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INDUCED METRIC AND MATRIX INEQUALITIES ON

UNITARY MATRICES

H. F. CHAU1∗, CHI-KWONG LI2, YIU-TUNG POON3, AND NUNG-SING SZE4

Abstract. We show that any symmetric norm on R
n induces a

metric on U(n), the group of all n×n unitary matrices. Using the
same technique, we prove an inequality concerning the eigenval-
ues of a product of two unitary matrices which generalizes a few
inequalities obtained earlier by Chau [arXiv:1006.3614v1].

1. Introduction

Evolution of quantum states are described by unitary operators act-
ing on Hilbert spaces. And in quantum information science, it is in-
structive to measure the cost needed to evolve a quantum system [9]
as well as to quantify the difference between two quantum evolutions
on a system [4]. Recently, Chau [2, 3] gave partial answers to these
questions by introducing two families of real-valued functions in the
domain U(n)×U(n), where U(n) is the group of all n×n unitary ma-
trices. Actually, for any given U, V ∈ U(n), the families of functions
he considered are certain weighted sums of the absolute value of the
argument of the eigenvalues of the matrix UV −1. Using eigenvalue per-
turbation method, he showed that the two families of functions are in
fact families of metric and pseudo-metric on U(n), respectively [2, 3].
From quantum information science point of view, the significance of

studying metrics of U(n) that are functions of the eigenvalues of UV −1

is that they are indicators of the resources in terms of the product
of time and energy needed to convert unitary operator V to U [2, 3].
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Hence, it is instructive to find this type of metrics of U(n). Here
we prove that a symmetric norm of Rn induces a metric on U(n) of
the required type. Moreover, the proof can be adapted to prove an
inequality concerning the eigenvalues of a product of two unitary ma-
trices. This inequality is a generalization of several inequalities first
proven in Ref. [2] using eigenvalue perturbation technique.

2. Metric Induced By A Symmetric Norm

To show that a symmetry norm on R
n induces a metric on U(n), we

make use of the following result by Thompson [11] as well as Agnihotri
and Woodward [1]:

Theorem 1 (Thompson). If A and B are Hermitian matrices, there
exist unitary matrices U and V (depending on A and B) such that

exp (iA) exp (iB) = exp
(

iUAU−1 + iV BV −1
)

. (1)

Proposition 2. For any given symmetric norm g : Rn → [0,∞), that
is, g(v) = g(vP ) for any v ∈ R

1×n, and any permutation matrix
or diagonal orthogonal matrix P , we can define a metric on U(n) as
follows:

dg(U, V ) = inf
x∈R

g(|a1(x)|, . . . , |an(x)|), (2)

where eixUV −1 has eigenvalues eia1(x), . . . , eian(x) with π ≥ a1(x) ≥
· · · ≥ an(x) > −π.
Note that the infimum above is actually a minimum as we can search

the infimum in any compact interval of the form [x0, x0 + 2π].

Proof. If U 6= V , then UV −1 6= I so that eixUV −1 has eigenvalues
eia1(x), . . . , eian(x) with π ≥ a1(x) ≥ · · · ≥ an(x) > −π such that
(a1(x), . . . , an(x)) 6= 0. Hence, dg(U, V ) > 0.
Clearly, eixUV −1 has eigenvalues π ≥ a1(x) ≥ · · · ≥ an(x) > −π if

and only if e−ixV U−1 has eigenvalues π > −an(x) ≥ · · · ≥ −a1(x) ≥
−π. Thus, g(|a1(x)|, . . . , |an(x)|) = g(| − an(x)|, . . . , | − a1(x)|); and
hence dg(U, V ) = dg(V, U).
Finally, we verify the triangle inequality. Let X, Y, Z ∈ U(n). Sup-

pose dg(X, Y ) = g(|a1|, . . . , |an|) and dg(Y, Z) = g(|b1|, . . . , |bn|) where
eia1 , . . . , eian are the eigenvalues of eirXY −1, and eib1 , . . . , eibn are the
eigenvalues of eisY Z−1. Suppose ei(r+s)XZ−1 has eigenvalues eic1, . . . , eicn

with π ≥ c1 ≥ · · · ≥ cn > −π. Then by Theorem 1, we know that there
are Hermitian matrices A,B,C = A+B with eigenvalues a1 ≥ · · · ≥ an,
b1 ≥ · · · ≥ bn and c̃1 ≥ · · · ≥ c̃n such that if we replace c̃j by c̃j − 2π if
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c̃j > π and replace c̃j by c̃j+2π if c̃j ≤ −π, then the resulting n entries
will be the same as c1, . . . , cn if they are arranged in descending order.
Consequently, if ‖v‖k is the sum of the k largest entries of v ∈ R

1×n

for k = 1, . . . , n, then

‖(|c1|, . . . , |cn|)‖k ≤ ‖(|c̃1|, . . . , |c̃n|)‖k

≤ ‖(|a1|, . . . , |an|)‖k + ‖(|b1|, . . . , |bn|)‖k

= ‖(|a1|+ |b1|, . . . , |an|+ |bn|)‖k. (3)

Note that to arrive at the second inequality above, we have used the
fact that for any n× n complex-valued matrices A,B, we have

‖A+B‖k ≤ ‖A‖k + ‖B‖k, k = 1, . . . , n. (4)

Here ‖X‖k is the Ky Fan k-norm, which is defined as the sum of the k
largest singular values of X [5].
Since g(u) ≤ g(v) for any u,v ∈ R

1×n if and only if ‖u‖k ≤ ‖v‖k
for k = 1, . . . , n [6, 8], it follows that

dg(X,Z) ≤ g(|c1|, . . . , |cn|)

≤ g(|a1|+ |b1|, . . . , |an|+ |bn|)

≤ g(|a1|, . . . , |an|) + g(|b1|, . . . , |bn|)

= dg(X, Y ) + dg(Y, Z). (5)

The proof is complete. �

Example 3. For any µ = (µ1, . . . , µn) ∈ R
n, define the µ-norm by

‖v‖µ = max

{

n
∑

j=1

|µjvij | : {i1, . . . , in} = {1, . . . , n}

}

. (6)

Clearly this is a family of symmetric norms; and the induced metrics
on U(n) is the family of metrics introduced by Chau in Refs. [2, 3].

Example 4. One may pick g to be the ℓp norm defined by ℓp(v) =
(

∑n
j=1 |vj|

p
)1/p

for any p ∈ [1,∞]. The induced metric on U(n) has

some interesting quantum information theoretical interpretations [7].

Remark 5. In the perturbation theory context, we consider Ũ = UE,
where E is very close to the identity. Suppose U = eiA, where A has
eigenvalues π − ε > a1 ≥ · · · ≥ an > −π + ε, and E = eiB such that
the eigenvalues of B lie in [−ε, ε] for an ε > 0. Then we may conclude
that Ũ has eigenvalues π > c1 ≥ · · · ≥ cn > −π such that |cj − aj | ≤ ε.
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3. Several Inequalities On Products Of Two Unitary

Matrices

The proof technique used in Proposition 2 can be used to show an
inequality generalizing a few similar ones originally reported by Chau
in Ref. [2].

Proposition 6. Let

h(s↓(A +B), s↓(A), s↓(B)) ≤ 0 (7)

be an inequality valid for all n-dimensional Hermitian matrices A and
B, where s↓(A) denotes the sequence of singular values of A arranged
in descending order. Suppose further that h is a Schur-convex function
of its first argument whenever the second and third arguments are kept
fixed. (That is to say, h(u,v,w) ≤ h(u′,v,w) whenever u is weakly
sub-majorized by u′.) Then,

h(AAE↓(UV ),AAE↓(U),AAE↓(V )) ≤ 0 (8)

where AAE↓(U) denotes the sequence of absolute value of the principle
value of argument of the eigenvalues of an n × n unitary matrix U

arranged in descending order.

Proof. Let U, V be two n×n unitary matrices. And write U = exp(iA),
V = exp(iB) and UV = exp(iC) where the eigenvalues of the Her-
mitian matrices A,B,C are all in the range (−π, π]. By Theorem 1,

we can find a Hermitian matrix C̃ and UV = exp(iC̃), where C̃ =
W1AW

−1
1 + W2BW−1

2 for some unitary matrices W1 and W2. Hence,
h(s↓(C̃), s↓(A), s↓(B)) ≤ 0.

Note that the eigenvalues of C̃ need not lie on the interval (−π, π].
Yet, we can transform C̃ to C by replacing those eigenvalues aj ’s of

C̃ by aj + 2π if aj ≤ −π and replacing them by aj − 2π if aj > π.

Obviously, s↓(C) is weakly sub-majorized by s↓(C̃). Therefore,

h(AAE↓(UV ),AAE↓(U),AAE↓(V ))

=h(s↓(C), s↓(A), s↓(B)) ≤ h(s↓(C̃), s↓(A), s↓(B)) ≤ 0. (9)

So, we are done. �

Corollary 7. Let U, V ∈ U(n) and that U , V and UV have eigenvalues
eiaj ’s, eibj ’s and eicj ’s, respectively with π ≥ |a1| ≥ · · · ≥ |an| ≥ 0,
π ≥ |b1| ≥ · · · ≥ |bn| ≥ 0 and π ≥ |c1| ≥ · · · ≥ |cn| ≥ 0. Then

p
∑

ℓ=1

|cjℓ+kℓ−ℓ| ≤

p
∑

ℓ=1

(|ajℓ|+ |bkℓ|) , (10)
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for any 1 ≤ j1 < · · · < jp ≤ n and 1 ≤ k1 < · · · < kp ≤ n with
jp + kp − p ≤ n.

Proof. Eq. (10) is the direct consequences of Proposition 6 and the
inequality

p
∑

ℓ=1

λ
↓

jℓ+kℓ−ℓ(A +B) ≤

p
∑

ℓ=1

[

λ
↓
jℓ
(A) + λ

↓

kℓ
(B)

]

(11)

reported in Ref. [10]. Here λ
↓
j (A) denotes the jth eigenvalue of the

Hermitian matrix A arranged in descending order. �
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