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“Like it or not, the world of the mathematician is becoming experimentalized.”[BB]

Abstract

The aim of this paper is twofold. Firstly we present our main discovery
arising from experiments which is the tauberian concept of functions of
good variation (FGV). Secondly we propose to use these FGV for prov-
ing RH is true via some conjectures. More precisely we give an implicit
definition of FGV and we provide several smooth and nontrivial exemples
from experiments. Then using a conjectured family of FGV approaching
the function x 7→ x−1 bxc we derive RH is true. We make also a tauberian
conjecture allowing us to prove RH is true for infinitely many L-functions
and we discuss the linear independance conjecture. The method is in-
spired by the Ingham summation process and the experimental support
is provided using pari-gp.

Introduction
Thinking to RH as an inverse problem [Tar]1 we used experimental techniques to
explore this idea and after some fruitless attempts involving dynamical systems
we came across tauberian theory [Kor]. It is also worth to mention there is
an equivalence of RH in term of an inverse spectral problem [Lap] confirming
perhaps an intrinsic inverse nature of the problem2. Our starting point was this
formula which is easy to prove

n∑
k=1

λk

⌊n
k

⌋
=
⌊√

n
⌋

where λn = (−1)Ω(n) denotes the Liouville function (A008836 in [Slo])
and Ω(n) counts the prime numbers with multiplicity in the factorisation of

1 Nontrivial zeros are on the critical line is the answer to the problem, not the question,
and we have to look for a suitable nontrivial question.

2This is probably the reason why forward approaches to RH seem to be a never ending
story despite progresses are frequently made.
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n (A001222 in [Slo]). Indeed, we suspect the square root appearing in the r.h.s.
means something regarding the asymptotic behaviour of

∑n
k=1 λk (A002819 in

[Slo]). Thus we made a first tauberian conjecture supported by few experiments.
If (an)n≥1 is bounded then we claim

Conjecture

n∑
k=1

ak

⌊n
k

⌋
∼ n1/2 (n→∞)⇒

n∑
k=1

ak = O
(
n1/2+ε

)
(1)

in particular

n∑
k=1

λk

⌊n
k

⌋
=
⌊√

n
⌋
⇒

n∑
k=1

λk = O
(
n1/2+ε

)
which implies RH is true [Bor]. Shorlty after, G. Tenenbaum [Ten] showed

that a weaker form of this conjecture, for positive functions, is equivalent to RH
by mean of a tauberian theorem. i.e., let g = f ? 1 then we get RH is true if
and ony if f ≥ 0 and{

(∀ε > 0) F (x)� x1/2+ε ⇒ G(x)� x1/2+ε
}

where F and G are the summatory functions of f and g. However our
experimental results suggested much more was true and this tauberian approach
to RH was investigated further making intensive experiments. Instead of the
above summation (1) involving directly the floor function we prefer to consider
Ingham summation process which involves the bounded function: x 7→ x−1 bxc.
Namely we say a sequence a is (I)-summable to l if:

lim
n→∞

n∑
k=1

ak
k

n

⌊n
k

⌋
= l⇒

∞∑
k=1

ak = l

This method was considered by many authors and some generalisations exist
[Win][Juk] as well as relationship with the Riemann hypothesis [Seg]. Unlike
Ingham we are mainly interested in the behaviour of the partial sum and not
only in the convergence. So this study appears to be a new part of the tauberian
remainder theory (cf. chapter VII in [Kor]). Here we consider bounded functions
θ and we define a sequence (an)n∈N∗ for a given function f by the recurrence
formula:

f(n) =

n∑
k=1

akθ
(n
k

)
(n ≥ 1)

Next under some assumptions we try to give precise estimates for the be-
haviour of A(n) :=

∑n
k=1 ak. Although the Liouville function was helpful for
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the intuition (cf. conjecture above), we will consider also the Moebius function.
Recalling that for ak = µk

k and θ(x) = x−1 bxc we have
∑n
k=1 akθ(

n
k ) = 1

n

and it is known that
(
µ(n)
n

)
n≥1

is (I)-summable to zero [Ing]. This yields

limn→∞A(n) = 0 and the prime number theorem follows. Our goal in this
paper is more ambitious since we try to find reasons why we should have the
remainder estimate

A(n)� n−1/2L(n)

where L is a slowly varying function3 and which also implies RH is true4.

Plan of the paper In section 1 we introduce functions of good variation
(FGV) of index α with an implicit definition. In section 2 we prove some
smooth functions are FGV and then we make existence conjectures and a com-
parison conjecture for C1 functions. In section 3 we provide conjectural nontriv-
ial exemples of FGV having discontinuities, specially some functions looking like
θ(x) = x−1 bxc. Next in section 4 we consider a family of functions θ2m which
are conjectured to be FGV of index 1

2 for any m ≥ 1. Since θ∞(x) = x−1 bxc
we infer RH is true for the zeta function. We give also arguments in favour
of the LI conjecture [Ing2]. In section 5 we make a compensation conjecture
allowing us to prove directly RH is true. Next in section 6 we adapt the idea for
Dirichlet L-functions and for automorphic L-functions (the grand Riemann hy-
pothesis [Sar]). We also propose a generalisation of the LI conjecture (the GLI
conjecture). In section 7 we propose a comparison conjecture for noncontinuous
functions allowing us to derive RH is true in a slightly different way.

Some notations In the sequel, apart some exceptions which will be men-
tioned, for a given function θ, the sequence an is always defined by:

• 1
n =

∑n
k=1 akθ

(
n
k

)
(n ≥ 1)

• for a given function f we write f�(t) = f
(

1
t

)
.

3We say L is a slowly variying function if for any x > 0 we have limt→∞
L(tx)
L(t)

= 1. For
instance L(x) = log(x)r is slowly varying. This is Karamata definition [Kor]. We also say the
function K is of regular variation of index α 6= 0 if K(x) = xαL(x) and L is slowly varying.

4It is conjectured that n1/2+ε
∑n
k=1

µ(k)
k

is unbounded for any ε > 0 and in fact we

conjecture that there is a slowly varying function L such that
∑n
k=1

µ(k)
k
� n−1/2L(n). For

more precise conjectures giving slowly varying functions related to the Moebius function see
[Kot].
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Part I

Good variation
1 Functions of good variation (FGV)

1.1 Implicit definition of FGV

The discrete version
We say that a positive bounded and measurable function θ is a FGV of index
α > 0 if ∀β ≥ α we have:

n∑
k=1

akθ
(n
k

)
∼ n−β (n→∞)⇒ A(n)nα � L(n)

where L is a slowly varying function and ∀ β < α we have:

n∑
k=1

akθ
(n
k

)
∼ n−β (n→∞)⇒ A(n)� n−β

The integral version
Under the same conditions we claim the following definition involving Lebesgue
integral implies the previous one. ∀β ≥ α we have:

ˆ y

1

θ
(y
t

)
dF (t) ∼ y−β (y →∞)⇒ F (y)yα � L(y)

where L is a slowly varying function and ∀ β < α we have:

ˆ y

1

θ
(y
t

)
dF (t) ∼ y−β (y →∞)⇒ F (y)� y−β

Remark 1 As said in introduction we suspect θ(x) = x−1 bxc is a FGV of
index 1/2 and it is the story of this paper. At first glance it is not quite clear
whether nontrivial function exists i.e., something else that θ(x) = c a constant,
which is a FGV of index +∞. However we succeeded to provide smooth and less
smooth nontrivial exemples from our experiments. We think also we can give
weaker conditions and we believe we can replace ∼ with � in FGV definition.
We don’t fix Ramanujan like condition for the coefficients an, i.e., an �ε n

ε

since it doesn’t appears to be necessary until now.
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1.2 Generalisation
We may generalise somewhat the definition as follows. We say that a positive
bounded and measurable function θ is a FGV of index α if ∀β ≥ α we have

n∑
k=1

akθ
(n
k

)
= c+O(n−βL1(n))⇒ A(n) = c+O(n−αL2(n))

where c ∈ R and L1,L2 are slowly varying functions. Although we won’t
consider this more general definition in this study we mention something at
the end in section 6 (cf. 6.6).

1.3 Classes of FGV
Experiments show that there are different kind of FGV. This classification is
not important for our purpose but it could be interesting to keep this in mind
for further research. There are certainly ways to classify FGV more subtely but
we just want to show there are slight differences between FGV we consider in
this paper.

FGV of type 1

We say that θ is a FGV of type 1 if it is a FGV of index α > 0 and we have:

•
∑n
k=1 akθ(

n
k ) ∼ n−α (n→∞)⇒ A(n)nα � 1 and limn→∞A(n)nα 6= 0.

So that the slowly varying function is constant. This is for instance the smooth
family we provide in 2.1. or the less trivial exemple in 3.3.

FGV of type 2

θ is a FGV of type 2 if it is a FGV of index α > 0 and we have:

•
∑n
k=1 akθ(

n
k ) ∼ n−α (n→∞)⇒ A(n)nα is unbounded.

A smooth concrete exemple is given by θr,s when r
s = α in 2.2. It is conjectured

that it is the case for θ(x) = x−1 bxc or the generalisation θr we present in
3.1. but we have much more experimental evidence for the nontrivial FGV
considered in 3.2. (fig. 13).

FGV of type 3

θ is a FGV of type 3 if it is a FGV of index α > 0 and we have:

•
∑n
k=1 akθ(

n
k ) ∼ n−α (n→∞)⇒ A(n)nα � 1 and limn→∞A(n)nα = 0.

We think it is the case of the FGV considered in 3.2. (fig. 11).
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1.4 The variational diagram of a FGV
The variational diagram of a FGV θ is simply the plot of θ�(t) = θ

(
1
t

)
for

0 < t ≤ 1. This diagram sheds apparently light on what is going on. We will
see it is an interesting tool for comparing functions (cf. 2.6.). In the sequel VD
denotes the variational diagram.

1.4.1 Exemple

Herafter the VD of θ(x) = bxc
x .

Properties of the VD:

• there are infinitely many discontinuities.

• the minimum value is at 1
2 and equals 1

2 .

• θ� is C1 and increasing by parts on the left.

These properties are significant to us and should have a considerable importance.
Related exemples in section 3 will confirm this fact. Before trying to understand
this kind of function we provide in the next section some concrete exemple of
smoother FGV in order to show FGV is a consistent concept.

2 Some FGV of various index
In this section we provide some exemples of functions we prove they are FGV
(or we are near to prove) .

2.1 A family of smooth FGV
Here we consider the family θλ of functions depending upon a parameter λ:

θ�λ (t) = 1− λt (1− t)
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Then we prove θλ is a FGV of index 3−λ
2 and type 1 when 3− 2

√
2 < λ < 3.

Before proving this result let us see the shape of the VD of θ2 and the
behaviour of A(n).

Here we have A(n) ∼ n−1/2g(h(n)) (n→∞) where g is a periodic function
and h is growing like the log function (see the following proof).

Proof To prove θλ are FGV we use the integral version of the definition and
we consider5:

ˆ y

1

θ
(y
t

)
dF (t) = y−β

Since things are smooth we differentiate this equation 2 times with respect to
y and we get the ODE:

y2F”(y) + (4− λ)yF ′(y) + 2F (y) = β(β − 1)y−β

For the particular case λ = 2 it is easy to see solutions are given by:
5The equation

´ y
1 θλ

( y
t

)
dF (t) ∼ y−β instead of

´ y
1 f(t)θλ

( y
t

)
dt = y−β yields the same

conclusions and the proof is left to the reader.
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F (y) = c1y
−1/2 sin

(√
7

2
log y

)
+ c2y

−1/2 cos

(√
7

2
log y

)
+

y−β

β2 − β + 2

Thus we get:

• β ≥ 1
2 ⇒ F (y)y1/2 is bounded.

• β < 1
2 ⇒ F (y)� y−β .

consequently from our definition of FGV we get:

• θ2 is a FGV of type 1 and index 1
2 .

In general the solution of the ODE is given by:

F (y) = c1y
λ−3−

√
λ2−6λ+1
2 + c2y

λ−3+
√
λ2−6λ+1
2 + c3y

−β

Hence for λ2 − 6λ+ 1 < 0 and λ < 3 we have

• θλ is a FGV of type 1 and index 3−λ
2 > 0

since for β ≥ 3−λ
2 > 0 we have F (y)y(3−λ)/2 bounded.

Remark 2

We see that the index of the FGV is not necessarily the minimum of the function.
Here the minimum is θ

(
1
2

)
= 1 − λ

4 . In an other hand it is worth to notice
with this family of FGV that if the minimum decreases so does the index. In
our mind the index is somewhat proportional to the area

´
[0,1]

θ�. The following
exemple illustrates also this fact.

2.2 FGV related to the log function
We consider the very simple family of functions defined for (r, s) ∈ R× R by:

θ�r,s (t) = (s− r)t+ r

These are FGV of type 2 and index r
s involving the log function (as the slowly

varying function arising in FGV definition).

Proof
We use again the integral definition and consider:

ˆ y

1

θ
(y
t

)
dF (t) = y−β
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Thus since θ and F are C1 we have for some a an ODE of type:

syF ′(y) + rF (y) = ay−β

Then solutions are given for β > r
s by:

F (y) =
ay−β

r − βs
+ cy−

r
s

and for β = r
s by:

F (y) = y−
r
s

(
c+ s−1 log y

)
Consequently θr,s is a FGV of type 2 and index r

s .

Special values of (r, s) and the exact asymptotic behaviour of A(n)

For the case s = 1 and 0 < r < 1 we have this asymptotic formula for A(n)
(details omitted)

A(n) ∼ n−r

(1− r)Γ(1− r)
(n→∞)

In particular for (r, s) =
(

1
2 , 1
)
we have

A(n) ∼ 2√
πn

(n→∞)

Which relates somewhat π to RH (see section 7).

Remark 3 Here we have
´

[0,1]
θ� = s+r

2 = s
2

(
1 + r

s

)
and so the index is

proportional to the area under θ� up to the factor s which is the maximum of the
function when s > r. These functions are to us cornerstones of more complicated
functions. In particular we will use the above behaviour for providing heuristic
arguments in section 5.

2.3 Less obvious exemple
Here we consider:

• θ�(t) = 1− t if 0 < t ≤ 1
2

• θ�(t) = t if 1
2 ≤ t ≤ 1
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And we suspect this is a FGV of index 0.8...

Trying to find the behaviour of A(n) by experiments We use the integral
version of FGV definition and the Laplace transform, i.e., we define the signed
measure dF on [1,∞) such that for y ≥ 1:

y−1 =

ˆ y

1

θ
(y
t

)
dF (t)

Then letting θ1(v) = θ(ev) we are looking for dF1 on [0,∞) such that for all
v > 0:

e−v =

ˆ v

0

θ1(v − w)dF1(w).

If s > 0 we multiply the above equation by e−sv and integrate with respect to
v on [0,∞). Then we make the variable change v′ = v − w so that

ˆ ∞
0

e−v(1+s)dv =

ˆ ∞
0

ˆ v

0

θ1(v−w)e−swe−s(v−w)dF1(w) = G1(s)

(ˆ ∞
0

θ1(v′)e−sv
′
dv′
)

Hence we find:

G1(s) =
1

1 + s−1e−sl
⇒ G1(s) = 1 +

∞∑
n=1

(−1)n
e−n`s

sn

which converges if s ≥ s1 > 0 where s1 = 0.641185... is the solution of se`s = 1.
We now have to consider G1 as a Laplace transform (LT). The 1 is the LT of
the Dirac mass δ0(dv). e

−`s

sn is the product of e−n`s, LT of the Dirac mass δn`
and 1

sn =
´∞

0
e−sv vn−1

(n−1)!dv. Hence
e−n`s

sn is the LT of the convolution product

between the 2 measures δn` and vn−1

(n−1)!1(0,∞)(v)dv. Then it is the LT of the
density measure fn(v)dv defined by

10



fn(v) =
(v − (n− 1)`)n−1

(n− 1)!
1((n−1)`,∞)(v)dv

Thus G1(s) is the LT of the signed measure

dF1(v) = δ0(dv)−

( ∞∑
n=0

(−1)n

n!
(v − n`)n1(n`,∞)(v)

)
dv

letting v = log t we have

dF (t) = δ(dt)−

( ∞∑
n=0

(−1)n

n!
(log

t

2n
)n1(2n,∞)(t)

)
dt

t

Hence we get:

F (y) = 1−
∑

0≤n≤ log y
log 2

(−1)n

(n+ 1)!

(
log

y

2n

)n+1

This formula allows us to make experiments up to very big values of y and it
appears we can take 0.8 < α < 0.85 in order to keep F (y)yα approximately
bounded. This is supported by the following graph involving A(n) instead of
F (y).

The graph seems to oscillate between −3 and 3.
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Remark 4

Observe the index is bigger than the index for θ�2(t) = 1− 2t(1− t) wich equals
1
2 and we have the area rule:

•
´

[0,1]
θ� >

´
[0,1]

θ�2 .

This observation led us to establish a comparison conjecture between FGV (cf.
2.6.).

2.4 “Almost Dirac” FGV
Namely we consider for 0 < r < 1 the family of functions:

• θr(x) = r if x = 2

• θr(x) = 1 otherwise.

And we prove these functions are FGV of index − log(1−r)
log 2 of type 1 according

to the discrete definition.

Sketch of proof

Note we have f(n) =
∑n
k=1 akθr

(
n
k

)
⇒ f(n) = A(n) + (r − 1)a

(
n
2

)
δn where

δn = 0 if n is odd and 1 if n is even. Hence:

A(n) = f(n) + (1− r)
(
A
(⌈n

2

⌉)
−A

(⌊n
2

⌋))
For convenience let us define this family of U(n) recursions U(1) = 1 and
U(2) = 1 and:

• U(n) = f(n) + (1− r)
(
U
(⌈
n
2

⌉)
− U

(⌊
n
2

⌋))
.

If f(n) = 0 it is easy to see we have (details omitted):

• U(2n + 1) = −(1− r)n

• 1 ≤ k ≤ 2n + 1⇒ U(k) ≤ |U(2n + 1)|

Thus we have U(n)� n
log(1−r)

log 2 . In general we have (this is left to the reader):

• f(n)� n
log(1−r)

log 2 ⇒ U(n)� n
log(1−r)

log 2

thus θr is a FGV of type 1 and index − log(1−r)
log 2 according to the discrete

definition of FGV. The integral definition dosen’t work here and it is an
exemple showing the 2 definitions are not equivalent.

Hereafter a graph illustrating the fact θr is a FGV of type 1 and index
− log(1−r)

log 2 for r = 0.75. We compute n−
log(0.25)

log 2 =
∑n
k=1 akθ0.75

(
n
k

)
.
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2.5 Existence conjectures for smooth functions
From the previous exemples and more experiments we make the following claims
related to functions which are C1. These conjectures are far to be optimal and
we believe one can state much more general conditions in order to say whether
a C1 function is a FGV.

Existence conjecture n°1
Suppose

• θ� is positive and bounded on ]0, 1]

• θ� is C1 and monotonic on ]0, 1]

Then θ is a FGV of index α > 0.

Existence conjecture n°2
Let 0 < x0 < 1 and suppose:

• θ� is positive and bounded on ]0, 1]

• θ� is C1 and decreasing on ]0, x0]

• θ� is C1 and increasing on ]x0, 1]

Then θ is a FGV of index α > 0.

2.6 Comparison conjecture for smooth functions
From previous remarks we establish a simple comparison conjecture. Namely
suppose:

• θ1 and θ2 are positive, bounded and C1 on [1,∞)

• θ�1 ≤ θ�2

13



• θ�1 , θ
�
2 and θ�1 − θ�2 have exactly the same variations on ]0, 1].

Then we have:

• θ1 is a FGV of index α1 ⇒θ2 is a FGV of index α2 ≥ α1.

3 Exemples of more complicated FGV
Here we consider noncontinuous functions and specially some functions sharing
somewhat the properties of θ(x) = x−1 bxc (cf. fig1). These exemples are
of course much more difficult to handle than exemples in the previous section.
These experiments show there are many functions providing sequences an having
similar asymptotic properties than the Moebius function. This supports the idea
that RH would not be an arithmetical problem since we provide FGV wich are
arithmetically meaningless.

3.1 Variation on the floor function
We define:

θr(x) = x−1(x− r {x})

where 0 < r ≤ 1 and {x} denotes the fractionnal part of x. Then we claim:

• θr is a FGV of index 1− r
2

and this time the index corresponds always to the minimum of the FGV. This is
significant since in general, as we see above, the index is no always the minimum
of the function. In particular this supports the main claim, i.e., for r = 1 θr is
a FGV of index 1

2 .

Experiments
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These 3 graph behave similarly around a value near y = 0.6 and we claim
they are bounded by a slowly varying function. This supports the fact θr is a
FGV of index 1− r

2 when 0 < r ≤ 1.

3.2 Additionnal exemples
We consider here:

θ(x) = 1− {x}
x
√
bxc

This exemple is interesting since it is related to the floor function and provides
nice oscillations for A(n).
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Hereafter the plot of A(n)n0.5 where we can see the oscillations.

We claim we have in fact

A(n)� n−0.5L(n)

for a slowly varying function L satisfying L(∞) = 0. So θ would be a FGV of
index 1

2 and type 3.

A last exemple

Here we consider:

θ�(t) =

{
1− t

{
1
t

} (
t ≥ 1

3

)
t+ 1

2

(
t < 1

3

)

16



Next we plot A(n)n0.5

log(n+1)

It is likely bounded so θ would be a FGV of index 1
2 and type 2.

3.3 Almost proved nontrivial FGV

We consider the function θ(x) = x−12b
log x
log 2 c which has infinitely many discon-

tinuities and we claim it is a FGV of index 1. We succeeded to find the precise
behaviour of A(n) for particular cases. Here the variational diagram of θ.

17



A particular case

Suppose

b
√
nc
n

=

n∑
k=1

akθ
(n
k

)
so that

∑n
k=1 akθ

(
n
k

)
∼ n−1/2 (n→∞). Then we have

A(n) ∼
√

2

n
(n→∞)

Proof For the proof we prefer to come back to the Liouville like recursion and
we define the sequence a′ as follows:

• g(x) = 2b
log x
log 2 c

• b
√
nc =

∑n
k=1 a

′
kg(nk )

At first glance the task of finding the behaviour of A′n is not easier than with the
original Liouville function. However we succeeded to find an explicit description.
The sequence indeed obeys the following rules (details ommited):

• a′n = 1⇔ n = (2k + 1)2 for some k ≥ 0.

• a′n = −m ≤ −1 ⇔ n = 22m−1bk for some k ≥ 1 where (bk)k≥1 is a
sequence described below.

• a′n = 0 otherwise.

To got b we merge the sets
{

(2k + 1)2
}
k≥0

and
{

8(2k + 1)2
}
k≥0

and we arrange
the terms in increasing order (details omitted). Therefore it is easy to see we
have:

• A′n ∼ ( 1
2 − 2λ

√
2)
√
n

18



where λ = 1
2

(
1 + 1√

8

)
and then by Abel summation we get:

• An ∼
√

2
n (n→∞).

Therefore we guess we can extend the result to any sequence satisfying:

•
∑n
k=1 akθ

(
n
k

)
∼ n−1/2 (n→∞)

In general if
∑n
k=1 akθ

(
n
k

)
∼ n−β we claim we have:

• 0 ≤ β < 1⇒ A(n) ∼ cn−β (n→∞)

• β ≥ 1⇒ A(n)n is bounded and doesn’t converge to zero.

For instance it is easy to see that:

•
∑n
k=1 akθ

(
n
k

)
= 1

n ⇒ A(n) = 2−b
logn
log 2 c ⇒ A(n)n� 1.

Hence θ would be a FGV of index 1 and type 1.

Part II

Strategies for proving RH is true
4 Approaching the floor function
In order to derive something regarding RH a natural idea consists in approxi-
mating the floor function using simpler functions having finitely many discon-
tinuities and which are FGV. So we split the problem in smaller ones and by
induction we hope to deduce RH is true.

4.1 A family of functions
For any positive integer m ≥ 2 let θm be defined by:

• θ�m(t) = t
⌊
t−1
⌋
for t > 1

m

• θ�m(t) = t+ 1− 1
m for 0 < t ≤ 1

m

So that we built a family of functions having finitely many discontinuities and
such that:

• θ∞(x) = x−1 bxc.

In the sequel we define:

• 1
n =

∑n
k=1 akθm(nk ) (n ≥ 1)

• Am(n) :=
∑n
k=1 ak.
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These functions have no arithmetical significance but we are able to make several
claims about them. There are of course many other ways to build family of
functions converging to x−1 bxc. Experiments confirm that approaching the
floor function like this is efficient, i.e., it appears we don’t need to consider big
m in order to have Am(n) behaving like A∞(n). It is our opinion that the
influence of discontinuities of θ∞(x) as x→∞ becomes less and less important
and thus θm becomes quickly a good approximation of θ∞ from a tauberian
view point. In other words the difficulty for solving RH seems not come from
the fact the floor function has infinitely many discontinuities.

Some VD

Let us see the VD of θ2 and θ3.

4.2 Conjectures retaled to θm

Conjecture A

We claim that θ2 is a FGV of index 1
2 of type 2.

Conjecture B

We claim that ∀m ≥ 2 we have
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A2m(n)� A2(n)

and more precisely we guess that ∀m ≥ 1 and n large enough we have

|A2m(n)| ≤ A2(n)

Conjecture C

We guess that ∀m ≥ 1 we have

lim sup
n→∞

A2m(n)n1/2 = +∞

Thus from conjectures A,B and C and ∀m ≥ 1 we can say:

• θ2m is a FGV of index 1
2 of type 2.

4.3 Experimental support
We plot A2m(n)n1/2 for m = 1, 2, 3, 4, 5 on the same picture.

Clearly A2(n)n1/2 is unbounded and behaves roughly like the logarithm and
this picture supports the conjecture B.

4.4 Corollaries
4.4.1 Strips for zerofree regions

Before going further and trying to deduce RH is true, it is interesting to state
a weaker statement. We may conjecture that for some 0 < α < 1

2 we have

A2(n)nα = o(1)
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Thus assuming the conjecture B we have (since A∞(n) =
∑n
k=1

µ(k)
k )

• M(n)� n1−α where M is the Mertens function.

Hence ζ has no zero with <s > 1− α.

Remark 5 This kind of zero free region is unknown to this date and is seems
possible to prove limn→∞A2(n)nα = 0 for some 0 < α < 1

2 . So the difficulty
would be to prove the conjecture B.

4.4.2 RH is true

Using the conjectures A and B we have (letting m→∞)

• M(n)� n1/2+ε for any ε > 0.

Where M(x) :=
∑
k≤x µ(k) denotes the Mertens function (A002321 in [Slo]).

We can also make a stronger statement if we suppose θ∞ is itself a FGV of index
1
2 and type 2. Indeed we would then have:

• M(n)� n1/2L(n) for a slowly varying function L.

4.4.3 On the linear independance conjecture (LI)

The linear independance conjecture (LI) comes back to Ingham [Ing2] and states
that the nontrivial zeros of the zeta function with <(ρ) > 0 are linearly inde-
pendant over the rationals. Ingham showed that if LI is true then we get:

• limx→∞ |M(x)|x−1/2 = +∞ and limx→∞ |L(x)|x−1/2 = +∞.

where L(x) :=
∑
k≤x λ(k) is the Liouville summatory function (A002819 in

[Slo]) . This is equivalent to say lim supx→∞M ′(x)x1/2 = +∞ where M ′(x) :=∑
k≤x

µ(k)
k . Grosswald [Gro] or Saffari [Saf] added results. Recently in [Kot]

authors conjecture the following estimate

• M(n)n−1/2 = Ω±

(√
log log log(n)

)
.

Here we wish to deduce LI is true from the conjecture C. Our claim is indeed

lim sup
n→∞

A∞(n)n1/2 = lim sup
n→∞

n1/2
n∑
k=1

µ(k)

k
= +∞.

Consequently the LI conjecture is true and the zeros are simple. The simplicity
of the zeros is a consequence of the LI conjecture6.

6Some authors introduced the “Grand Riemann simplicity conjecture” [RS] as the statement
that “the set of all ordinates γ of the non-trivial zeros of Dirichlet L-functions L(s, χ) are Q-
linearly independent when χ runs over primitive Dirichlet characters and the zeros are counted
with multiplicity. “Simplicity” relates to the particular corollary of this conjecture that all
zeros of Dirichlet L-functions are simple”.
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5 A compensation conjecture7

It gives sufficients conditions to say whether a specific function is a FGV and
also the corresponding index. This conjecture encapsulates what is needed to
derive GRH is true since we put together caracteristics of functions for which
RH is expected to hold. Moreover it fits also experimentaly many cases of FGV
having index satisfying 0 < α < 1

2 . Let (In)n≥1 and (Jn)n≥1 be two sequences
of reals satisfying:

• I1 = 1 and 0 < I2 ≤ 1
2 .

• ∀n ≥ 1 In+1 < In ≤ In+1

I2
.

• limn→∞ In = 0.

• J1 ≥ 1 and J2I2 ≤ J1I1

• ∀n ≥ 1 Jn+1 ≥ Jn.

• limn→∞ InJn exists.

• limn→∞
∑n
k=2(Jk − Jk−1)Ik = +∞.

Now let θ be defined as follows:

• t ∈]In+1, In]⇒ θ�(t) = Jnt.

Then we claim:

• θ is a FGV of index I2 of type 2.

In the APPENDIX we discuss some conditions given above.

Heuristic arguments
The cases 2.1, 2.3. or the nontrivial cases in 3.2 and 4.3. indicate there are some
rules for the oscillations of A(n). So looking again at the VD in fig. 1 we can
imagine that the behaviour of A(n) depends on a chain of behaviour produced
by local functions of type θ�r,s (cf. FGV described in 2.2.) with successive
changes of signs, i.e., taking θ(x) = x−1 bxc we suppose we have something like:

A(n)� c(n, 1)n−(1− 1
2 ) − c(n, 2)n−(1− 1

3 ) + c(n, 3)n−(1− 1
4 ) − c(n, 4)n−(1− 1

5 ) + ...

where:

• ∀i, 0 < c(n, i)� L(n) and L is slowly varying.

Thus we would have:

A(n)� L′(n)n−1/2

where L′ is slowly varying.
7It is named compensation conjecture since in the sum A(n) =

∑n
k=1 ak we guess the

terms ak with k
n
≥ I2 are in some sense compensated by the terms with k

n
< I2.
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Remark 6

Of course this conjecture is very specific and one may expect to have more
general conditions in order to say whether a function having infinitely many
discontinuities is a FGV. The conjecture in section 7 is a tentative for comparing
functions and to deduce RH is true in another way.

6 RH for Dirichlet and automorphic L-functions
If we wish to apply the compensation conjecture to a wide class of DS

∑
n≥1

an
ns

with abscissa of convergence 0 < σ < 1 it is interesting to look for a suitable
function θ such that:

n∑
k=1

ak
k
θ
(n
k

)
=

1

n

The following first lemma is doing the task and allows us to use the compensation
conjecture for L-functions. We also state a second lemma in order to derive RH
is true for this wider class of functions.

6.1 Lemma 1
Suppose:

•
(∑

k≥1
xk
ks

)(∑
k≥1

zk
ks

)
=
∑
k≥1

yk
ks

and let:

• g(t) =
∑
k≥1 zkb

t
k c

(the number of terms in the sum is finite). Then we get:∑
k≥1

xkg

(
t

k

)
=
∑
k≥1

yk

⌊
t

k

⌋
The proof is easy and left to the reader. Consequently letting θg(x) = x−1g(x)
and θ(x) = x−1 bxc we get:

∑
k≥1

xk
k
θg

(
t

k

)
=
∑
k≥1

yk
k
θ

(
t

k

)

6.2 Lemma 2
Let 1

F (s) =
∑
n≥1

xn
ns and suppose:

•
∑n
k=1

xk
k � n−αL(n) with 0 < α ≤ 1

2 and L is slowly varying.

Then we have F (s) 6= 0 for <s > 1− α.
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Proof
∑ xk

k � n−αL(n) ⇒
∑n
k=1 xk � n1−α+ε . Thus

∑
n≥1

xn
ns converges

for <s > 1− α. Consequently F (s) 6= 0 for <s > 1− α.

6.3 The Dirichlet beta function
We consider the Dirichlet beta function:

• β(s) =
∑
n≥1

(−1)n−1

(2n−1)s

Which satisfies this functional equation:

• β(s) =
(
π
2

)s−1
Γ(1− s) cos

(
πs
2

)
β(1− s)

Next let:

• θ(x) = x−1
∑
k≥1(−1)k−1

⌊
x

2k−1

⌋
From lemma 1 and letting

∑
n≥1

xn
ns = 1

ζ(s)β(s) we have:

•
∑n
k=1

xk
k θ
(
n
k

)
= 1

n

It is now interesting to look at the VD of θ which is different but share important
properties of the VD in fig.1.

It is easy to see the conditions of the compensation conjecture are satisfied,
thus we can say θ is a FGV of index α = 1

2 . Next F (s) = ζ(s)β(s) satisfies the
conditions of lemma 2 and so the Dirichlet series for 1

ζ(s)β(s) would converge for
<s > 1

2 . Moreover we add the zeros are simple and the LI conjecture holds for
β(s) since θ is a FGV of type 2.

Extension The idea is working for all other Dirichlet L-functions and so our
method should prove the generalised Riemann hypothesis is true.
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6.4 RH for automorphic L-functions
Although the situation is less simple we believe similar arguments could work
for automorphic L-functions having no positive real zero. For instance let us
consider the Ramanujan tau function (cf. A000594 in [Slo]):

• R(s) =
∑
n≥1

τn
ns+11/2 .

which satisfies this functional equation ([Bor], p. 108) letting Γ1(s) = π−s/2Γ(s/2):

• Λ(s) = Λ(1− s) where Λ(s) = Γ1

(
s+ 11

2

)
Γ1

(
s+ 13

2

)
R(s)

Let now:

•
∑
n≥1

xn
ns = 1

ζ(s)R(s) .

Next consider:

• θ(x) = x−1
∑
k≥1

τk
k11/2

bxk c

Then we have again from lemma 1:

•
∑
k≥1

xk
k g(nk ) = 1

n

And the VD of θ looks like:

We may apply the compensation conjecture and we deduce θ is a FGV of
index α = 1

2 . Next F (s) = ζ(s)R(s) satisfies the conditions of lemma 2. Thus
we have again RH is true for R since the Dirichlet series for 1

ζ(s)R(s) would
converge for <s > 1

2 . We add the zeros are simple and the LI conjecture holds
also for R(s).

6.5 The GLI conjecture
Our method yields a strong hypothesis. Indeed if we consider for some integer
m ≥ 1:

•
∑
n≥1

xn
ns = 1

ζ(s)
∏m
i=1 Li(s)
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•
∏m
i=1 Li(s) =

∑
n≥1

an
ns .

• θ(x) = x−1
∑
k≥1 akb

x
k c

where {Li}i=1,2,...,m is a set of m distinct primitive L-functions having no posi-
tive real zero, no pole at 1 and satisfying Li 6= ζ. Then we speculate θ is a FGV
of type 2 and index 1

2 so that the LI conjecture would hold for all nontrivial
zeros of ζ, L1, ..., Lm. Next letting m→∞ and considering all sort of primitive
L-functions having no positive real zeros and no pole at 1 we claim that all
nontrivial zeros of ζ and of all distinct primitive L-functions having no positive
real zeros and no pole at 1 are linearly independant over Q. This is the GLI
conjecture (the Grand Linear Independance conjecture).

6.6 Avoiding the zeta function for proving GRH is true
We mentioned in 1.2. a possible extension of FGV implicit definition. We
claimed that a positive bounded and measurable function θ is a FGV of index
α if ∀β ≥ α we have

n∑
k=1

akθ
(n
k

)
= c+O(n−βL1(n))⇒ A(n) = c+O(n−αL2(n))

where c ∈ R and L1,L2 are slowly varying functions. In our previous strategy
for proving RH is true for L-functions we introcuded the zeta function in order
to add a pole and therefore to have c = 0. However with this more general
definition it seems not necessary to consider the zeta function for proving GRH
is true. For instance instead of considering

∑
n≥1

xn
ns = 1

ζ(s)β(s) we could take
directly

∑
n≥1

xn
ns = 1

β(s) and still define:

• θ(x) = x−1
∑
k≥1(−1)k−1

⌊
x

2k−1

⌋
And then we expect that:

•
∑n
k=1

xk
k θ
(
n
k

)
= 1

β(1) +O(n−1)⇒
∑n
k=1

xk
k = 1

β(1) +O(n−1/2L(n))

is true and has similar consequences, i.e., RH would be true for the β function.
But is is certainly harder to prove our FGV satisfy this more general property.

7 A comparison conjecture
Here we try to compare 2 noncontinuous functions extending somewhat argu-
ments for the C1 case in 2.6. Suppose θ2 is a measurable positive function and
define θ�1 as follows:

• θ�1(t) = θ�2
(
t
2 + 1

2

)
.

Suppose:
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• θ�2 is C1 and strictly increasing by part on the left.

• θ�2 is C1 on ] 1
2 , 1].

• max {θ�1(t)‖0 < t ≤ 1} = max {θ�2(t)‖0 < t ≤ 1}

• min {θ�1(t)‖0 < t ≤ 1} = min {θ�2(t)‖0 < t ≤ 1}

• 0 <
´

[0,1]
θ�1 ≤

´
[0,1]

θ�2 ≤ 1

• 0 < t < 1
2 ⇒ θ�2(t+)− θ�2(t−) ≤ 0 .

Then we claim θ1 and θ2 are FGV of index α1 and α2 respectively satisfying:

0 < α1 ≤ α2

Moreover we add that under the condition α1 = α2 we have:

• θ1 is a FGV of type 2 ⇒ θ2 is a FGV of type 2.

Corollary
RH is true.

Proof

We have

• θ1 is a FGV of index α1 = 1
2 (from 2.2.)

• max {θ�1(t)‖0 < t ≤ 1} = max {θ�2(t)‖0 < t ≤ 1} = 1

• min {θ�1(t)‖0 < t ≤ 1} = min {θ�2(t)‖0 < t ≤ 1} = 1/2

•
´

[0,1]
θ�2 = 1

2ζ(2) >
´

[0,1]
θ�1 = 3

4

• 0 < t < 1
2 ⇒ θ�2(t+)− θ�2(t−) ≤ 0 .

so we fill the conditions of the comparison conjecture and thus θ2 is a FGV of
unknown index α2 satisfying:

α2 ≥
1

2

In an other hand we have from the known relation
∑n
k=1

µ(k)
k θ2

(
n
k

)
= 1

n and
from FGV definition:

•
∑n
k=1

µ(k)
k � n−α2L(n) for a slowly varying function L.

Next from the functional equation of the ζ function we have:
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•
∑n
k=1

µ(k)
k � n−x ⇔M(n)� n1−x ⇒ x ≤ 1

2

Thus we have necessarily:

α2 ≤
1

2

thus the 2 above inequalities yield:

α2 =
1

2

and consequently RH is true and the zeros are simple. Moreover we add the LI
conjecture is true for the zeta function since θ2 would be a FGV of type 2.

Remark 7

This conjecture doesn’t work for proving RH is true for all L-function. For
the beta function or the Ramanujan tau function the condition 0 < t < 1

2 ⇒
θ�2(t+)− θ�2(t−) ≤ 0 is not satisfied.

8 On the Selberg class
We conjecture that for each function F 6= ζ in the Selberg class [Sel] having no
positive real zero and no pole at 1, letting 1

ζ(s)F (s) =
∑
n≥1

un
ns , there is a FGV

θS of index 1
2 of type 2 and a function fS satisfying fS(n)� n−1 such that we

have:

fS(n) =

n∑
k=1

uk
k
θS

(n
k

)
Thus RH would be true for these functions.

Conclusion
Although we give speculative arguments for proving RH is true and extending
the idea to GRH, we give sometime asymptotic formula for A(n) using simple
but nontrivial FGV. This shows FGV is a consistent concept and we have some
confidence with this approach to RH since a general phenomenom exists. The
weaker conjecture in 4.4.1. where we propose to prove there are zero free region
of type <s > σ would be in its own an interesting result. We think the tool
needed for solving the problem are not necessarily complicated and could stay
within the realm of real analysis. More precisely if we try to use the method
described in 2.2. for θ(x) = x−1 bxc (keeping the same notations) we getG1(s) =
ζ(s+1) and ζ(s) is the Laplace transform of

∑∞
k=1 δ(t− log n) which is not easy
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to handle. Furthermore if we wish to got a formula using the simpler θ2 defined
in section 4 we have to consider G1(s) =

s
2s+1

1− s+1
2s+1 2−s

and it is complicated to
find its inverse Laplace transform and to have a practical formula. Hence we
believe Laplace or Laplace-Stieltjes transform or related tools are not suitable
for attacking our conjectures. In our mind the use of polynomial approximation
like Karamata breakthrough would be perhaps a better approach. We feel it
is possible to formalize such a proof for one or more conjecture listed in this
paper, specially for the smooth case in 2.5 or 2.6. In the event that none
of our conjectures would be right we think that slight changes could correct
some ot them. As a matter of fact we didn’t provide exemples of FGV having
many changes of variations but there are plenty of such functions. For instance
θλ = 1−λ (cos x)2

x are clearly FGV for 0 < λ ≤ 1. Thus the topic of FGV is much
more larger than the focus of this study and in a forcoming paper we explore a
wider class of FGV [Clo].
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APPENDIX

On conditions of the compensation conjecture
Most listed conditions in section 5 come from obvious common properties of
expected FGV. However we must explain why we have considered 2 specific
conditions.

The condition limn→∞
∑n
k=2(Jk − Jk−1)Ik = +∞

For instance we have:

• θ(x) = x−1 bxc ⇒
∑n
k=2(Jk − Jk−1)Ik =

∑n
k=2

1
k ∼ log n

• θ(x) = x−1
∑
k≥1(−1)k−1

⌊
x

2k−1

⌋
⇒
∑n
k=2(Jk − Jk−1)Ik ∼ c log n with

c > 0.

So from the conjecture since all other conditions are satisfied these are FGV of
index 1

2 and we expect it is the case. However considering:

• θ(x) = x−1
∑
k≥1(−1)k−1

⌊
x
k

⌋
we have

•
∑n
k=2(Jk − Jk−1)Ik converges.

Here the VD.

we have in this case (using lemma in 6.1.):

•
∑
k≥1

ak
ks = (1− 21−s)ζ(s)

which has zeros on the line <s = 1 supporting the fact θ is not a FGV of index
α > 0 but perhaps it is a FGV with negative index. Hence θ is not a FGV of
index 1

3 despite it satisfies all the other conditions.
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The condition J2I2 ≤ J1I1 ⇔ θ�(I−2 ) ≤ θ�(1)

An interesting exemple is the Davenport Heilbronn zeta function considered in
[Dav] which is defined by:

• ζH(s) =
∑
n≥1

h(n)
ns

where (h(n))n≥1 is the 5-periodic sequence [1, ξ,−ξ,−1, 0] where:

• ξ = −2+
√

10−2
√

5

−1+
√

5
= 0.2840790...

This function satisfies a functional equation similar to zeta but has zeros off the
critical line. Thus the function:

• θ(x) = x−1
∑
k≥1 h(k)

⌊
x
k

⌋
can’t be a FGV of index 1

2 . Otherwise the DS for 1
ζ(s)ζH(s) would converge for

<s > 1/2. Here the VD.

We see that θ�(0.5−) = 1.16.. > θ�(1) = 1 thus there must be some trouble.
However this condition is perhaps superfluous since there is a big difference
between ζ and ζH which has zeros satisfying <s > 1.
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