊂ F , n ∈ N0 be filtration induced by (Y y0
n )n∈N0

.

Define

An = {ω ∈ Ω : V (Y y0
n (ω)) > V0 for i = 0, 1, ..., n}, n ∈ N0.

Observe that An+1 ⊂ An and An ∈ F . By the definition of V0 we have

1An
E(V (Y y0

n+1)|Fn) ≤ 1An
(aV (Y y0

n ) + b) < α1An
V (Y y0

n ) P-a.e. in Ω. This

gives
∫

An

V (Y y0
n )dP ≤

∫

An−1

V (Y y0
n )dP =

∫

An−1

E(V (Y y0
n )|Fn−1)dP

≤

∫

An−1

(aV (Y y0
n−1) + b)dP ≤ α

∫

An−1

V (Y y0
n−1)dP.

By Chebyshev inequality

P(V (Y y0
0 ) > V0, ..., V (Y y0

n ) > V0) =

∫

An−1

P(V (Y y0
n ) > V0|Fn−1)dP

≤ V −1
0

∫

An−1

E(V (Y y0
n )|Fn−1)dP ≤ αnV −1

0 (aV (y0) + b),

and

Py0(ρ̃ > n) ≤ αnC(V (y0) + 1) for n ∈ N0.

Fix γ ∈ (0, 1) and observe that for λ = αγ we have

Ey0λ
−ρ̃ ≤ 2+

∞∑

n=1

Py0(λ
−ρ̃ > n) ≤ 2+

C(V (y0) + 1)

α

∞∑

n=1

n
− 1

γ = C̃(V (y0)+1)

for properly chosen C̃. Since ρ ≤ ρ̃ the proof is finished. �

Proof of Theorem 2.1.

Step I: Define new metric d̄(x, y) = d(x, y)ν and observe that for D̄r =



10 RAFA L KAPICA AND MACIEJ ŚLȨCZKA

{(x, y) ∈ X2 : d̄(x, y) < r} we have DR = D̄R̄ with R̄ = Rν . By Jensen

inequality (3) takes form
∫

X2

d̄(u, v)Qx,y(du, dv) ≤ ᾱd̄(x, y) for (x, y) ∈ F, (6)

with ᾱ = αν . Assumption A3 implies that

1− ‖Qx,y‖ ≤ ld̄(x, y) and Qx,y(Dᾱd̄(x,y)) ≥ δ (7)

for (x, y) ∈ D̄R̄ ∩ F .

Step II: Observe, that if b ∈ Mfin(X
2) satisfies supp b ⊂ D̄R̄ ∩ F then (7)

implies

‖Qb‖ ≥ ‖b‖ − l

∫

X2

d̄(u, v)b(du, dv).

Iterating the above inequality we obtain

‖Q∞
b ‖ ≥ ‖b‖ −

l

1− ᾱ

∫

X2

d̄(u, v)b(du, dv) (8)

if supp b ⊂ D̄R̄ ∩ F . Set r0 = min{R̄, 1−ᾱ
2l

} and n0 = min{n ∈ N0 : ᾱ
nR̄ <

r0}. Now (7) and (8) imply, that for (x, y) ∈ DR ∩ F we have

‖Q∞
x,y‖ ≥

1

2
δn0 . (9)

Step III: Define ρ̃ : (X2)∞ → N0

ρ̃((xn, yn)n∈N0
) = inf{n ∈ N0 : L(xn) + L(yn) <

4c

1− λ
}.

Since L(x)+L(y) is Lapunov function for Markov chain inX2 with transition

probabilities {Bx,y : x, y ∈ X}, Lemma 2.2 shows that there exist constants

λ0 ∈ (0, 1) and C0 such that

Ex,y λ
−ρ̃
0 ≤ C0(L(x) + L(y) + 1) for (x, y) ∈ X2. (10)

Define

ρ((xn, yn, θn)n∈N0
) = inf{n ∈ N0 : (xn, yn) ∈ DR ∩ F}

and

τ((xn, yn, θn)n∈N0
) = inf{n ∈ N0 : (xn, yn) ∈ DR ∩ F and ∀k≥nθk = 1}.

Set λ = max{β, λ0}. Since ρ ≤ ρ̃ + κ ◦ Tρ̃, where Tρ̃((xn, yn, θn)n∈N0
) =

(xn+ρ̃, yn+ρ̃, θn+ρ̃)n∈N0
, then strong Markov property, A4 and (10) give

Ex,y,θ λ
−ρ ≤ C̃C0(L(x) + L(y) + 1) for x, y ∈ X, θ ∈ {0, 1}.

Define B = {(xn, yn, θn)n∈N0
: θn = 1 for n ∈ N0}. From Step II

we obtain that Px,y,θ(B) ≥ 1
2
δn0 for (x, y, θ) ∈ (DR ∩ F ) × {0, 1}. Finally

Lemma 2.1 guarantees existence of constants γ ∈ (0, 1), C1 > 0 such that

Ex,y,θ γ
−τ ≤ C1(L(x) + L(y) + 1) for x, y ∈ X, θ ∈ {0, 1}.
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STEP IV: Define sets

Gn
2
= {t ∈ (X2 × {0, 1})∞ : τ(t) ≤

n

2
}

and

Hn
2
= {t ∈ (X2 × {0, 1})∞ : τ(t) >

n

2
}.

For every n ∈ N we have

B̂∞
x,y,θ = B̂∞

x,y,θ |Gn
2

+B̂∞
x,y,θ |Hn

2

for x, y ∈ X, θ ∈ {0, 1}.

Fix θ = 1 and (x, y) ∈ X2. From the fact that ‖ · ‖FM ≤ ‖ · ‖W it follows

that

‖P ∗nδx − P ∗nδy‖FM = ‖Pn
x −Pn

y‖FM

= sup
f∈F

|

∫

X2

(f(z1)− f(z2))(pr
#
n B

∞
x,y)(dz1, dz2)|

= sup
f∈F

|

∫

X2

(f(z1)− f(z2))(pr
#
X2pr

#
n B̂

∞
x,y,θ)(dz1, dz2)|

≤ sup
f∈W

|

∫

X2

(f(z1)− f(z2))(pr
#
X2pr

#
n (B̂

∞
x,y,θ |Gn

2

))(dz1, dz2)|+ 2B̂∞
x,y,θ(Hn

2
).

From A2 we obtain

sup
W

|

∫

X2

(f(z1)− f(z2))(pr
#
X2pr

#
n (B̂

∞
x,y,θ |Gn

2

))(dz1, dz2)|

≤

∫

X2

d(z1, z2)(pr
#
X2pr

#
n (B̂

∞
x,y,θ |Gn

2

))(dz1, dz2)

≤ α
n
2

∫

X2

d(z1, z2)(pr
#
X2pr

#
n
2

(B̂∞
x,y,θ |Gn

2

))(dz1, dz2) ≤ α
n
2R.

Now Step III and Chebyshev inequality imply that

B̂∞
x,y,θ(Hn

2
) ≤ γ

n
2C1(L(x) + L(y) + 1) for n ∈ N.

Taking C2 = 2C1 +R and q = max{γ
n
2 , α

n
2 } we obtain

‖P ∗nδx − P ∗nδy‖FM ≤ γnC1(L(x) + L(y) + 1) for x, y ∈ X, n ∈ N,

and so

‖P ∗nµ− P ∗nν‖FM ≤ γnC1(

∫

X

L(x)µ(dx) +

∫

X

L(y)ν(dy) + 1) (11)

for µ, ν ∈ ML
1 (X) and n ∈ N.

Step V: Observe that Step IV and A1 give

‖P ∗nδx − P ∗(n+k)δx‖FM ≤

∫

X

‖P ∗nδx − P ∗nδy‖FMP ∗kδx(dy)

≤ qnC2

∫

X

(L(x) + L(y))P ∗kδx(dy) ≤ qnC3(1 + L(x)),
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so (P ∗nδx)n∈N is Cauchy sequence for every x ∈ X . Since M1(X) equipped

with norm ‖·‖FM is complete (see [8]), assumption A0 implies the existence

of invariant measure µ∗. Assumption A1 gives µ∗ ∈ ML
1 (X). Applying

inequality (11) we obtain (5). Observation that the space ML
1 (X) is dense

in M1(X) in the total variation norm finishes the proof.

�

Remark. In steps IV and V of the above proof we follow M. Hairer (see

[11]).

3. Random iteration of functions

Let (X, d) be a Polish space and (Θ,Ξ) a measurable space with a family

ϑx ∈ M1(Θ) of distributions on Θ indexed by x ∈ X . Space Θ serves as

a set of indices for a family {Sθ : θ ∈ Θ} of continuous functions acting

on X into itself. We assume that (θ, x) 7→ Sθ(x) is product measurable.

In this section we study some stochastically perturbed dynamical system

(Xn)n∈N0
. Its intuitive description is following: if X0 starts at x0, then by

choosing θ0 at random from ϑx0
we define X1 = Sθ0(x0). Having X1 we

select θ1 according to the distribution ϑX1
and we put X2 = Sθ1(X1) and so

on. More precisely, the process (Xn)n∈N0
can be written as

Xn+1 = SYn
(Xn), n = 0, 1, . . . ,

where (Yn)n∈N0
is a sequence of random elements defined on the probability

space (Ω,Σ, prob) with values in Θ such that

prob (Yn ∈ B|Xn = x) = ϑx(B) for x ∈ X,B ∈ Ξ, n = 0, 1, . . . ,

(12)

and X0 : Ω → X is a given random variable. Denoting by µn the probability

law of Xn, we will give a recurrence relation between µn+1 and µn. To this

end fix f ∈ Bb(X) and note that

Ef(Xn+1) =

∫

X

fdµn+1.

But, by (12) we have
∫

A

ϑx(B)µn(dx) = prob({Yn ∈ B} ∩ {Xn ∈ A}) for B ∈ Ξ, A ∈ BX ,

hence

Ef(Xn+1) =

∫

Ω

f(SYn(ω)(Xn(ω))prob(dω) =

∫

X

∫

Θ

f(Sθ(x))ϑx(dθ)µn(dx).
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Putting f = 1A, A ∈ BX , we obtain µn+1(A) = P ∗µn(A), where

P ∗µ(A) =

∫

X

∫

Θ

1A(Sθ(x))ϑx(dθ)µ(dx) for µ ∈ Mfin(X), A ∈ BX .

In other words this formula defines the transition operator for µn. Operator

P ∗ is adjoint of the Markov operator P : Bb(X) → Bb(X) of the form

Pf(x) =

∫

Θ

f(Sθ(x))ϑx(dθ). (13)

We take this formula as the precise formal definition of considered process.

We will show that operator (13) has a unique invariant measure, provided

the following conditions hold:

B1 There exists α ∈ (0, 1) such that
∫

Θ

d(Sθ(x), Sθ(y))ϑx(dθ) ≤ αd(x, y) for x, y ∈ X.

B2 There exists x̄ ∈ X such that

c := sup
x∈X

∫

Θ

d(Sθ(x̄), x̄)ϑx(dθ) < ∞.

B3 A map x 7→ ϑx, x ∈ X , is Hölder continuous in the total variation

norm, i.e. there exists l > 0 and ν ∈ (0, 1] such that

‖ϑx − ϑy‖ ≤ l d(x, y)ν for x, y ∈ X.

B4 There exists δ > 0 such that

ϑx∧ϑy({θ ∈ Θ : d(Sθ(x), Sθ(y)) ≤ αd(x, y)}) > δ if d(x, x̄)+d(y, x̄) <
4c

1− α
,

where ∧ denotes the greatest lower bound in the lattice of finite measures.

Remark. It is well known (see [15]) that replacing Hölder continuity in

B3 by slightly weaker condition of Dini continuity can lead to the lack of

exponential convergence.

Proposition 3.1. Assume B1 – B4. Then operator (13) possesses a unique

invariant measure µ∗ ∈ M1
1(X), which is attractive in M1(X). Moreover

there exist q ∈ (0, 1) and C > 0 such that

‖P ∗nµ− µ∗‖FM ≤ qnC(1 +

∫

X

d(x̄, x)µ(dx))

for µ ∈ M1
1(X) and n ∈ N.

Proof. Define an operator Q on Bb(X
2) by

Q(f)(x, y) =

∫

Θ

f(Sθ(x), Sθ(y))ϑx ∧ ϑy(dθ).

Since

||ϑx′ ∧ ϑy′ − ϑx ∧ ϑy|| ≤ 2(||ϑx′ − ϑx||+ ||ϑy′ − ϑy||)
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it follows that

|Q(f)(x′, y′)−Q(f)(x, y)| ≤

∫

Θ

|f(Sθ(x
′), Sθ(y

′))| ||ϑx′ ∧ ϑy′ − ϑx ∧ ϑy||(dθ)

+

∫

Θ

|f(Sθ(x
′), Sθ(y

′))− f(Sθ(x), Sθ(y))|ϑx ∧ ϑy(dθ)

≤ 2l sup
z∈X2

|f(z)| (d(x, x′)ν + d(y, y′)ν)

+

∫

Θ

|f(Sθ(x
′), Sθ(y

′))− f(Sθ(x), Sθ(y))|ϑx ∧ ϑy(dθ),

for f ∈ Bb(X
2), x, y ∈ X . Consequently, we see that Q(Cb(X

2)) ⊂ Cb(X
2),

by Lebesgue’s dominated convergence theorem. Put

F = {f ∈ Bb(X
2) : sup

z∈X2

|f(z)| ≤ M,Q(f) ∈ Bb(X
2)},

where M > 0 is fixed, and observe that the family F is closed in pointwise

convergence. Therefore F consists the class of Baire functions bounded by

M . By virtue of [17, Theorem 4.5.2] we obtain Q(Bb(X
2)) ⊂ Bb(X

2). In

particular, for the family {Qx,y : x, y ∈ X} of (sub-probabilistic) measures

given by

Qx,y(C) =

∫

Θ

1C(Sθ(x), Sθ(y))ϑx ∧ ϑy(dθ),

we have that maps (x, y) 7→ Qx,y(C) are measurable for every C ∈ BX2 .

Arguing similarly as above we show that (13) is well defined Feller oper-

ator. It has Lapunov function L(x) = d(x, x̄), since
∫

Θ

d(Sθ(x), x̄)ϑx(dθ) ≤ αd(x, x̄) + c.

Now, observe that

‖Qx,y‖ = ϑx ∧ ϑy(Θ) = 1− sup
A∈Θ

{ϑy(A)− ϑx(A)} ≥ 1− l d(x, y)ν

for x, y ∈ X . Moreover, we have
∫

X2

d(u, v)Qx,y(du, dv) =

∫

Θ

d(Sθ(x), Sθ(y))ϑx ∧ ϑy(dθ) ≤ αd(x, y),

and

Qx,y(Dαd(x,y)) = ϑx ∧ ϑy({θ ∈ Θ : d(Sθ(x), Sθ(y)) ≤ αd(x, y)}) > δ

whenever d(x, x̄) + d(y, x̄) < 4c
1−α

. In consequence A0 – A3 are fulfilled.

The use of Theorem 2.1 (see also Remark concerning assumption A4) ends

the proof. �
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4. Perpetuities with place dependent probabilities

Let X = R
d and G = R

d×d × R
d, and consider a function Sθ : X → X

defined by Sθ(x) = M(θ)x + Q(θ), where (M,Q) is a random variable on

(Θ,Ξ) with values in G. Then (13) may be written as

Pf(x) =

∫

G

f(mx+ q)dϑx ◦ (M,Q)−1(m, q) (14)

This operator is connected with random difference equation of the form

Φn = MnΦn−1 +Qn, n = 1, 2, . . . , (15)

where (Mn, Qn)n∈N is a sequence of independent random variables distributed

as (M,Q). Namely, the process (Φn)n∈N0
is a homogeneous Markov chain

with transition kernel P given by

Pf(x) =

∫

G

f(mx+ q)dµ(m, q), (16)

where µ stands for a distribution of (M,Q). Equation (15) arises in various

disciplines as economics, physics, nuclear technology, biology, sociology (see

e.g. [23]). It is closely related to a sequence of backward iterations (Ψn)n∈N,

given by
∑n

k=1M1 . . .Mk−1Qk, n ∈ N (see e.g. [9]). Under conditions en-

suring the almost sure convergence of the sequence (Ψn)n∈N the limiting

random variable
∞∑

n=1

M1 . . .Mn−1Qn (17)

is often called perpetuity. It turns out that the probability law of (17) is a

unique invariant measure for (16). The name perpetuity comes from perpet-

ual payment streams and recently gained some popularity in the literature

on stochastic recurrence equations (see [7]). In the insurance context a per-

petuity represents the present value of a permanent commitment to make

a payment at regular intervals, say annually, into the future forever. The

Qn represent annual payments, the Mn cumulative discount factors. Many

interesting examples of perpetuities can be found in [1]. Due to significant

papers [14], [10], [23] and [9] we have complete (in the dimension one) char-

acterization of convergence of perpetuities. The rate of this convergence has

recently been extensively studied by many authors (see for instance [3]-[5],

[18]). The main result of this section concerns the rate of the convergence

of the process (Xn)n∈N0
associated with an operator P : Bb(R

d) → Bb(R
d)

given by

Pf(x) =

∫

G

f(mx+ q)dµx(m, q), (18)
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where {µx : x ∈ R
d} is a family of Borel probability measures on G. In

contrast to (Φn)n∈N0
, the process (Xn)n∈N0

moves by choosing at random

θ from a measure depending on x. Taking into considerations the concept

of perpetuities we may say that (Xn)n∈N0
forms a perpetuity with place

dependent probabilities.

Corollary 4.1. Assume that {µx : x ∈ R
d} is a family of Borel probability

measures on G such that 1

α := sup
x∈Rd

∫

G

||m||dµx(m, q) < 1, c := sup
x∈Rd

∫

G

|q|dµx(m, q) < ∞. (19)

Assume moreover that a map x 7→ µx, x ∈ X, is Hölder continuous in the

total variation norm and there exists δ > 0 such that

µx ∧ µy({(m, q) ∈ G : ||m|| ≤ α}) > δ if |x|+ |y| <
4c

1− α
.

Then operator (18) possesses a unique invariant measure µ∗ ∈ M1
1(R

d),

which is attractive in M1(R
d). Moreover there exist q ∈ (0, 1) and C > 0

such that

‖P ∗nµ− µ∗‖FM ≤ qnC(1 +

∫

Rd

|x|µ(dx))

for µ ∈ M1
1(R

d) and n ∈ N.

The proof of corollary is straightforward application of Proposition 3.1. We

leave the details to the reader. We finish the paper by giving an example

to illustrate Corollary 4.1.

Example. Let ν0, ν1 be distributions on R
2. Assume that p, q : R → [0, 1]

are Lipschitz functions (with Lipschitz constant L) summing up to 1, and

p(x) = 1, for x ≤ 0, p(x) = 0, for x ≥ 1. Define µx by

µx = p(x)ν0 + q(x)ν1, x ∈ R.

Then:

(1) ‖µx − µy‖ ≤ 2L|x− y| for x, y ∈ R.

(2) If
∫
R2 |m|dνi(m, q) < 1 and

∫
R2 |q|dνi(m, q) < ∞ for i = 0, 1, then

(19) holds.

(3) For every A ∈ BR2 , x, y ∈ R we have: µx ∧ µy(A) ≥ ν0 ∧ ν1(A) =

(ν0 − λ+)(A) = (ν1 − λ−)(A) ≥ max{ν0(A), ν1(A)} − ‖ν0 − ν1‖(A),

where (λ+, λ−) is a Jordan decomposition of ν1 − ν0.

1||m|| = sup{|mx| : x ∈ R
d, |x| = 1}, and | · | is Euclidean norm in R

d
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