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RESONANT UNIQUENESS OF RADIAL SEMICLASSICAL

SCHRÖDINGER OPERATORS

KIRIL DATCHEV AND HAMID HEZARI

Abstract. We prove that radial, monotonic, superexponentially decaying potentials in
C

∞(Rn), n ≥ 1 odd, are determined by the resonances of the associated semiclassical
Schrödinger operator among all superexponentially decaying potentials in C∞(Rn).

1. Introduction

Given V ∈ C∞(Rn;R), the semiclassical inverse spectral problem asks: what information
about V can be recovered from the asymptotics of the spectrum of −h2∆+ V as h → 0? In
the case when the spectrum is discrete, various positive results have been given since the pa-
per of Sjöstrand [Sjö92] (see also Iantchenko-Sjöstrand-Zworski [IaSjZw02]), including many
sufficient conditions under which the potential can be determined, beginning with the work
of Guillemin-Uribe [GuUr07] (see also [Hez09, CoGu08p, Col08p, GuWa09p, DaHeVe11]).

In this paper we consider potentials V ∈ C∞(Rn; [0,∞) satisfying

|V (x)| ≤ A exp(−B|x|1+ε), |∂αV (x)| ≤ Cα. (1.1)

For such potentials the spectrum of −h2∆ + V is continuous and equals [0,∞), and hence
contains no (further) information about V . In this setting resonances replace the discrete
data of eigenvalues. For n odd they are defined as the poles of the meromorphic continuation
of RV (λ) = (−h2∆+ V − λ2)−1 : L2

comp → L2
loc from Imλ > 0 to C.

We prove that potentials which are radial and monotonic are determined by their resonances
among all potentials satisfying (1.1).

Theorem. Let n ≥ 1 be odd, and let V0, V ∈ C∞(Rn; [0,∞)) satisfy (1.1). Suppose V0(x) =
R(|x|), and R′(r) vanishes only at r = 0 and whenever R(r) = 0. Suppose that the resonances
of −h2∆ + V0(x) agree with the resonances of −h2∆ + V (x), up to o(h2), for h ∈ {hj}∞j=1

for some sequence hj → 0. Then there exists x0 ∈ Rn such that V (x) = V0(x− x0).
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The strong symmetry assumption on V0 is crucial to our argument. To our knowledge,
such symmetry assumptions are always needed for uniqueness results for inverse resonance
problems (and also for inverse spectral problems, see the introduction of [DaHeVe11] for a
discussion). The strongest previous results are those for the nonsemiclassical Schrödinger
problem when n = 1. In [Zwo01] Zworski proves that a compactly supported even potential

V is determined from the resonances of − d2

dx2 + V , and in [Kor05] Korotyaev shows that a
potential which is not necessarily even is determined by some additional scattering data.
In the present paper we study the semiclassical problem for general odd dimensions, for
not necessarily compactly supported potentials, and assume a priori only that V0 and not
necessarily V is radial, and we use only resonances to determine V .

Analogous results hold in the case of obstacle scattering. Hassell and Zworski [HaZw99]
show that a ball is determined by its Dirichlet resonances among all compact obstacles in
R3. Christiansen [Chr08] extends this result to multiple balls, to higher odd dimensions,
and to Neumann resonances. As in the present paper, the proofs use two trace invariants
and isoperimetric-type inequalities, although the invariants and inequalities are different
here. The case of an analytic obstacle with two mutually symmetric connected compo-
nents is treated by Zelditch [Zel04] by using the singularities of the wave trace generated by
the bouncing ball between the two components. There is also a large literature of inverse
scattering results where data other than the resonances are used: see for example [Mel95].

Our proof is based on recovering and analyzing first two integral invariants of the Helffer-
Robert semiclassical trace formula ([HeRo83, Proposition 5.3], see also [GuSt11p, §10.5]):
Tr(f(−h2∆+ V ))− f(−h2∆)) = (1.2)

1

(2πh)n

(
∫

R2n

f(|ξ|2 + V )− f(|ξ|2)dxdξ + h2

12

∫

R2n

|∇V |2f (3)(|ξ|2 + V )dxdξ +O(h4)

)

.

This is analogous to the approach taken by Colin de Verdière [Col08p], by Guillemin-Wang
[GuWa09p], and by Ventura and the authors [DaHeVe11] for the problem of recovering the
potential from the discrete spectrum.

To express the left hand side of (1.2) in terms of the resonances of −h2∆ + V , we use
Melrose’s Poisson formula ([Mel82]), an extension of the formula of Bardos-Guillot-Ralston
([BaGuRa82]), adapted to V satisfying (1.1) by Sá Barreto-Zworski ([SáZw95, SáZw96]):

2 Tr
(

cos(t
√
−h2∆+ V )− cos(t

√
−h2∆)

)

=
∑

λ∈Res

e−i|t|λ, t 6= 0, (1.3)

where Res denotes the set of resonances of −h2∆ + V , included according to multiplicity,
and the equality is in the sense of distributions on R \ 0. When n = 1 a stronger trace
formula, valid for all t ∈ R, is known: see for example [Zwo96, page 3]. When n is even, the
meromorphic continuation of the resolvent is not to C but to the Riemann surface of the
logarithm, and as a result Poisson formulæ for resonances are more complicated and contain
error terms which we have not been able to treat.

We are grateful to Maciej Zworski for his interest in this project and for helpful discussions
regarding Poisson formulæ for resonances.
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2. Proof of the theorem

From (1.3), it follows that if

ĝ ∈ C∞
0 (R \ 0) is even, (2.1)

then

Tr(g(
√
−h2∆+ V )− g(

√
−h2∆)) =

1

4π

∑

λ∈Res

∫

R

e−i|t|λĝ(t)dt. (2.2)

Now setting the right hand sides of (2.2) and (1.2) equal and taking h → 0, we find that
∫

R2n

f(|ξ|2 + V )− f(|ξ|2)dxdξ,
∫

R2n

|∇V |2f (3)(|ξ|2 + V )dxdξ (2.3)

are resonant invariants (i.e. are determined by knowledge of the resonances up to o(h2))
provided that f(τ 2) = g(τ) for all τ and for some g as in (2.1). Taylor expanding, we write
the first invariant as

m
∑

k=1

1

k!

∫

Rn

f (k)(|ξ|2)dξ
∫

Rn

V (x)kdx+

∫

R2n

V (x)m+1

m!

∫ 1

0

(1− t)mf (m+1)(|ξ|2 + tV (x))dtdxdξ.

Replacing f by fλ, where fλ(τ) = f(τ/λ) (note that gλ(τ) = fλ(τ
2) satisfies (2.1)) gives

m
∑

k=1

λn/2−k 1

k!

∫

Rn

f (k)(|ξ|2)dξ
∫

Rn

V (x)kdx+O(λn/2−m−1)

Taking λ → ∞ and m → ∞ we obtain the invariants
∫

Rn

f (k)(|ξ|2)dξ
∫

Rn

V (x)kdx,

for every k ≥ 1.

Lemma 2.1. There exists g satisfying (2.1) such that if f(τ 2) = g(τ), then
∫

Rn

f (k)(|ξ|2)dξ 6= 0,

provided k ≥ n.

Proof. Passing to polar coordinates, and writing f (k)(τ 2) =
∑k

j=1 cjg
(j)(τ)τ j−2k, we obtain

∫

Rn

f (k)(|ξ|2)dξ = lim
ε→0+

k
∑

j=1

cj

∫ ∞

ε

g(j)(τ)τ j−2k+n−1dτ.

We next integrate each integral by parts 2k − j − n times to obtain
∫

Rn

f (k)(|ξ|2)dξ = A

∫ ∞

0

g(2k−n)(τ)τ−1dτ +Bg(2k−n)(0) = A

∫ ∞

0

g(2k−n)(τ)τ−1dτ (2.4)

for some constants A,B. Note that all negative powers of ε in the boundary terms must
cancel when summed in j, since the left hand side is a finite integral, and that g(2k−n)(0) = 0
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since 2k − n is odd. To prove that A 6= 0, we observe that the identity (2.4) holds for

f(τ) = e−τ , g(τ) = e−τ2 , and that in that case
∫

f (k)(|ξ|2)dξ = (−1)kπn/2. Now,

2

∫ ∞

0

g(2k−n)(τ)τ−1dτ =

∫ ∞

−∞

g(2k−n)(τ)τ−1dτ =
i2k−n+1

2

∫ ∞

−∞

t2k−nĝ(t) sgn tdt,

where we used the oddness of g(2k−n) followed by Plancherel’s theorem. To make the final
expression nonzero it suffices to take g such that ĝ is nonnegative and not identically 0. �

This shows that
∫

Rn

V (x)kdx =

∫

Rn

V0(x)
kdx (2.5)

for every k ≥ n, and a similar analysis of the second invariant of (2.3) proves that
∫

Rn

V (x)k|∇V (x)|2dx =

∫

Rn

V0(x)
k|∇V0(x)|2dx (2.6)

for every k ≥ n.

We rewrite the invariant (2.5) using V∗dx, the pushforward of Lebesgue measure by V , as
∫

Rn

V (x)kdx =

∫

R

sk(V∗dx)s = ikV̂∗dx
(k)
(0). (2.7)

Since V and V0 are both bounded functions, the pushforward measures are compactly sup-
ported and hence have entire Fourier transforms, and we conclude that

V∗dx = V0∗dx+

n−1
∑

k=0

ckδ
(k)
0 = V0∗dx+ c0δ0.

For the first equality we used the invariants (2.7), and for the second the fact that V∗dx is a
measure. In other words

vol({V > λ}) = vol({V0 > λ}) (2.8)

whenever λ > 0. Moreover, this shows that V∗dx is absolutely continuous on (0,∞), and so
by Sard’s lemma the critical set of V is Lebesgue-null on V −1((0,∞)). As a result we may
use the coarea formula1 to write

V∗dx =

∫

{V=s}

|∇V |−1dSds, on (0,∞)

and to conclude that
∫

{V=s}

|∇V |−1dS =

∫

{V0=s}

|∇V0|−1dS (2.9)

for almost every s > 0. Similarly, rewriting the invariants (2.6) as
∫

Rn

V (x)k|∇V (x)|2dx =

∫

R

sk
∫

{V=s}

|∇V |dSds,

we find that
∫

{V=s}

|∇V |dS =

∫

{V0=s}

|∇V0|dS, s > 0. (2.10)

1If n = 1 we put
∫

{V =s}
|∇V |−1dS =

∑

x∈V −1(s) |V ′(x)|−1.
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From the Cauchy-Schwarz inequality, (2.9) and (2.10) we find that
(
∫

{V=s}

1dS

)2

≤
∫

{V=s}

|∇V |−1dS

∫

{V=s}

|∇V |dS =

(
∫

{V0=s}

1dS

)2

, (2.11)

for almost every s > 0, where for the last equality we used the fact that ∇V0 = R′ is constant
on level sets of V0. By assumption these level sets {V0 = s} are spheres, and by (2.8) the
volumes of their interiors equal those of {V = s}. Hence by the isoperimetric inequality2 the
level sets {V = s} for almost every s are spheres also, and furthermore equality is attained in
(2.11). Consequently, from the Cauchy-Schwarz equality we conclude that |∇V | and |∇V |−1

are proportional on these level sets {V = s}, with
|∇V (x)|2 = R′(R−1(V (x))). (2.12)

Because by assumption the right hand side does not vanish for x such that V (x) ∈ (0,maxV0),
we may conclude that the same is true of the left hand side and that (2.12) holds for all
x ∈ V −1((0,maxV0)). Solving (2.12) along gradient flowlines as in [DaHeVe11, §3] gives the
conclusion.
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