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TWISTED FROBENIUS–SCHUR INDICATORS FOR HOPF

ALGEBRAS

DANIEL S. SAGE AND MARIA D. VEGA

Abstract. The classical Frobenius–Schur indicators for finite groups are char-
acter sums defined for any representation and any integer m ≥ 2. In the
familiar case m = 2, the Frobenius–Schur indicator partitions the irreducible
representations over the complex numbers into real, complex, and quaternionic
representations. In recent years, several generalizations of these invariants have
been introduced. Bump and Ginzburg, building on earlier work of Mackey,
have defined versions of these indicators which are twisted by an automor-
phism of the group. In another direction, Linchenko and Montgomery have
defined Frobenius–Schur indicators for semisimple Hopf algebras. In this pa-
per, the authors construct twisted Frobenius–Schur indicators for semisimple
Hopf algebras; these include all of the above indicators as special cases and
have similar properties.

1. Introduction

Classically, the Frobenius–Schur indicator of a character of a finite group is the
character evaluated at the sum of squares of the group elements divided by the
order of the group. This indicator was introduced by Frobenius and Schur in their
investigation of real representations. Indeed, they showed that the only possible
values for an irreducible representation are 1, 0, and −1, corresponding to the
partition of the irreducible representations into real, complex, and quaternionic
representations [FS06]. Higher order versions can be obtained by replacing squares
with other powers of group elements.

In recent years, there has been increasing interest in various generalizations of
these invariants. In one direction, Bump and Ginzburg [BG04], building on earlier
work of Mackey [Mac58] and Kawanaka-Matsuyama [KM90], have defined versions
of Frobenius–Schur indicators which are twisted by an automorphism of the group.
These indicators have applications to the study of multiplicity-free permutation
representations, models for finite groups (in the sense of [BGG76]), and Shintani
lifting of characters of finite reductive groups.

Another direction involves extending the theory from finite groups to suitable
Hopf algebras. In 2000, Linchenko and Montgomery constructed Frobenius–Schur
indicators for semisimple Hopf algebras over an algebraically closed field of char-
acteristic zero and proved that the second indicator again only takes the values 0
or ±1 on irreducible representations [LM00]. The higher indicators were further
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studied by Kashina, Sommerhäuser, and Zhu [KSZ06]. These Frobenius–Schur in-
dicators have been useful in classifying Hopf algebras [Kas03, NS08] and studying
their representations [KSZ02]. More exotically, they arise in conformal field the-
ory [Ban97, Ban00].

The goal of this paper is to construct twisted Frobenius–Schur indicators for
semisimple Hopf algebras over an algebraically closed field of characteristic zero
that include all of the above indicators as special cases and have similar properties.
Given an automorphism of order n of such a Hopf algebra, we define the mth twisted
Frobenius–Schur indicator for m any positive multiple of n. This definition is given
in Section 2. In the next section, we consider the case of automorphisms of order
at most two. We show that the second twisted Frobenius–Schur indicator gives
rise to a partition of the simple modules into three classes; this partition involves
the relationship between the module and its “twisted dual” (Theorem 3.3). In
Section 4, we show that the mth twisted Frobenius–Schur indicator can be realized
as the trace of an endomorphism of order m (Theorem 4.7), so that the indicator is
a cyclotomic integer. Finally, we compute a closed formula for the twisted indicator
of the regular representation (Theorem 4.9).

2. Definition

Let k be an algebraically closed field of characterisic 0, and let H be a semisimple
Hopf algebra over k with comultiplication ∆, counit ε, and antipode S. The Hopf
algebra H contains a unique two-sided integral Λ normalized so that ε(Λ) = 1.
We will use the usual Sweedler notation for iterated comultiplication: ∆m−1(Λ) =∑

(Λ) Λ1 ⊗ Λ2 ⊗ · · · ⊗ Λm. All H-modules considered will be finite-dimensional.

We are now ready to define the twisted indicators. Let τ be an automorphism
of H such that τm = Id for some m ∈ N. Let (V, ρ) be an H-module with
corresponding character χ.

Definition 2.1. The m-th twisted Frobenius–Schur indicator of (V, ρ) (or χ) is
defined to be the character sum

(2.1) νm(χ, τ) =
∑

(Λ)

χ
(
Λ1τ (Λ2) · · · τ

m−1 (Λm)
)
.

We note that this is only defined for m divisible by the order of τ . We will write
ν̃m(χ) instead of νm(χ, τ) when this does not cause confusion.

If τ = 1, this formula coincides with the definition of Linchenko and Mont-
gomery [LM00]. Moreover, suppose H = k[G] for a finite group G. In this case,

Λ =
1

|G|

∑
g∈G g, and we recover Bump and Ginzburg’s twisted Frobenius–Schur

indicators for groups [BG04].

3. Twisted second Frobenius–Schur indicators

In this section, we will show that the second twisted Frobenius–Schur indicator
gives rise to a partition of the irreducible H-modules into three classes, depending
on the relationship between the module and its twisted dual. We also compute the
indicators for all automorphisms of H8–the smallest semisimple Hopf algebra that
is neither commutative nor cocommutative.
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3.1. Twisted duals and the partition of the simple modules. Let τ be an
automorphism such that τ2 = Id. We will let T = τS denote the corresponding
anti-involution. Let (V, ρ) be a finite dimensional left H-module with character χ.
Using (2.1) for m = 2, we have

ν̃2(χ) =
∑

(Λ)

χ (Λ1TS(Λ2)) .

Definition 3.1. The twisted dual H-module of V is the dual space V ∗ equipped
with an H-module structure given by

(h · f)(v) = f(T (h) · v),

for all h ∈ H, f ∈ V ∗ and v ∈ V. We denote it by (∗V, ρ̃).

Proposition 3.2. The twisted dual H-module (∗V, ρ̃) satisfies ρ̃(h) = ρ(T (h))t.

Proof. For h ∈ H, f ∈ ∗V and v ∈ V we have,

ρ(T (h))t(f)(v) = f(ρ(T (h))(v))

= ρ̃(h)f(v)

Thus, ρ(T (h))t = ρ̃(h), as required. �

We can now state the main theorem of this section.

Theorem 3.3. Let V be an irreducible representation with character χ. Then the
following properties hold:

(1) ν̃2(χ) = 0, 1, or −1, ∀χ ∈ Irr(H).
(2) ν̃2(χ) 6= 0 if and only if V ∼= ∗V . Moreover, ν̃2(χ) = 1 (resp. −1) if and

only if there is a symmetric (resp. skew-symmetric) nonzero intertwining
map V → ∗V .

Remark 3.4. This result is well-known in two special cases. If we let T = S (i.e., τ =
Id), then we recover Theorem 3.1 in [LM00]. On the other hand, when H is a group
algebra, this is a theorem of Sharp [Sha60] and Kawanaka-Matsuyama [KM90]. See
also [KS08].

We will some preliminary results before proving the theorem.
For future reference, we recall the orthogonality relations for irreducible charac-

ters. If the irreducible characters of H are given by χ1, . . . , χn, then

(3.1)
∑

(Λ)

χi (Λ1)χj (S (Λ2)) = δij .

Equation (3.1) is the dual statement of Theorem 7.5.6 in [DNR00].

Proposition 3.5. There is a canonical isomorphism of H-modules V
Ψ
→ ∗∗V.

Proof. Let Ψ : V → ∗∗V be the usual evaluation map, Ψ(v)(f) = f(v). Then, Ψ is a
linear isomorphism. It remains to show that Ψ is an H-map. For all h ∈ H, f ∈ ∗V

and v ∈ V we have,

(h ·Ψ(v))(f) = Ψ(v)(T (h) · f)

= (T (h) · f)(v)

= f(T 2(h) · v)

= f(h · v)

= Ψ(h · v)(f).
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Therefore, h ·Ψ(v) = Ψ(h · v). �

Definition 3.6. If f : V →W is a morphism of finite dimensional left H-modules,
define ∗f : ∗W → ∗V by (∗f(β))(v) = β(f(v)), for β ∈ ∗W, v ∈ V.

Proposition 3.7. Twisted duality if an involutory auto-equivalence of the category
of H-modules.

Proof. We first check that ∗ f is a morphism of H-modules. Given α ∈ ∗V , h ∈ H ,
and v ∈ V , we have

∗f(h · α)(v) = (h · α)(f(v))

= α(T (h) · f(v))

= α(f(T (h) · v))

= ∗f(α)(T (h) · v)

= (h · ∗f(α))(v).

It is now obvious that twisted duality is a functor. The fact that is an involutory
auto-equivalence follows from Proposition 3.5. �

Proposition 3.8. Let V be a simple left H-module. Then ∗V is also simple.

Proof. Let X be a submodule of ∗V, and f : X → ∗V be the inclusion map. Then,
∗f : ∗∗V → ∗X is a surjective morphism of left H-modules. We know that V ≃ ∗∗V ,
so since V is simple, it follows that ∗∗V is also simple. This implies that ∗f = 0
or ∗f is an isomorphism. If ∗f = 0, then ∗X = 0, so X = 0. In the latter case, it
follows that f = Id and X = ∗V. Thus, X = 0 or X = ∗V , so ∗V is simple. �

Lemma 3.9. If f ∈ HomH(∗V, V ), then f t = Ψ−1 ◦ ∗f : ∗V → V is an H-map.

Proof. We know that ∗f and Ψ are both H-maps, so it follows that so is f t. �

The standard decomposition of Hom(∗V, V ) into symmetric and anti-symmetric
linear maps is no longer an H-decomposition. In fact, this is not true even when
τ = Id unless H is cocommutative. However, the corresponding decomposition does
hold for H-invariant maps.

It is well known (for example, see [Sch95, p. 42]) that

Hom(∗V, V )H = HomH(∗V, V ).

This means that

SymH(∗V, V ) =
{
f ∈ HomH(∗V, V )|f t = f

}

and

AltH(∗V, V ) =
{
f ∈ HomH(∗V, V )|f t = −f

}

are H-submodules.

Proposition 3.10. Let V be a finite dimensional simple left H-module. Then,

HomH(∗V, V ) = SymH(∗V, V )⊕AltH(∗V, V ).

Proof. Take f ∈ HomH(∗V, V ). The previous lemma shows that f t is an H-map,
so

f =
f + f t

2
+
f − f t

2
,
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with f+ft

2 ∈ SymH(
∗V, V ) and f−ft

2 ∈ AltH(∗V, V ). Since

SymH(∗V, V ) ∩ AltH(∗V, V ) = {0} ,

the result follows.
�

Combining the proposition with Schur’s lemma immediately gives:

Corollary 3.11. If V is a simple H-module, then

dimSymH(∗V, V )− dimAltH(∗V, V ) ∈ {1, 0,−1} .

Moreover, it takes each value according to the conditions given in Theorem 3.3.

Theorem 3.3 is now a consequence of the following proposition.

Proposition 3.12. Let V be a simple H-module with character χ. Then

(3.2) ν̃2 (χ) = dimSymH(∗V, V )− dimAltH(∗V, V ).

Proof. We will compute matrix elements in terms of a fixed basis for V and the
dual basis for ∗V . This means that elements of Sym(∗V, V ) (resp. Alt(∗V, V )) will
be symmetric (resp. skew-symmetric). We temporarily denote the expression on
the right side of (3.2) by q(χ).

Writing out ν̃2(χ) gives

ν̃2 (χ) =
∑

(Λ)

χ (Λ1T (S(Λ2)))

=
∑

(Λ)

tr (ρ(Λ1)ρ(T (S(Λ2))))

=
∑

m,m′

∑

(Λ)

ρ(Λ1)mm′ρ(T (S(Λ2)))m′m

=
∑

m,m′

∑

(Λ)

ρ(Λ1)mm′ρ(T (S(Λ2)))
t
mm′

=
∑

m,m′

∑

(Λ)

ρ(Λ1)mm′ ρ̃(S(Λ2))mm′ .

If V 6≃ ∗V , then this expression is 0 by the orthogonality relations (3.1), hence co-
incides with q(χ). Otherwise, there exists a nonzero intertwiner ϕ ∈ HomH(∗V, V ),
so that ρ̃(h) = ϕ−1ρ(h)ϕ. By Proposition 3.10, ϕ is symmetric or skew-symmetric,
and in fact, ϕmn = q(χ)ϕnm for all n,m. Applying these two facts to the previous
equation, we have
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ν̃2 (χ) =
∑

m,m′

∑

(Λ)

ρ(Λ1)mm′ ρ̃(S(Λ2))mm′

=
∑

m,m′

∑

(Λ)

ρ(Λ1)mm′

(
ϕ−1ρ(S(Λ2))ϕ

)
mm′

=
∑

m,m′,n,n′

(
ϕ−1

)
mn

ϕn′m′

∑

(Λ)

ρ(Λ1)mm′ρ(S(Λ2))nn′

=
∑

m,m′,n,n′

(
ϕ−1

)
mn

ϕn′m′

δm′,nδm,n′

dimV

=
∑

m,n

(
ϕ−1

)
mn

ϕmn
1

dimV

=
q(χ)

dim V

∑

m,n

(
ϕ−1

)
mn

ϕnm = q(χ),

as desired. The fourth equality follows from the orthogonality relations for matrix
elements given in [Lar71].

�

3.2. The second twisted Frobenius–Schur indicators for H8. The smallest
semisimple Hopf algebra which is neither commutative nor cocommutative has di-
mension 8. We denote it by H8. As an algebra, H8 is generated by elements x, y
and z, with relations:

x2 = y2 = 1, z2 =
1

2
(1 + x+ y − xy) , xy = yx, xz = zy, and yz = zx.

The coalgebra structure of H8 is given by the following:

∆(x) = x⊗ x, ε(x) = 1, and S(x) = x,

∆(y) = y ⊗ y, ε(y) = 1, and S(y) = y,

∆(z) =
1

2
(1⊗ 1 + 1⊗ x+ y ⊗ 1− y ⊗ x) (z ⊗ z) ,

ε(z) = 1, and S(z) = z.

The normalized integral is given by

Λ =
1

8
(1 + x+ y + xy + z + xz + yz + xyz) .

This Hopf algebra was first introduced by Kac and Paljutkin [KP66] and revisited
later by Masuoka [Mas95].

The Hopf algebra H8 has 4 one-dimensional representations and a single two-
dimensional simple module. The characters for the irreducible representations of
H8 are listed in Table 1.

The automorphism group of H8 is the Klein four-group. These automorphisms
are given in Table 2.

All four automorphisms satisfy τ2 = Id, so the second twisted Frobenius–Schur
indicator is defined for all of them. These indicators are given in Table 3.
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1 x y xy z xz yz xyz

χ1 1 1 1 1 1 1 1 1
χ2 1 1 1 1 −1 −1 −1 −1
χ3 1 −1 −1 1 i −i −i i

χ4 1 −1 −1 1 −i i i −i
χ5 2 0 0 −2 0 0 0 0

Table 1. Characters for the Irreducible Representations of H8

1 x y z

τ1 = Id 1 x y z

τ2 1 x y xyz

τ3 1 y x 1
2 (z + xz + yz − xyz)

τ4 1 y x 1
2 (−z + xz + yz + xyz)

Table 2. Automorphisms of H8

χ1 χ2 χ3 χ4 χ5

ν2 (χ, τ1) = ν2(χ) 1 1 1 1 1
ν2 (χ, τ2) 1 1 1 1 1
ν2 (χ, τ3) 1 1 0 0 1
ν2 (χ, τ4) 1 1 0 0 −1

Table 3. Twisted Frobenius–Schur indicators for H8

4. Higher order twisted Frobenius–Schur indicators

We now return to the general case. When m > 2, it is no longer true that the
higher order twisted Frobenius–Schur indicators are integers. However, it is true
that they are cyclotomic integers. We will show this by realizing ν̃m(χ) as the trace
of an endomorphism of order m. We will also compute a closed formula for the
regular representation.

4.1. A trace formula. Let (Ṽ ⊗m, ρ̃m) be the H-module with underlying vector
space V ⊗m and action given by

ρ̃m (h) (v1 ⊗ v2 ⊗ · · · ⊗ vm) =
∑

h

ρ (h1) v1 ⊗ ρ (τ (h2)) v2 ⊗ · · · ⊗ ρ
(
τm−1 (hm)

)
vm.

Furthermore, let α : V ⊗m → V ⊗m be defined by

α (v1 ⊗ v2 ⊗ · · · ⊗ vm) = v2 ⊗ · · · ⊗ vm ⊗ v1.

Lemma 4.1.

ν̃m(χ) = trV ⊗m

(
α ◦ ρ̃m (Λ)

)
.
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Proof.

ν̃m(χ) =
∑

(Λ)

χ
(
Λ1τ (Λ2) · · · τ

m−1 (Λm)
)

=
∑

(Λ)

trV
(
ρ (Λ1) ρ (τ (Λ2)) · · · ρ

(
τm−1 (Λm)

))

= trV ⊗m

(
α ◦

(
ρ⊗ ρτ ⊗ · · · ⊗ ρ

(
τm−1

))
Λ
)

= trV ⊗m

(
α ◦ ρ̃m (Λ)

)
.

The third equality uses [KSZ02, Lemma2.3]. �

It is well known that the integral Λ in H is cocommutative, i.e.,

(4.1) ∆ (Λ) =
∑

(Λ)

Λ1 ⊗ Λ2 =
∑

(Λ)

Λ2 ⊗ Λ1.

More generally, we have

Proposition 4.2. For any m ∈ N, ∆m(Λ) is invariant under cyclic permutions:

∆m (Λ) =
∑

(Λ)

Λ1 ⊗ Λ2 ⊗ · · · ⊗ Λm+1 =
∑

(Λ)

Λ2 ⊗ · · · ⊗ Λm ⊗ Λm+1 ⊗ Λ1.

Proof. The case m = 1 is equation (4.1). Suppose the result is true for m− 1, that
is,

∆m−1 (Λ) =
∑

(Λ)

Λ1 ⊗ Λ2 ⊗ · · · ⊗ Λm =
∑

(Λ)

Λ2 ⊗ · · · ⊗ Λm ⊗ Λ1.

Then,

∆m(Λ) =
(
∆⊗ I⊗(m−1)

) (
∆m−1(Λ)

)

=
(
∆⊗ I⊗(m−1)

)

∑

(Λ)

Λ2 ⊗ Λ3 ⊗ · · · ⊗ Λm ⊗ Λ1




=
∑

(Λ)

∆(Λ2)⊗ Λ3 ⊗ · · · ⊗ Λm ⊗ Λ1

=
∑

(Λ)

Λ2 ⊗ Λ3 ⊗ · · · ⊗ Λm ⊗ Λm+1 ⊗ Λ1.

�

Proposition 4.3. Let σ be an automorphism of H. If h ∈ H is a left integral,
then so is σ(h).

Proof. If h ∈ H is a left integral, then

xh = ε(x)h

for all x ∈ H . Applying σ, we get

(4.2) σ(xh) = σ(ε(x)h) = ε(x)σ(h),

for all x ∈ H. Let y = σ(x), so that x = σ−1(y). Applying this change of variables,
we can rewrite equation (4.2) as

yσ(h) = ε(σ−1(y))σ(h) = ε(y)σ(h)
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for all y ∈ H. Thus, σ(h) is a left integral.
�

An analogous proof can be used to show that if h is a right integral, then so is
σ(h).

Corollary 4.4. If σ is an automorphism of H, then σ(Λ) = Λ.

Proof. We know that Λ is the unique integral such that ε(Λ) = 1. However, σ(Λ)
is another integral satisfying ε(σ(Λ)) = ε(Λ) = 1.

�

Lemma 4.5.
∑

(Λ)

Λ1 ⊗ τ (Λ2)⊗ · · · ⊗ τm−1 (Λm) =
∑

(Λ)

τ (Λ2)⊗ · · · ⊗ τm−1 (Λm)⊗ Λ1.

Proof. By the previous corollary, ∆m−1 (Λ) = ∆m−1
(
τm−1(Λ)

)
. Since τm−1 is a

coalgebra morphism, we get
∑

(Λ)

Λ1 ⊗ · · · ⊗ Λm =
∑

(Λ)

τ−1(Λ)1 ⊗ · · · ⊗ τ−1(Λ)m

=
∑

(Λ)

τ−1(Λ1)⊗ · · · ⊗ τ−1(Λm).

Combining this equation with Proposition 4.2, we get

∑

(Λ)

Λ2 ⊗ Λ3 ⊗ · · · ⊗ Λm ⊗ Λ1 =
∑

(Λ)

τ−1(Λ1)⊗ τ−1(Λ2)⊗ · · · ⊗ τ−1(Λm).

Applying
(
τ ⊗ τ2 ⊗ · · · ⊗ τm

)
, we obtain

∑

(Λ)

τ (Λ2)⊗ · · · ⊗ τm−1 (Λm)⊗ Λ1 =
∑

(Λ)

Λ1 ⊗ τ(Λ2) · · · ⊗ τm−1(Λm),

as desired.
�

It is well-known that the action of Λ on an H-module W gives a projection onto

its invariants. Let π : Ṽ ⊗m →
(
Ṽ ⊗m

)H
defined by π(w) = Λ ·w be this projection

for W = Ṽ ⊗m.

Proposition 4.6. The endomorphism α restricts to an endomorphism of
(
Ṽ ⊗m

)H
.

Proof. It is enough to show that (π ◦ α) (w) = (α ◦ π) (w) for w = v1 ⊗ · · · ⊗ vm.

Computing gives

(π ◦ α) (w) = (π ◦ α)(v1 ⊗ · · · ⊗ vm)

= π (v2 ⊗ · · · ⊗ vm ⊗ v1)

=
∑

(Λ)

ρ (Λ1) v2 ⊗ ρ (τ(Λ2)) v3 ⊗ · · · ⊗ ρ
(
τm−1(Λm)

)
v1,

and
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(α ◦ π) (v) = α (Λ · (v1 ⊗ · · · ⊗ vm))

= α


∑

(Λ)

ρ(Λ1))v1 ⊗ ρ(τ(Λ2))v2 ⊗ · · · ⊗ ρ(τm−1(Λm))vm




=
∑

(Λ)

ρ(τ(Λ2))v2 ⊗ · · · ⊗ ρ(τm−1(Λm))vm ⊗ ρ(Λ1)v1).

By Lemma 4.5, these two expressions are equal. �

Theorem 4.7.

ν̃m (χ) = tr

(
α|(

Ṽ ⊗m

)

H

)
.

Proof. By Proposition 4.6, the image of α◦ν̃(h) is contained in
(
Ṽ ⊗m

)H
. Moreover,

its restriction to
(
Ṽ ⊗m

)H
coincides with the restriction of α. The result now follows

by Lemma 4.1.
�

Corollary 4.8. Let ζm be a primitive m-th root of 1, then

ν̃m (χ) ∈ Z [ζm] .

Proof. The operator α is of order m, so its eigenvalues are mth roots of unity.
It is now immediate from the theorem that the twisted indicators are cyclotomic
integers. �

4.2. The regular representation. We now realize the twisted Frobenius–Schur
indicators of the regular representation as the trace of an explicit linear endomor-
phism of H . Let χR denote the character of the left regular representation.

Let Ωτm : H → H be the linear map defined by

Ωτm(h) =
∑

(h)

S
(
τm−1(h1)τ

m−2(h2) · · · τ
2(hm−2)τ(hm−1)

)
.

Theorem 4.9.

ν̃m(χR) = tr(Ωτm).

We will need two lemmas.

Lemma 4.10.
∑

(Λ)

Λ1h
1 ⊗ τ (Λ2)h

2 ⊗ · · · ⊗ τm−2(Λm−1)h
m−1 ⊗ τm−1(Λm)

=
∑

(Λ)

Λ1 ⊗ τ(Λ2S(h
1
m−1))h

2 ⊗ · · · ⊗ τm−2(Λm−1S(h
1
2))h

m−1 ⊗ τm−1(ΛmS(h
1
1)).

Proof. By [LR88, Lemma 1.2(b)], we have
∑

(Λ)

Λ1h
1 ⊗ Λ2 =

∑

(Λ)

Λ1 ⊗ Λ2S(h
1).
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Applying Id⊗∆m−1 to both sides, we get

∑

(Λ)

Λ1h
1 ⊗ Λ2 ⊗ · · · ⊗ Λm−1 ⊗ Λm

=
∑

(Λ)

Λ1 ⊗ Λ2S(h
1
m−1)⊗ Λ2S(h

1
m−2)⊗ · · · ⊗ Λm−1S(h

1
2)⊗ ΛmS(h

1
1).

We then apply Id⊗τ ⊗ τ2 ⊗ · · · ⊗ τm−1 to get

∑

(Λ)

Λ1h
1 ⊗ τ(Λ2)⊗ · · · τm−2(Λm−1)⊗ τm−1(Λm)

=
∑

(Λ)

Λ1 ⊗ τ(Λ2S(h
1
m−1))⊗ · · · ⊗ τm−2(Λm−1S(h

1
2))⊗ τm−1(ΛmS(h

1
1)).

The lemma follows by right multiplying this equation by h1⊗h2⊗· · ·⊗hm−1⊗1. �

Next, define a linear map ψ : H̃⊗(m−1) → H̃⊗(m−1) by

ψ
(
h1 ⊗ h2 ⊗ · · · ⊗ hm−1

)

=
∑

(h1)

τ(S(h1m−1))h
2 ⊗ τ2(S(h1m−2))h

3 ⊗ · · · ⊗ τm−2(S(h12))h
m−1 ⊗ τm−1(S(h11)).

Lemma 4.11.

tr(ψ) = tr

(
α|(

Ṽ ⊗m

)

H

)
.

Proof. To prove the lemma, it suffices to find a linear isomorphism ϕ : H̃⊗(m−1) →(
H ⊗ H̃⊗(m−1)

)H
making the diagram

H̃⊗(m−1) H̃⊗(m−1)

(
H ⊗ H̃⊗(m−1)

)H (
H ⊗ H̃⊗(m−1)

)H
❄

ϕ

✲
ψ

❄

ϕ

✲
α

commute. Recall that for any H-module W , there is a linear isomorphism W →
(H ⊗W )H given by w 7→

∑
(Λ) Λ1 ⊗ Λ2w. Let ϕ be this isomorphism for W =

H̃⊗(m−1).
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Calculating gives

(α ◦ ϕ)
(
h1 ⊗ h2 ⊗ · · · ⊗ hm−1

)

=
∑

(Λ)

τ(Λ2)h
1 ⊗ τ2(Λ3)h

2 · · · ⊗ τm−1(Λm)hm−1 ⊗ Λ1

=
∑

(Λ)

Λ1h
1 ⊗ τ(Λ2)h

2 · · · ⊗ τm−2(Λm−1)h
m−1 ⊗ τm−1(Λm)

=
∑

(Λ)

Λ1 ⊗ τ(Λ2S(h
1
m−1))h

2 ⊗ · · · ⊗ τm−2(Λm−1S(h
1
2))h

m−1 ⊗ τm−1(ΛmS(h
1
1))

=
∑

(Λ)

Λ1 ⊗ τ(Λ2)τ(S(h
1
m−1))h

2 ⊗ · · · ⊗

τm−2(Λm−1)τ
m−2(S(h12))h

m−1 ⊗ τm−1(Λm)τm−1(S(h11))

= (ϕ ◦ ψ)
(
h1 ⊗ h2 ⊗ · · · ⊗ hm−1

)
.

Here, the second and third equalities use Lemmas 4.5 and 4.10 respectively. �

Proof of Theorem 4.9. By the previous lemma, we need only show that tr(ψ) =
tr(Ωτm). Choose a basis b1, · · · bn ∈ H with dual basis b∗1, · · · b

∗
n ∈ H∗. Writing out

tr(ψ) in terms of the induced basis on H⊗m, we obtain

tr (ψ) =

n∑

i1,··· ,im−1=1

〈
b∗i1 ⊗ · · · ⊗ b∗im−1

, ψ
(
bi1 ⊗ · · · ⊗ bim−1

)〉

=
n∑

i1,··· ,im−1=1

b∗i1(τ(S(b
i1
m−1))b

i2)b∗i2(τ
2(S(bi1m−2))b

i3) · · ·

b∗im−2
(τm−2(S(bi12 ))bim−1)b∗im−1(τ

m−1(S(bi11 )))

=

n∑

i1,··· ,im−2=1

b∗i1(τ(S(b
i1
m−1))b

i2)b∗i2(τ
2(S(bi1m−2))b

i3) · · ·

b∗im−2

(
τm−2(S(bi12 ))τm−1(S(bi11 ))

)

= · · · =

n∑

i1=1

b∗i1
(
τ(S(bi1m−1))τ

2(S(bi1m−2)) · · · τ
m−2(S(bi12 ))τm−1(S(bi11 ))

)

=

n∑

i=1

b∗i
(
τ(S(bim−1))τ

2(S(bim−2)) · · · τ
m−2(S(bi2))τ

m−1(S(bi1))
)

=
n∑

i=1

b∗i
(
S(τ(bim−1))S(τ

2(bim−2)) · · ·S(τ
m−2(bi2))S(τ

m−1(bi1))
)

=

n∑

i=1

b∗i
(
S(τm−1(bi1)τ

m−2(bi2)) · · · τ
2(bim−2)τ(b

i
m−1)

)

= tr (Ωτm) ,

as desired.
�
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Ωτ12 Ωτ22 Ωτ32 Ωτ42
1 1 1 1 1
x x x y y

y y y x x

xy xy xy xy xy

z z xyz 1
2 (z + xz + yz − xyz) 1

2 (−z + xz + yz + xyz)
xz yz xz 1

2 (z + xz − yz + xyz) 1
2 (z − xz + yz + xyz)

yz xz yz 1
2 (z − xz + yz + xyz) 1

2 (z + xz − yz + xyz)
xyz xyz z 1

2 (−z + xz + yz + xyz) 1
2 (z + xz + yz − xyz)

Table 4. The linear maps Ωτ2 for H8

Example 4.12. We revisit the Hopf algebra H8 described in Section 3.2. The
linear maps Ωτ2 from Theorem 4.9 are given in Table 4. Computing the traces,
one obtains the twisted Frobenius–Schur indicators for the regular representation:
ν2(χR, τ1) = 6, ν2(χR, τ2) = 6, ν2(χR, τ3) = 4, and ν2(χR, τ4) = 0. These can, of
course, also be calculated from the information in Table 3.
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