THE MUCKENHOUPT A_{∞} CLASS AS A METRIC SPACE AND CONTINUITY OF WEIGHTED ESTIMATES

NIKOLAOS PATTAKOS AND ALEXANDER VOLBERG

Abstract

We show how the A_{∞} class of weights can be considered as a metric space. As far as we know this is the first time that a metric d_{*} is considered on this set. We use this metric to generalize the results obtained in 9. Namely, we show that for any CalderónZygmund operator T and an $A_{p}, 1<p<\infty$, weight w_{0}, the numbers $\|T\|_{L^{p}(w) \rightarrow L^{p}(w)}$ converge to $\|T\|_{L^{p}\left(w_{0}\right) \rightarrow L^{p}\left(w_{0}\right)}$ as $d_{*}\left(w, w_{0}\right) \rightarrow 0$. We also find the rate of this convergence and prove that is sharp.

1. INTRODUCTION AND USEFUL RESULTS

The main purpose of this paper, is to define a natural metric structure on the classical Muckenhoupt A_{p} classes, and generalize a continuity result obtained in [9]. Such continuity results have been coming up recently in connection with PDE with random coefficients and continuity of norms of Calderón-Zygmund operators. For example, the continuity at $w=1$, was used in [2].

The metric A_{p} classes will be considered in section 2 , where we study many properties of these new spaces, and the main theorem 5, in section 3. Before we state and prove the main theorems in sections 2 and 3, we need some definitions and some already known results about the weighted theory and it's relation with the BMO space.

We are going to work with functions $w \in L_{l o c}^{1}\left(\mathbf{R}^{n}\right)$ that are positive almost everywhere. Functions like these are known as weights. The celebrated A_{p} classes of weights are defined in the following way:

For $1<p<\infty$, we say that $w \in A_{p}$ if for all cubes Q in \mathbf{R}^{n} we have that ($[w]_{A_{p}}$ is called the A_{p} characteristic of the weight):

$$
[w]_{A_{p}}:=\sup _{Q}\left(\frac{1}{|Q|} \int_{Q} w\right)\left(\frac{1}{|Q|} \int_{Q} w^{1-p^{\prime}}\right)^{p-1}<\infty,
$$

where p^{\prime} is the conjugate exponent to p, i.e. $\frac{1}{p}+\frac{1}{p^{\prime}}=1$.
The class of A_{1} weights consists of those w such that there is a positive constant c with the property:

$$
M w(x) \leq c w(x)
$$

1991 Mathematics Subject Classification. 30E20, 47B37, 47B40, 30D55.
Key words and phrases. Key words: Calderón-Zygmund operators, A_{2} weights, interpolation.
for almost every x in \mathbf{R}^{n}, where M is the Hardy-Littlewood maximal function. The smallest such constant is denoted by $[w]_{A_{1}}$ and is called the A_{1} characteristic.

We define the class of A_{∞} weights as:

$$
[w]_{A_{\infty}}:=\sup _{Q}\left(\frac{\frac{1}{|Q|} \int_{Q} w}{\exp \left(\frac{1}{|Q|} \int_{Q} \log w\right)}\right)<\infty .
$$

It is really easy to see that any A_{p} weight is actually an A_{∞} weight, and that we have the estimate $[w]_{A_{\infty}} \leq[w]_{A_{p}}$. It is also true that any A_{∞} weight is an A_{p} weight for some $1<p<\infty$. This means that we have the equality:

$$
A_{\infty}=\bigcup_{1<p<\infty} A_{p}
$$

Another nice property is that for $1 \leq p \leq q \leq \infty$ we have $A_{1} \subset A_{p} \subset A_{q} \subset A_{\infty}$, where the inclusions here are strict. All of these sets are different for different values of p and q.

The space of $B M O$ functions in \mathcal{R}^{n}, consists of locally integrable functions f such that the norm

$$
\|f\|_{*}=\sup _{Q} \frac{1}{|Q|} \int_{Q}\left|f-f_{Q}\right| d x
$$

if finite. The $B M O$ space and the A_{∞} space, have many nice properties. First of all, if f is a $B M O$ function then for any number $\lambda \in\left(0, \frac{c}{\|f\|_{*}}\right]$, the function $e^{\lambda f}$ is an A_{p} weight, $1<p<\infty$, where the constant c depends on p and the dimension n. Secondly, for small $B M O$ norm, the A_{p} norm of the weight $e^{\lambda f}$ is bounded by the number 2 for example (see e.g. (3]).

A subset of $B M O$ that appears in many applications is $B L O$. It stands for the functions of bounded lower oscillation. A function $f \in L_{l o c}^{1}\left(\mathbf{R}^{n}\right)$ is said to belong in $B L O$ if there is a positive constant c such that:

$$
\frac{1}{|Q|} \int_{Q} f-\inf _{x \in Q} f(x) \leq c
$$

for all cubes Q, where the infimum is understand as the essential infimum. It can be proved that for any $w \in A_{1}$, the function $\log w$ is in $B L O$. Also if a function $f \in B L O$ then for sufficiently small $\lambda>0$ the function $e^{\lambda f} \in A_{1}$. The reference for all these results is [3].

For the proofs of our theorems, interpolation is going to play a really important role and for this reason we need some preliminary results on this subject as well. In the following (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν) will denote measure spaces. Suppose T is an operator of a class of functions on X into a class of functions on $Y . T$ is called a sub-linear operator, if it satisfies the following properties:
i)If $f=f_{1}+f_{2}$ and $T f_{1}, T f_{2}$ are defined then $T f$ is defined,
ii) $\left|T\left(f_{1}+f_{2}\right)\right| \leq\left|T f_{1}\right|+\left|T f_{2}\right|, \mu$ almost everywhere,
iii)For any scalar k, we have $|T(k f)|=|k||T f|, \mu$ almost everywhere.

Let $p, q \geq 1$ be two real numbers. We say that T is of type (p, q), if T is defined for all
the muckenhoupt A_{∞} CLASS AS A metric space and Continuity of weighted estimates
functions f in $L^{p}(X, \mathcal{M}, \mu)$ and there exists a positive number, K, independent of f, such that

$$
\|T f\|_{q, \nu} \leq K\|f\|_{p, \mu}
$$

where

$$
\|T f\|_{q, \nu}=\left(\int_{Y}|T f|^{q} d \nu\right)^{\frac{1}{q}}
$$

and

$$
\|f\|_{p, \mu}=\left(\int_{X}|f|^{p} d \mu\right)^{\frac{1}{p}}
$$

Let μ_{0}, μ_{1} be two measures for (X, \mathcal{M}). If we define the measure $\mu=\mu_{0}+\mu_{1}$, then μ_{0}, μ_{1} are each absolutely continuous with respect to μ. Thus, by the Radon-Nikodym theorem, there exists two functions, α_{0}, α_{1} such that for any $E \in \mathcal{M}$,

$$
\mu_{j}(E)=\int_{E} \alpha_{j} d \mu
$$

where $j=0,1$. In the following we will assume that α_{0}, α_{1} are never zero. This is equivalent to asserting that the sets of measure zero with respect to $\mu_{j}, j=0,1$, are the same as the sets of measure zero with respect to μ. Thus, in the various measure spaces that we will consider, the equivalence classes of functions will be the same.

Let $0 \leq s \leq 1$, and define the measure μ_{s} on X by

$$
\mu_{s}(E)=\int_{E} \alpha_{0}^{1-s} \alpha_{1}^{s} d \mu
$$

for each $E \in \mathcal{M}$. Also assume, that we have two measures ν_{0}, ν_{1} on \mathcal{N}, and define the measures ν_{r}, for $0 \leq r \leq 1$, just as we did for μ_{s} above.
Given any real numbers $1 \leq p_{0}, p_{1}, q_{0}, q_{1}$ and any $0 \leq t \leq 1$, we define $p_{t}, q_{t}, s(t), r(t)$ as follows:

$$
\begin{gathered}
\frac{(1-t) p_{t}}{p_{0}}+\frac{t p_{t}}{p_{1}}=1, \frac{(1-t) q_{t}}{q_{0}}+\frac{t q_{t}}{q_{1}}=1 \\
s(t)=\frac{\left(t p_{t}\right)}{p_{1}}, r(t)=\frac{\left(t q_{t}\right)}{q_{1}}
\end{gathered}
$$

We have the following theorem by [10]:
Theorem 1. Suppose that T is a sub-linear operator satisfying

$$
\|T f\|_{q_{j}, \nu_{j}} \leq K_{j}\|f\|_{p_{j}, \mu_{j}}
$$

for all $f \in L^{p_{j}}\left(X, \mathcal{M}, \mu_{j}\right), j=0,1$. Then, for $0 \leq t \leq 1$, we have

$$
\|T f\|_{q_{t}, \nu_{r(t)}} \leq K_{0}^{1-t} K_{1}^{t}\|f\|_{p_{t}, \mu_{s(t)}}
$$

for all $f \in L^{p_{t}}\left(X, \mathcal{M}, \mu_{s(t)}\right)$.
In addition to the previous theorem we need also the following proved in [7]:

Theorem 2. If the A_{∞} norm of a weight w is small, i.e. $[w]_{A_{\infty}} \leq 1+\delta<2$, then the function $f=\log w$, and any cube Q satisfy

$$
\frac{1}{|Q|} \int_{Q}\left|f-f_{Q}\right| d x \leq 32 \sqrt{\delta}
$$

Our purpose is to generalize the following theorem proved in [9:
Theorem 3. Let T be a linear operator such that for some $1<p<\infty$,

$$
\|T\|_{L^{p}(w) \rightarrow L^{p}(w)} \leq c F\left([w]_{A_{p}}\right),
$$

for any A_{p} weight w in \mathbf{R}^{n}, where F is an increasing function and c is an absolute constant. Then:

$$
\lim _{[w]_{A_{p}} \rightarrow 1}\|T\|_{L^{p}(w) \rightarrow L^{p}(w)}=\|T\|_{L^{p} \rightarrow L^{p}} .
$$

It follows from the proof that if $[w]_{A_{p}} \leq 1+\delta<2$, then:

$$
\|T\|_{L^{p}(w) \rightarrow L^{p}(w)} \leq\|T\|_{L^{p} \rightarrow L^{p}}(1+c \sqrt{\delta}),
$$

where c is a constant that depends on the dimension n, on the constant c that appears in the original weighted estimate and on p.

In order to do that we will define a metric in the A_{∞} space and this is going to generalize the convergence $[w]_{A_{p}} \rightarrow 1$ in the sense that this will be equivalent to the convergence $d_{*}(w, 1) \rightarrow 0$ in the metric d_{*}.

2. The $\left(\mathcal{A}_{\infty}, d_{*}\right)$ metric space

Let us observe that if we have any weight w, any positive constant $c>0$ and any $1 \leq p \leq \infty$, then $[w]_{A_{p}}=[c w]_{A_{p}}$. We define an equivalence relation in A_{∞} in the following way: for $u, v \in A_{\infty}$ we will write $u \sim v$ if and only if there is a positive constant c such that $u=c v$ almost everywhere in \mathbf{R}^{n}. It is trivial to check that this is an equivalence relation and this allows us to define the quotient space:

$$
\mathcal{A}_{\infty}=A_{\infty} / \sim
$$

In the same way we define for $1 \leq p<\infty$:

$$
\mathcal{A}_{p}=A_{p} / \sim
$$

For two elements $u, v \in \mathcal{A}_{\infty}$ we define the distance function d_{*} as:

$$
d_{*}(u, v)=\|\log u-\log v\|_{*} .
$$

Again it is obvious that all the requirements of a metric are satisfied and the reason for defining the equivalence relation is exactly because we need to have:

$$
d_{*}(u, v)=0 \Leftrightarrow u \sim v .
$$

THE MUCKENHOUPT A_{∞} CLASS AS A METRIC SPACE AND CONTINUITY OF WEIGHTED ESTIMATES
So we define a metric in \mathcal{A}_{∞}, going through the $B M O$ space. We can check that for an A_{p} weight $w,[w]_{A_{p}} \rightarrow 1$ is equivalent to $d_{*}(w, 1) \rightarrow 0$ and since $\mathcal{A}_{p} \subset \mathcal{A}_{\infty}$, the restriction of the d_{*} metric to \mathcal{A}_{p}, makes the class a metric space.

The following is an obvious remark that gives more informations about this "new" spaces. It states that small balls around the constant weight 1 , are complete in the d_{*} metric.

Theorem 4. Consider a closed ball $\bar{B}(1, r)$ of sufficiently small radius $r>0$ and center the weight 1 , in the metric space $\left(\mathcal{A}_{\infty}, d_{*}\right)$, i.e. $\bar{B}(1, r)=\left\{w \in \mathcal{A}_{\infty}: d_{*}(w, 1) \leq r\right\}$. Then $\bar{B}(1, r)$ is a complete metric space with respect to the metric d_{*}.
Proof. :
Consider a Cauchy sequence $\left\{w_{n}\right\}_{n \in \mathbf{N}}$ in $\left(\bar{B}(1, r), d_{*}\right)$. This means that the sequence $\left\{\log w_{n}\right\}_{n \in \mathbf{N}}$ is Cauchy in the BMO space. But BMO is Banach and so there is a function $f \in B M O$ such that $\log w_{n} \rightarrow f$ in $B M O$ as $n \rightarrow \infty$. By the John-Nirenberg inequality we know that there is a dimensional constant $c>0$ such that for all $\lambda \in\left(0, \frac{c}{\|f\|_{*}}\right]$ the function $e^{\lambda f} \in A_{2}$. But $\left|\left\|\log w_{n}\right\|_{*}-\|f\|_{*}\right| \leq\left\|\log w_{n}-f\right\|_{*} \rightarrow 0$ as $n \rightarrow \infty$. Here we use the fact that $w_{n} \in \bar{B}(1, r)$. This means that $\left\|\log w_{n}-\log 1\right\|_{*}=\left\|\log w_{n}\right\|_{*} \leq r$ and r is sufficiently small. Therefore, the number $\|f\|_{*}$ is small and so the number $\frac{c}{\|f\|_{*}}$ is really big. We are now allowed to choose for $\lambda=1$ and we get that $e^{f} \in A_{2}$ or equivalently there is a weight $w \in A_{2} \subset A_{\infty}$ with $f=\log w$. It is trivial now to see that $d_{*}\left(w_{n}, w\right) \rightarrow 0$ as $n \rightarrow \infty$.

Of course in the previous theorem, we can replace the \mathcal{A}_{∞} space by any of the other \mathcal{A}_{p} spaces. We should mention that no one of the \mathcal{A}_{p} spaces is complete. The proof of this fact is very simple. Let us prove that \mathcal{A}_{1} is not complete by finding a Cauchy sequence in the space that has no limit inside \mathcal{A}_{1}. It will follow that this example works for anyone of the \mathcal{A}_{p} spaces. Consider a decreasing sequence $-1<r_{n}<0$ with $\lim _{n \rightarrow \infty} r_{n}=-1$. Define the A_{1} weights $w_{n}=|x|^{r_{n}}$. Then:

$$
d_{*}\left(w_{r_{n}}, w_{r_{m}}\right)=\left\|r_{n} \log |x|-r_{m} \log |x|\right\|_{*}=\left|r_{n}-r_{m}\right|\|\log |x|\|_{*}
$$

and since $r_{n} \rightarrow 1$ we see that $\left\{w_{n}\right\}_{n \in \mathbf{N}}$ is Cauchy in \mathcal{A}_{1}, or equivalently the sequence $\left\{\log w_{n}\right\}_{n \in \mathbf{N}}$ is Cauchy in $B M O$. It's limit in the BMO space is obviously the function $f(x)=-\log |x|$. This means that for $w(x)=\frac{1}{|x|}$ we have $d_{*}\left(w_{n}, w\right) \rightarrow 0$ as $n \rightarrow \infty$, but since w is not in $L_{l o c}^{1}\left(\mathbf{R}^{n}\right)$ it can not be an A_{1} weight. So the space $\left(\mathcal{A}_{1}, d_{*}\right)$ is not complete.

Let us also mention the following result in [4], by Garnett and Jones, that helps to understand better when a ball in $\left(\mathcal{A}_{p}, d_{*}\right)$ is complete. It states that for a function $f \in$ $B M O$,

$$
\operatorname{dist}_{B M O}\left(f, L^{\infty}\right):=\inf \left\{\|f-g\|_{*}: g \in L^{\infty}\right\} \sim \frac{1}{\sup \left\{\lambda>0: e^{\lambda f} \in A_{2}\right\}}
$$

This means that if we have a Cauchy sequence in \mathcal{A}_{p}, the closer the sequence is to the L^{∞} space, the more chances it has to have a limit in \mathcal{A}_{p}.

So now we can try and find the completion of these spaces under the metric d_{*}. By definition the completion of $\left(\mathcal{A}_{p}, d_{*}\right)$ is the space $\overline{\mathcal{A}}_{p}$ that consists of the equivalence classes of all Cauchy sequences of \mathcal{A}_{p}. We can identify this space as a subspace of $B M O$. Indeed:

$$
\overline{\mathcal{A}}_{p}=\left\{f \in B M O: \exists\left\{w_{n}\right\}_{n \in \mathbf{N}} \subset A_{p}: \lim _{n \rightarrow \infty}\left\|\log w_{n}-f\right\|_{*}=0\right\},
$$

and we can think of the \mathcal{A}_{p} class as a subset of $\overline{\mathcal{A}}_{p}$, by identifying every weight w with it's logarithm, $\log w$, in $B M O$. Since the classical A_{p} spaces form an increasing "sequence" of the variable p (and of course the same is true for the \mathcal{A}_{p} spaces), the same is true for this new subspaces of $B M O, \overline{\mathcal{A}}_{1} \subset \overline{\mathcal{A}}_{p} \subset \overline{\mathcal{A}}_{q} \subset \overline{\mathcal{A}_{\infty}} \subset B M O$, for $1 \leq p \leq q \leq \infty$.

They are also convex subsets of $B M O$. Indeed, consider $1<p<\infty$, and $f, g \in \overline{\mathcal{A}}_{p}$. This means that there are sequences $\left\{w_{n}\right\}_{n \in \mathbf{N}},\left\{v_{n}\right\}_{n \in \mathbf{N}} \subset A_{p}$ such that: $f=\lim _{n \rightarrow \infty} w_{n}, g=$ $\lim _{n \rightarrow \infty} v_{n}$, in BMO. Let $0<t<1$ be fixed. We will show that $t f+(1-t) g \in \overline{\mathcal{A}}_{p}$. For this, we only need to see that $t f+(1-t) g=\lim _{n \rightarrow \infty} \log \left(w_{n}^{t} v_{n}^{1-t}\right)$, in $B M O$, and check using Hölder that the weight $w_{n}^{t} v_{n}^{1-t} \in A_{p}$, for all n, since:

$$
\left[w^{t} v^{1-t}\right]_{A_{p}} \leq[w]_{A_{p}}^{t}[v]_{A_{p}}^{1-t}
$$

for all $w, v \in A_{p}$. Thus, $t f+(1-t) g \in \overline{\mathcal{A}}_{p}$. It is trivial to see now that $\overline{\mathcal{A}_{\infty}}$ is also a convex subset of $B M O$. For $\overline{\mathcal{A}}_{1}$ the same holds, since if we have two A_{1} weights, w, v, it is trivial to see that $w^{t} v^{1-t} \in A_{1}$ and actually that $\left[w^{t} v^{1-t}\right]_{A_{1}} \leq[w]_{A_{1}}^{t}[v]_{A_{1}}^{1-t}$.

Here, let us observe that for any $1<p<\infty$, we have that $L^{\infty} \subset \overline{\mathcal{A}}_{p}$. There is a nice result of weighted theory (see [3) that states the following (we will present the statement only for A_{2}): There are dimensional constants $c_{1}, c_{2}>0$, such that for a function ϕ in \mathbf{R}^{n} we have:
a) $e^{\phi} \in A_{2}$ provided $\inf \left\{\|\phi-g\|_{*}: g \in L^{\infty}\right\} \leq c_{1}$ and
b) $\inf \left\{\|\phi-g\|_{*}: g \in L^{\infty}\right\} \leq c_{2}$ provided $e^{\phi} \in A_{2}$. This means that all functions $f \in B M O$ that satisfy the assumption a, belong to the $\overline{\mathcal{A}}_{2}$ space. Equivalently, there is a small neighborhood of L^{∞} inside $B M O$, that lies inside the $\overline{\mathcal{A}}_{2}$ space.

We should also mention that since:

$$
B L O=\left\{\alpha \log w: \alpha \geq 0, w \in A_{1}\right\}
$$

we can ask the question if the spaces $\overline{\mathcal{A}}_{1}, B L O$ are equal. Let us assume that they are. A classical result of weighted theory is that $B M O=B L O-B L O$. By our assumption we have that $B M O=\overline{\mathcal{A}}_{1}-\overline{\mathcal{A}}_{1}$. Now consider a function $f \in B M O$. There are functions $\phi, \psi \in \overline{\mathcal{A}}_{1}$ such that $f=\phi-\psi$. We know that there are sequences of A_{1} weights $\left\{\phi_{n}\right\}_{n \in \mathbf{N}},\left\{\psi_{n}\right\}_{n \in \mathbf{N}}$ such that $f=\lim _{n \rightarrow \infty} \log \phi_{n}-\lim _{n \rightarrow \infty} \log \psi_{n}=\lim _{n \rightarrow \infty} \log \phi_{n} \psi_{n}^{-1}$, where the limit is in $B M O$. But $\phi_{n} \psi_{n}^{-1}$ is an A_{2} weight for all n. So we get that $\overline{\mathcal{A}_{2}}=B M O$. But this is obviously false.

Notice that from the argument follows the inclusion, $\overline{\mathcal{A}}_{1}-\overline{\mathcal{A}}_{1} \subset \overline{\mathcal{A}}_{2}$. Trivially, we have the more general fact, that for any $1<p<\infty, \overline{\mathcal{A}}_{1}+(1-p) \overline{\mathcal{A}}_{1} \subset \overline{\mathcal{A}}_{p}$. Also, since we have that $w \in A_{p} \Leftrightarrow w^{1-p^{\prime}} \in A_{p^{\prime}}$, we get the equivalence $f \in \overline{\mathcal{A}}_{p} \Leftrightarrow\left(1-p^{\prime}\right) f \in \overline{\mathcal{A}_{p^{\prime}}}$. For $p=2$ we have $f \in \overline{\mathcal{A}}_{2} \Leftrightarrow-f \in \overline{\mathcal{A}}_{2}$, which means that the $\overline{\mathcal{A}}_{2}$ class is symmetric with respect
to the origin in the $B M O$ space. No other $\overline{\mathcal{A}}_{p}$ class has this property. Here we should remember the following about power weights. A function of the form $|x|^{\alpha}$ is an A_{p} weight in \mathbf{R}^{n}, if and only if $-n<\alpha<n(p-1)$. The interval for α is symmetric with respect to the origin, if and only if $p=2$. Now we can see that there is a "correspondence" between the $\overline{\mathcal{A}}_{2}$ space and the interval $(-n, n)$.

3. A generalized version of theorem 3

Our goal is to prove the following theorem:
Theorem 5. Let T be a linear operator such that for some $1<p<\infty$,

$$
\|T\|_{L^{p}(w) \rightarrow L^{p}(w)} \leq c F\left([w]_{A_{p}}\right),
$$

for any A_{p} weight w in \mathbf{R}^{n}, where F is an increasing function and c is an absolute constant. Fix an A_{p} weight w_{0}. Then:

$$
\lim _{d_{*}\left(w, w_{0}\right) \rightarrow 0}\|T\|_{L^{p}(w) \rightarrow L^{p}(w)}=\|T\|_{L^{p}\left(w_{0}\right) \rightarrow L^{p}\left(w_{0}\right)}
$$

and actually from the proof follows that for any sublinear operator satisfying the hypothesis of the theorem we have the estimate:

$$
\|T\|_{L^{p}(w) \rightarrow L^{p}(w)} \leq\|T\|_{L^{p}\left(w_{0}\right) \rightarrow L^{p}\left(w_{0}\right)}(1+c \delta)
$$

for all weights $w \in A_{p}$ with $d_{*}\left(w, w_{0}\right) \leq \delta$, for sufficiently small δ, where c is a positive constant that depends on p, on the constant c that appears in the original weighted estimate, on the dimension n and on $\left[w_{0}\right]_{A_{p}}$.

Here let us mention something that is important. Say that our A_{∞} weight w is of the "order" $[w]_{A_{\infty}}<1+\delta$. Then by theorem 2 we get that $d_{*}(w, 1) \leq c \sqrt{\delta}$. Since theorem $[5$ is going to be a generalization of theorem 3, the rate of convergence that we have in both theorems should agree. The above observation explains exactly this.

Remark 6. Notice that the second half of the previous theorem is true for the Maximal function (since it is true for all sublinear operators that are bounded in the way described in the theorem), i.e. for all weights $w \in A_{p}$ that are sufficiently close to $w_{0} \in A_{p}$, with $d_{*}\left(w, w_{0}\right) \leq \delta:$

$$
\|M\|_{L^{p}(w) \rightarrow L^{p}(w)} \leq\|M\|_{L^{p}\left(w_{0}\right) \rightarrow L^{p}\left(w_{0}\right)}(1+c \delta) .
$$

It is well-known (see [1]) that $\|M\|_{L^{p}(w) \rightarrow L^{p}(w)} \leq c[w]_{A_{p}}^{\frac{1}{p-1}}$, which can be used here.
The argument is really similar to the one given in [9]. Nevertheless, we are going to present it for the sake of completeness and because there are some small differences that we have to point out.

Proof. : It consists of two steps. First we will show that for any sublinear operator that satisfies the assumptions of our theorem we have:

$$
\|T\|_{L^{p}(w) \rightarrow L^{p}(w)} \leq\|T\|_{L^{p}\left(w_{0}\right) \rightarrow L^{p}\left(w_{0}\right)}(1+c \delta)
$$

for all weights $w \in A_{p}$ with $d_{*}\left(w, w_{0}\right) \leq \delta$. Let $0<\delta$ be a really small number that we consider to be fixed. Fix also an A_{p} weight w, with $d_{*}\left(w, w_{0}\right)<\delta$. This means that $\left\|\log \frac{w}{w_{0}}\right\|_{*} \leq \delta$. We would like to write our weight w as $w=w_{0}^{1-t} W^{t}$, for some small and positive number t (which is going to be like δ), and some weight $W \in A_{p}$. From this expression we can see that $W=\frac{w^{\frac{1}{t}}}{w_{0}^{\frac{1}{t}}} w_{0}$. For this, let us consider only the case $p=2$, but the general case is identical to this one. Since $w_{0} \in A_{2}$ we know that there is a small $\epsilon>0$ such that $w_{1}:=w_{0}^{1+\epsilon} \in A_{2}$. Then obviously $w_{0}=w_{1}^{1-s}$ for small $s>0$. To continue, consider the function $f=\log \left(\frac{w}{w_{0}}\right)^{\frac{1}{s}}$. The $B M O$ norm of f is really small since:

$$
\|f\|_{*}=\frac{1}{s} d_{*}\left(w, w_{0}\right) \leq \frac{1}{s} \delta
$$

and so by the John-Nirenberg inequality we have that for all $\lambda \in\left(0, \frac{c}{\|f\|_{*}}\right]$ the function $e^{\lambda f}=\left(\frac{w}{w_{0}}\right)^{\frac{\lambda}{s}} \in A_{2}$, where c is a positive constant that depends only on the dimension. If we choose $\lambda=\frac{c_{0}}{\delta}, c_{0}>0$ is any constant less than or equal to $s c$, we see that $w_{2}:=$ $\left(\frac{w}{w_{0}}\right)^{\frac{c_{0}}{\delta s}} \in A_{2}$, which means that the function:

$$
W=\frac{w^{\frac{1}{t}}}{w_{0}^{\frac{1}{t}}} w_{0}=w_{1}^{1-s} w_{2}^{s} \in A_{2}
$$

where $\delta=c_{0} t$. Here we should mention that the A_{2} norm of W can be chosen to be bounded above by a constant that depends only on s. On the other hand, s depends only on the A_{2} norm of w_{0}, and this is fixed. With this in mind, let us assume that the A_{2} characteristic of W is bounded above by 4 . The important thing here is that it does not depend on δ.

Now the proof continues like this: Write $\gamma=\|T\|_{L^{p}\left(w_{0}\right) \rightarrow L^{p}\left(w_{0}\right)}$. By the interpolation result of Stein and Weiss, theorem 1, for $X=Y=\mathcal{R}^{n}, \mathcal{M}=\mathcal{N}=\mathcal{L}$ and $\mu_{0}=\nu_{0}=$ $w_{0} d x, \mu_{1}=\nu_{1}=W d x$, where by \mathcal{L} we denote the σ-algebra of Lebesgue measurable sets in \mathbf{R}^{n}, we get:

$$
\begin{aligned}
\|T\|_{L^{p}(w) \rightarrow L^{p}(w)} & \leq \gamma^{1-t}\|T\|_{L^{p}(W) \rightarrow L^{p}(W)}^{t} \\
& \leq \gamma^{1-t} c^{t} F\left([W]_{A_{p}}\right)^{t} \\
& \leq \gamma^{1-t} c^{t} F(4)^{t}
\end{aligned}
$$

the muckenhoupt A_{∞} CLASS AS A metric space and Continuity of weighted estimateg
and the right-hand side goes to γ as $t \rightarrow 0^{+}$or equivalently as $\delta \rightarrow 0^{+}$. In other words:

$$
\limsup _{d_{*}\left(w, w_{0}\right) \rightarrow 0}\|T\|_{L^{p}(w) \rightarrow L^{p}(w)} \leq\|T\|_{L^{p}\left(w_{0}\right) \rightarrow L^{p}\left(w_{0}\right)}
$$

and in addition we have the desired estimate:

$$
\|T\|_{L^{p}(w) \rightarrow L^{p}(w)} \leq\|T\|_{L^{p}\left(w_{0}\right) \rightarrow L^{p}\left(w_{0}\right)}(1+c \delta),
$$

where c is a constant depending on n, p and $\left[w_{0}\right]_{A_{p}}$, for all weights w in A_{p} that are δ close to w_{0} in the d_{*} metric.

Remark 7. Notice that the previous calculations show that the set

$$
\left\{\log w: w \in A_{p}\right\}
$$

is open in $B M O$ for all $1<p<\infty$. To see this fix $w_{0} \in A_{p}$ and choose sufficiently small $\delta>0$. For $f \in B M O$ with $\left\|f-\log w_{0}\right\|_{*} \leq \delta$, write $f=\log u$, where u is a positive function. Then follow the previous reasoning in the beginning of the proof, with $w=u$ and write $u=w_{0}^{1-t} W^{t}$, for $0<t<1$. It follows that $W \in A_{p}$ and so $u=w_{0}^{1-t} W^{t}$ is an A_{p} weight, by Hölder's inequality. As we can see, this is exaclty the same argument as before.

Now we show that for a linear operator we have the estimate:

$$
\|T\|_{L^{p}\left(w_{0}\right) \rightarrow L^{p}\left(w_{0}\right)} \leq \liminf _{d_{*}\left(w, w_{0}\right) \rightarrow 0}\|T\|_{L^{p}(w) \rightarrow L^{p}(w)} .
$$

Let us assume for simplicity that $p=2$ and that $\|T\|_{L^{2}\left(w_{0}\right) \rightarrow L^{2}\left(w_{0}\right)}=1$. Note that other p^{\prime} s can be treated similarly. So far we have proved that:

$$
\limsup _{d_{*}\left(w, w_{0}\right) \rightarrow 0}\|T\|_{L^{2}(w) \rightarrow L^{2}(w)} \leq 1
$$

and:

$$
d_{*}\left(w, w_{0}\right) \leq \delta<1 \Rightarrow\|T\|_{L^{2}(w) \rightarrow L^{2}(w)} \leq 1+c \delta .
$$

Let M_{ϕ} denote the operation of multiplication by ϕ. To finish the proof of the continuity at $w=w_{0}$ we are going to assume that:

$$
\liminf _{d_{*}\left(w, w_{0}\right) \rightarrow 0}\|T\|_{L^{2}(w) \rightarrow L^{2}(w)}=\liminf _{d_{*}\left(w, w_{0}\right) \rightarrow 0}\left\|M_{w_{0}^{-\frac{1}{2}} w^{\frac{1}{2}}} T M_{w_{0}^{\frac{1}{2}} w^{-\frac{1}{2}}}\right\|_{L^{2}\left(w_{0}\right) \rightarrow L^{2}\left(w_{0}\right)}<1
$$

and get a contradiction. This means that there is $\tau>0$ small, and a sequence of A_{2} weights w_{n} such that $d_{*}\left(w_{n}, w_{0}\right) \rightarrow 0$ as $n \rightarrow \infty$ and in addition:

$$
\begin{equation*}
\left\|w_{0}^{-\frac{1}{2}} w_{n}^{\frac{1}{2}} T w_{0}^{\frac{1}{2}} w_{n}^{-\frac{1}{2}} g\right\|_{L^{2}\left(w_{0}\right)} \leq(1-\tau)\|g\|_{L^{2}\left(w_{0}\right)} \tag{1}
\end{equation*}
$$

for all functions $g \in L^{2}\left(w_{0}\right)$.
Fix now any cube Q. Here we can make the normalization assumption $\frac{1}{|Q|} \int_{Q} \frac{w_{n}}{w_{0}} d x=1$ for all $n \in \mathbf{N}$. We claim two things:
$\left.1^{*}\right)\left\|w_{n}^{-\frac{1}{2}}-w_{0}^{-\frac{1}{2}}\right\|_{L^{2}\left(w_{0}, Q\right)} \rightarrow 0$ as $n \rightarrow \infty$ where by $L^{2}\left(w_{0}, Q\right)$ we mean the $L^{2}\left(w_{0}\right)$ norm over Q, and
$\left.2^{*}\right)$ there exists a subsequence k_{n} such that $w_{k_{n}} \rightarrow w_{0}$ almost everywhere in the cube Q. Obviously 2^{*} follows from 1^{*}. For a proof of 1^{*}, see lemma after the end of this proof. Now without loss of generality we can assume that the subsequence is the original sequence w_{n}. Notice now that 1^{*} implies $\left\|w_{n}^{-\frac{1}{2}} f-w_{0}^{-\frac{1}{2}} f\right\|_{L^{2}\left(w_{0}, Q\right)} \rightarrow 0$ as $n \rightarrow \infty$ for all bounded f, and so for $g=f w_{0}^{-\frac{1}{2}}$, we get $\left\|T\left(w_{0}^{\frac{1}{2}} w_{n}^{-\frac{1}{2}} g\right)-T g\right\|_{L^{2}\left(w_{0}, Q\right)} \rightarrow 0$ as $n \rightarrow \infty$ and this implies that for a subsequence of w_{n} (which again we assume that is the whole sequence), $w_{0}^{-\frac{1}{2}} w_{n}^{\frac{1}{2}} T w_{0}^{\frac{1}{2}} w_{n}^{-\frac{1}{2}} g \rightarrow T g$ almost everywhere in the cube Q. Now we apply Fatou's lemma in inequality (1) and we get:

$$
\left\|\liminf _{n \rightarrow \infty} w_{0}^{-\frac{1}{2}} w_{n}^{\frac{1}{2}} T w_{0}^{\frac{1}{2}} w_{n}^{-\frac{1}{2}} g\right\|_{L^{2}\left(w_{0}, Q\right)} \leq \liminf _{n \rightarrow \infty}\left\|w_{0}^{-\frac{1}{2}} w_{n}^{\frac{1}{2}} T w_{0}^{\frac{1}{2}} w_{n}^{-\frac{1}{2}} g\right\|_{L^{2}\left(w_{0}, Q\right)} \leq(1-\tau)\|g\|_{L^{2}\left(w_{0}, Q\right)}
$$

Here $g=f w_{0}^{-\frac{1}{2}}$ with bounded f form a dense family in $L^{2}\left(w_{0}, Q\right)$. For g from this dense family it follows:

$$
\|T g\|_{L^{2}\left(w_{0}\right)} \leq(1-\tau)\|g\|_{L^{2}\left(w_{0}\right)}
$$

by letting the cube Q expand to infinity, for g in some dense subclass of $L^{2}\left(w_{0}\right)$. By assumption $\|T\|_{L^{2}\left(w_{0}\right) \rightarrow L^{2}\left(w_{0}\right)}=1$ and this is how we have our contradiction.

All that remains is the following lemma:
Lemma 8. Let $w_{0}, w \in A_{2}$ such that $d_{*}\left(w, w_{0}\right) \leq \epsilon$, where ϵ is sufficiently small. Let us have a normalization assumption $\frac{1}{|Q|} \int_{Q} \frac{w}{w_{0}} d x=1$. Then $\left\|w_{n}^{-\frac{1}{2}}-w_{0}^{-\frac{1}{2}}\right\|_{L^{2}\left(w_{0}, Q\right)} \leq|Q|^{\frac{1}{2}} c(\epsilon)^{\frac{1}{2}}$, where $c(\epsilon)$ goes to 0 as ϵ goes to 0 .

Proof. : We want to estimate the expression:

$$
\frac{1}{|Q|}\left\|w^{-\frac{1}{2}}-w_{0}^{-\frac{1}{2}}\right\|_{L^{2}\left(w_{0}, Q\right)}^{2}=\frac{1}{|Q|} \int_{Q} \frac{w_{0}}{w}+1-\frac{2}{|Q|} \int_{Q}\left(\frac{w_{0}}{w}\right)^{\frac{1}{2}}
$$

The last integral can be taken care of really easy, since by our normalization assumption and Cauchy-Schwartz we get the following:

$$
\frac{1}{|Q|} \int_{Q}\left(\frac{w_{0}}{w}\right)^{\frac{1}{2}}=\frac{1}{|Q|} \int_{Q}\left(\frac{w}{w_{0}}\right)^{-\frac{1}{2}} \geq\left(\frac{1}{|Q|} \int_{Q}\left(\frac{w}{w_{0}}\right)^{\frac{1}{2}}\right)^{-1} \geq\left(\frac{1}{|Q|} \int_{Q} \frac{w}{w_{0}}\right)^{-\frac{1}{2}}=1
$$

Therefore, the quantity that we need to estimate is bounded above by:

$$
\frac{1}{|Q|}\left\|w^{-\frac{1}{2}}-w_{0}^{-\frac{1}{2}}\right\|_{L^{2}\left(w_{0}, Q\right)}^{2} \leq \frac{1}{|Q|} \int_{Q} \frac{w_{0}}{w}-1
$$

THE MUCKENHOUPT A_{∞} CLASS AS A METRIC SPACE AND CONTINUITY OF WEIGHTED ESTIMATE\$
It is time to use the fact that $d_{*}\left(w, w_{0}\right) \leq \epsilon$. We get that the weight $\frac{w}{w_{0}}$ is in the A_{2} class and actually because the $B M O$ norm of $\log \left(\frac{w}{w_{0}}\right)$ is really small, the A_{2} characteristic is bounded by $1+c(\epsilon)$, where $c(\epsilon)$ is a constant that goes to 0 as ϵ goes to 0 . So:

$$
\frac{1}{|Q|}\left\|w^{-\frac{1}{2}}-w_{0}^{-\frac{1}{2}}\right\|_{L^{2}\left(w_{0}, Q\right)}^{2} \leq\left[\frac{w}{w_{0}}\right]_{A_{2}}-1 \leq c(\epsilon) .
$$

4. COMMENTS AND OBSERVATIONS

Let us have a closer look to what the previous theorem tells us. Consider any linear operator T that satisfies the assumptions of theorem 5. This means that for any $w \in A_{p}$ we have a number $\|T\|_{L^{p}(w) \rightarrow L^{p}(w)}$. So we have a map $F_{T}: \mathcal{A}_{p} \rightarrow \mathbf{R}$ defined by the formula:

$$
F_{T}(w)=\|T\|_{L^{p}(w) \rightarrow L^{p}(w)} .
$$

First we should observe that for $w \in \mathcal{A}_{p}$ this is well defined since $\|T\|_{L^{p}(w) \rightarrow L^{p}(w)}=$ $\|T\|_{L^{p}(c w) \rightarrow L^{p}(c w)}$ for all $w \in A_{p}$ and all positive constants $c>0$. By theorem 5 we have that this map is continuous, since:

$$
\lim _{d_{*}\left(w, w_{0}\right) \rightarrow 0}\left|F_{T}(w)-F_{T}\left(w_{0}\right)\right|=0
$$

for all weights $w, w_{0} \in \mathcal{A}_{p}$.
In [9] the authors showed that for the Hilbert transform, H, in \mathbf{S}^{1} we have that for all sufficiently small δ 's, there is a weight $w \in A_{2}$, with the properties that $[w]_{A_{2}} \leq 1+\delta<2$ and:

$$
c \sqrt{\delta} \leq\|H\|_{L^{2}(w) \rightarrow L^{2}(w)}-1 .
$$

This means that theorem 3 is sharp for $p=2$. This is true also for the Hilbert transform in the line and for the martingale transform. If we use the observation made exactly after the statement of theorem [5, we see that the rate of convergence in theorem 5 is also sharp. It is a good point to mention that there are interesting operators like the Riesz projection P_{+}in \mathbf{S}^{1}, that converge faster to their $L^{2}(d x)$ norm than the previous mentioned operators (see [9]). Namely, there is universal constant $c>0$ such that for all weights $[w]_{A_{2}} \leq 1+\delta<2$, we have:

$$
\left\|P_{+}\right\|_{L^{2}(w) \rightarrow L^{2}(w)}-1 \leq c \delta .
$$

In addition, there is a universal constant $c_{1}>0$, such that for all sufficiently small δ 's, there is weight $w \in A_{2}$ with the properties $[w]_{A_{2}} \leq 1+\delta$ and:

$$
c_{1} \delta \leq\left\|P_{+}\right\|_{L^{2}(w) \rightarrow L^{2}(w)}-1
$$

We should also mention that in the proof of theorem 5, there is only one time (namely in the second step) that we really need to use the fact that our operator is linear in order to get that:

$$
\|T\|_{L^{p}\left(w_{0}\right) \rightarrow L^{p}\left(w_{0}\right)} \leq \liminf _{d_{*}\left(w, w_{0}\right) \rightarrow 0}\|T\|_{L^{p}(w) \rightarrow L^{p}(w)}
$$

It is used when we claim that the convergence $\left\|w_{n}^{-\frac{1}{2}} f-w_{0}^{-\frac{1}{2}} f\right\|_{L^{2}\left(w_{0}, Q\right)} \rightarrow 0$ as $n \rightarrow \infty$, implies the convergence $\left\|T\left(w_{0}^{\frac{1}{2}} w_{n}^{-\frac{1}{2}} f\right)-T f\right\|_{L^{2}\left(w_{0}, Q\right)} \rightarrow 0$ as $n \rightarrow \infty$.

By [5], 6], we know that for any Calderón-Zygmund operator T, any $1<p<\infty$, and any A_{p} weight w, we have the estimate:

$$
\|T\|_{L^{p}(w) \rightarrow L^{p}(w)} \leq c[w]_{A_{p}}^{\max \left\{1, \frac{1}{p-1}\right\}}
$$

where c is a universal constant that does not depend on the weight, and so we see that theorem 5 can be applied for this class of operators, since the function F that appears in the statement of this theorem can be chosen to be equal to $F(x)=x^{\max \left\{1, \frac{1}{p-1}\right\}}$.

References

[1] Stephen M. Buckley, Estimates for operator norms on weighted spaces and reverse Jensen inequalities. Transactions of the AMS, volume 340, number 1, November 1993.
[2] J.G. Conlon and T. Spencer, A strong central limit theorem for a class of random surfaces. arXiv:1105.2814.
[3] J. Garcia-Cuerva and J. Rubio De Francia, Weighted norm inequalities and related topics. North Holland Math. Stud. 116, North Holland, Amsterdam 1985.
[4] J. Garnett and P.W. Jones, The distance in BMO to L^{∞}. Ann. of Math.108(1978), 373-393.
[5] T. Hytönen, The sharp weighted bound for general Calderón-Zygmund operators. arXiv:1007.4330.
[6] T. Hytönen, C. Pérez, S. Treil, and A. Volberg, Sharp weighted estimates of the dyadic shifts and A_{2} conjecture. arXiv:1010.0755, 2010.
[7] Michael Brian Korey, Ideal weights: Asymptotically optimal versions of doubling, absolute continuity, and bounded mean oscillation. The Journal of Fourier Analysis and Applications, Volume 4, Issues 4 and 5, 1998.
[8] Michael Brian Korey, Correction to "optimal factorization of weights". Transactions of the AMS, Volume 353, Number 2, Pages 839-851 2000.
[9] N. Pattakos and A. Volberg, Continuity of weighted estimates in A_{p} norm, Proceedings of the AMS, to appear.
[10] E. Stein and G. Weiss, Interpolation of operators with change of measures. Transactions of the AMS, Volume 87, Number 1, Pages 159-172 1958.
Alexander Volberg, volberg@math.msu.edu, Nikolaos Pattakos, pattakos@msu.edu;
Department of Mathematics, Michigan State University, East Lansing, Michigan 48824, USA;

Department of Mathematics, Michigan State University, East Lansing, MI 48824, USA

