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Abstract

In this paper we introduce a common framework for describing the
topological part of the Baum-Connes conjecture for a wide class of groups.
We compute the Bredon homology for groups with aspherical presentation,
one-relator quotients of products of locally indicable groups, extensions of
Zn by cyclic groups, and fuchsian groups. We take advantage of the torsion
structure of these groups to use appropriate models of the universal space
for proper actions which allow us, in turn, to extend some technology
defined by Mislin in the case of one-relator groups.
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1 Introduction

In [26], Mislin computed the Bredon homology of one-relator groups with coeffi-
cients in the complex representation ring. These homology groups were defined
in the sixties by Bredon in the context of equivariant Homotopy Theory. Since
the statement by Baum-Connes of their famous conjecture (see [4] for a thor-
ough account and section 5 here for a quick review), there has been a growing
interest in the computation of the Bredon homology groups, as they give, via
a spectral sequence, a very close approximation to the topological part of the
conjecture. Moreover, they are reasonably accessible from the point of view of
the computations.

Let G be a discrete group. To deal with the topological part of Baum-Connes
conjecture, it is necessary to recall some basics of the theory of proper G-actions.
A model for the classifying space for proper G-actions EG is a G-CW-complex
X with the property that, for each subgroup H of G, the subcomplex of fixed
points is contractible if H is finite, and empty if H is infinite. The latter
condition means precisely that all cell stabilizers are finite, and, in this case,
we say that the G-action is proper. The model X for EG is important in
our context because it is the target of the topological side of Baum-Connes
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conjecture. We also denote by (X)sing the singular part of X, that is, the
subcomplex consisting of all points in X fixed by some non-trivial element of G,
and we say that (X)sing is a model for (EG)sing. It is worth to note that both
models for EG and (EG)sing are well-defined up to G-homotopy equivalence.

In this paper we extend Mislin’ result [26, Corollary 3.23] to a wider class of
groups. The key observation here is that the computation of the Bredon homol-
ogy of one-relator groups does not use in full potential the shape of the concrete
relation, but it relies only in two facts: the existence (up to conjugation) of a
unique maximal finite subgroup, and the construction of a model for EG whose
singular part is zero-dimensional.

We consider here the class Gcct of groups for which there is a finite family of
cyclic subgroups such that every torsion element of the group belongs to exactly
one member of the family up to unique conjugation. If we consider the classical
model X for EG as a bar construction for a certain G ∈ Gcct, it is easy to
see (see Proposition 2.1) that for every non-trivial finite subgroup H < G the
fixed-point set (X)H is just a vertex of the model. Hence the singular part of
X is zero-dimensional, and we have all the needed assumptions to compute the
Bredon homology groups (Proposition 4.2) and hence the Kasparov KK-groups
(Proposition 5.2).

Aside from the computations, the other main achievement of our article is
the identification of well-known families of groups which belong to the class Gcct:
groups with an aspherical presentation, one-relator products of locally indicable
groups, some extensions of Zn for cyclic groups, and some fuchsian groups. For
the first two families, moreover, we describe some particular models of EG which
turn sharper our homology computations. For the particular class of Hempel
groups (see Definition 3.1), we show that they have Cohen-Lyndon aspherical
presentations, so we use Magnus induction and hierarchical decompositions to
prove that Baum-Connes hold; then, our methods are also valid to compute
analytical K-groups Ktop

i (C∗
r (G)) in this case. Note that the validity of the

conjecture is not known for more general classes of groups of cohomological
dimension two.

The paper is structured as follows: in section 2 we formally introduce the
class Gcct, as well as some background that will be needed in the rest of the
paper; in section 3 we present some families of groups in the class, including
some particular models of the classifying space for proper actions and inter-
esting relationships with surface groups and other one-relator groups; section
4 is devoted to Bredon homology, which we describe in a little survey before
undertaking our computations, and we finish in section 5 with the computation
of the topological part of the Baum-Connes conjecture for these groups.

Ackowledgments. We are grateful to Ruben Sanchez-Garćıa for many
useful comments and observations. We are also grateful to Warren Dicks, Brita
E. A. Nucinkis and David Singerman for helpful conversations.
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2 The class of groups Gcct

In this article we will deal with groups that have, up to conjugation, a finite
family of maximal malnormal cyclic subgroups. Precisely we deal with groups
satisfying the following condition:

(C) There is a finite family of non-trivial finite cyclic subgroups {Gλ}λ∈Λ such
that for each non-trivial torsion subgroup H of G, there exists a unique
λ ∈ Λ and a unique coset gGλ ∈ G/Gλ such that H 6 gGλg

−1.

In particular, the groups Gλ are maximal malnormal in G. Recall that a
subgroup H of a group G is malnormal if H ∩ gHg−1 = {1} for all g ∈ G−H.
The class of groups G satisfying the condition (C) will be denoted by Gcct.

Observe that any finite cyclic group and any torsion-free group is in Gcct.
Moreover, this his class is also closed by free products, so for example, the
infinite dihedral group is in Gcct. Also if G is in Gcct and H is a torsion-free
group, then G × H is in Gcct. In the following section we will describe much
interesting examples.

Our main objective is to describe the Bredon homology for a group G in
Gcct. Our approach to this computation will be through the classifying space
for proper G-actions, so we recall here a classical model which turns out to be
very useful for our purposes. More sophisticated and particular models for EG
will appear later in the article.

2.1 Proposition. Let G and {Gλ}λ∈Λ satisfying (C), then there exists a model
C for EG with dim(Csing) = 0.

Proof. Let X be a set. The usual bar construction can be used to construct a
simplicial complex C(X) associated to X, so let us recall how it is defined. The
n-simplices of C(X) are the (n + 1)-tuples (x0, . . . , xn) of elements of X with
xi 6= xj if i 6= j. An n-simplex (x0, . . . , xn) is attached to the (n − 1)-simplices
(x0, . . . , x̂i, . . . , xn), just as the standard simplex is attached to its faces. The
notation x̂i indicates that the i-th component has been suppressed.

The space C(X) is contractible, see for example [13, Example 1B.7]. More-
over, if X is a G-set then C(X) is a G-CW-Complex.

Assume now that X = G ⊔ {gGλ : λ ∈ Λ, g ∈ G}, with the usual left G-
action. Then G acts freely on G ⊆ X, and, a subgroup H of G fixes gGλ if and
only g−1Hg ⊆ Gλ and hence H is finite. By condition (C), H fixes exactly one
element of X, and therefore, H fixes only one vertex of C(X). Then C(X) is an
EG, and dim(C(X)sing) = 0.

3



2.2 Remark. Our class of groups Gcct is a subclass of the groups with appro-
priate maximal finite subgroups considered in [23, 4.11]. A particular model for
EG is also provided there.

A useful tool to show that a group G and a family of subgroups {Gλ}λ∈Λ of
G satisfy the condition (C) is the following theorem:

2.3 Theorem ([17, Theorem 6]). Let G be a group and {Gλ}λ∈Λ a finite family
of finite subgroups. If there exists an exact sequence of ZG-modules

0 →
⊕

λ∈Λ

Z[G/Gλ]⊕ P → Pn−1 → · · · → P0 → Z

where P,Pn−1, . . . , P0 are ZG-projective, then for every finite subgroup H of G,
there exists a unique λ ∈ Λ and a unique gGλ ∈ G/Gλ such that H is contained
in gGλg

−1.

3 Examples of groups in the class Gcct

In this section we introduce some families of groups which will be proved to be
in the class Gcct. Let us fix some notation first.

Notation. We find useful to have different notations for a group given by
a presentation and the presentation itself. We use a double bar 〈X ‖ R〉 to
distinguish a presentation from the group being presented 〈X | R〉 .

Let G be a group and r ∈ G. If g lies in a unique maximal infinite cyclic
subgroup C of G, we will denote by G

√
g the unique generator of C for which g

is a positive power. In this event, if g is the n-th power of G
√
g, we denote n by

logG(g).

IfX is a subset of G, we denote by GX the image of X under left-conjugation
by G, that is, GX = {gxg−1 : x ∈ X, g ∈ G}. When X = {x} we usually write
Gx instead of G{x}.

3.1 Groups with aspherical presentation

Let F be a free group freely generated by a finite set X = {x1, . . . , xn}, let R be
a subset of F and G := 〈X | R〉 . In a free group, each element lies in a unique
maximal infinite cyclic subgroup of F . Let Gr := 〈 F

√
r〉 /〈r〉 ≤ G, a finite cyclic

subgroup of G of order logF (r).

Recall that a CW-complex is aspherical if its universal covering is con-
tractible. By the Hurewicz-Whitehead theorem a CW-complex is contractible
if and only if it is acyclic and simply connected.

4



There exist several concepts of aspherical presentations, see [9]. We will say
that a presentation 〈X ‖ R〉 is aspherical if the abelianized of

〈
FR

〉
is isomor-

phic to ⊕r∈RZ[G/Gr], and then a group is aspherical if it admits an aspherical
presentation. It is a famous conjecture of Eilenberg-Ganea that the torsion-free
aspherical groups are precisely the groups of cohomological dimension two. We
now review the topological significance of asphericity.

Recall that the Cayley graph of G with respect to X is a G-graph Γ with
vertex set G and edge set G ×X; for an edge e = (g, x) the initial vertex ιe is
g and the terminal vertex τe is g · x. The augmented cellular chain complex of
Γ is

Z[G×X]
∂→ ZG → Z → 0

where ∂(g, x) = gx− g.

It is well-known that the kernel of ∂ is isomorphic to
〈
FR

〉
ab

and the kernel

map θ :
〈
FR

〉
ab

→ Z[G × X] is induced by the total free derivative ∂
∂X : F →

Z[F × X], which is defined by f 7→ ( ∂f
∂x1

, . . . , ∂f
∂xn

). The map f 7→ ∂f
∂xi

is a

derivation from F → ZF, i.e. it satisfies the identity ∂f1f2
∂xi

= ∂f1
∂xi

+ f1
∂f2
∂xi

. Hence
∂
∂xi

is uniquely determined by its values on X, and
∂xj

∂xi
is equal to 0 if i 6= j and

1 if i = j. See [8, Proposition 5.4] or [12, Corollary 9.4] for a proof.

Hence, there is the following exact sequence of ZG-modules

(1) 0 →
〈
FR

〉
ab

→ Z[G×X] → ZG → Z → 0.

From now on we assume that 〈X ‖ R〉 is aspherical, that is
〈
FR

〉
ab

∼=
⊕r∈RZ[G/Gr]. This is the case, for example, when R consists of a single el-
ement by Lyndon’s identity theorem (see, [24]). Let R0 ⊂ R be the set of r ∈ R
for which Gr 6= 1. Then, by Theorem 2.3, G and {Gr}r∈R0 satisfy the condition
(C).

With our assumption the sequence (1) becomes

(2) 0 → ⊕r∈RZ[G/Gr ]
θ→ ⊕x∈XZG

∂→ ZG → Z → 1.

We describe now a model for EG, which is built exactly the same way as
the usual for one-relator groups. The construction is basically the same as in
[1, Review 7.4] which deal with a special case when |R| = 2, so we omit the
details.

Recall that the Cayley complex of 〈X ‖ R〉 , denoted C = C 〈X ‖ R〉 , is a two-
dimensional CW-complex with exactly one 0-cell denoted [1], with set of 1-cells,
denoted [X], in bijective correspondence with X by a map denoted X → [X],
x 7→ [x], and with set of 2-cells, denoted [R], in bijective correspondence with
R by a map denoted R → [R], r 7→ [r]. The attaching maps are determined
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by the 1-cells. Each r is a word in X±1, and we take the closure of the 2-
cell [r] to be a polygon whose (counter-wise) boundary has the corresponding
labeling in the 1-cells and their inverses, and this labeling gives the attaching
map for [r]; the inverse of a 1-cell is the same 1-cell with the opposite orientation.
The fundamental group of C, with base-point the unique 0-cell, has a natural
identification with G = 〈X | R〉 .

Let C be the universal cover of C. The 1-skeleton of C is the Cayley graph
of G with respect to X. It can be checked that C is simply connected and the
augmented cellular complex of C is the ZG-complex

0 → Z[G× [R]]→Z[G× [X]] → Z[G× {[1]}] → Z → 0.

For [r] ∈ [R], let (g, [r]) be the lift of the 2-cell of [r] in C corresponding
to the vertex g ∈ G. Let C′ denote the CW-complex that is obtained from C
by identifying the 2-cells (g, [r]) and (g F

√
r, [r]), for each g ∈ G and r ∈ R. We

denote this identified cell by (gGr , [r]). It can be checked that C′ is again simply
connected, and the augmented chain complex of C′ is the exact sequence (2).
Hence C′ is contractible.

If Gr = {1} for each r ∈ R, that is R = F
√
R, then C = C′ is acyclic and

hence contractible; in particular C is aspherical and C is an EG.
If F

√
R 6= R, G does permute the open cells of C′, but C′ is not a G-CW-

complex since, for some r ∈ R, F
√
r fixes the 2-cell that is in the equivalence

class of (1, [r]) but does not fix it pointwise since it does not fix the 1-cells where
this cell is attached.

Let C′′ denote the CW-complex obtained from C′ by subdividing each 2-cell
(gGr, [r]) into logF r 2-cells. If we think (gGr, [r]) as a polygon with |r|-sides,
the subdivision corresponds to adding a new vertex in the center, dividing from
this vertex into logF r subpolygons, such that F

√
r permutes them.

Notice that C′′ has one free G-orbit of 2-cells for each r ∈ R. Also, for each
r ∈ R, we have also added a free G-orbit of 1-cells to C′. Finally for each r ∈ R
we have added a G/Gr-orbit of 0-cells to C′. The CW-complex C′′ is then a
contractible G-CW-complex whose augmented cellular chain complex is exact
and has the form

(3) 0 → ZG|R| → ZG|R|+|X| → ZG⊕ (⊕r∈RZ[G/Gr]) → Z → 0.

Now by (C) for each non-trivial torsion subgroup H of G there exists a
unique r ∈ R and gGr ∈ G/Gr such that H ≤ gGr, and therefore H fixes only
the 0-cell obtained on the subdivision of the 2-cell (gGr, [r]) of C′. Then C′′ is
an EG.

3.2 One-relator products of locally indicable groups

Recall that a group is indicable if either is trivial or it has an infinite cyclic
quotient. A group is locally indicable if every finitely generated subgroup is

6



indicable. Notice that a locally indicable group is torsion-free.

Let A,B be locally indicable groups having finite dimensional Eilenberg-
MacLane spaces CA and CB respectively. Let r ∈ A ∗ B, such that r is not
conjugate to an element of A nor of B. It can be deduced, from Bass-Serre
theory, that the centralizer CA∗B(r) is infinite cyclic, and hence we can define
A∗B
√
r. Denote G = (A ∗B)/

〈
A∗Br

〉
and Gr = 〈 A∗B

√
r〉 / 〈r〉 ≤ G.

Let now CA∗B be the CW -complex obtained by attaching a 1-cell e to the
disjoint union of CA and CB , where the endpoints are 0-cells in CA and CB ; then
CA∗B is connected and has the homotopy type of an Eilenberg-MacLane space

K(A ∗ B, 1). Choose a map φ : S1 → C(1)
A∗B that represents A∗B

√
r, where C(1)

A∗B

denotes the 1-skeleton of CA∗B . We will assume that the basepoint for S1, goes
under φ to a vertex v of CA∗B .

Let CGr be a model for K(Gr, 1). If Gr = 1 we may think of CGr as a disk
and p : S1 → CGr as the natural inclusion to the boundary. If Gr is a non-trivial
cyclic group of order logA∗B(r), CGr is a CW-complex with one cell in each
dimension and p : S1 → CGr is the natural projection.

In [18, Theorem 1], it is showed that the following push-out (Figure 3.0.1)
has the homotopy type of K(G, 1). In the sequel, the push-out of this diagram

S1
φ

//

p

��

CA∗B

CGr

Figure 3.0.1: The push-out that gives a K(G, 1).

will be denoted CG.

Using this construction, in [18, Proposition 7] Howie shows that there is a
sequence of ZG-modules

0 → Z[G/Gr]⊕ P → Pn−1 → · · · → P0 → Z

where P,Pn−1, . . . , P0 are ZG-projective, and thus the subgroup Gr and G sat-
isfy the condition (C) by Theorem 2.3.

We now describe how to obtain an EG from CG with dimEGsing ≤ 0. Let
CG denote the universal cover of CG. Observe that if A∗B

√
r = r, then G is

torsion-free, and we take CG as our model for EG.

Assume then A∗B
√
r 6= r, so we will modify CG to have all the singular action

in dimension 0. Let α be the 2-cell of CGr and let α denote a lift of α in CG.
For n > 2 we remove G-equivariantly the orbit of the n-dimensional cells of
CG corresponding to the n-dimensional cell of CGr , and we identify two 2-cells
gα and g′α if g′ ∈ gGr. Notice that this two cells have the same boundary.

7



We denote the 2-cell identified with α by Grα, and we claim that the obtained
space, denoted by C′

G, is still contractible.
The latter construction is not a G-CW -complex, because A∗B

√
r fixes the

2-cell Grα but does not fix it pointwise since it does not fix the 1-cells where
it is attached. So, to obtain a G-CW -complex, we subdivide each 2-cell gGrα
like in the case of aspherical presentations. Formally, we remove the G-orbit
of Grα and we add a G/Gr-orbit of 0-cells {gGru : g ∈ G}, and a G-orbit of
1-cells from {gf : g ∈ G} with f attached to gv to gGru and finally a G orbit of
2-cells {gβ : g ∈ G} with gβ attached to the path that starts at g A∗B

√
rv, then

goes through the edge g A∗B
√
rf , then goes through gf−1 and finally through the

subpath of the lift of φ that goes from gv to g A∗B
√
rv.

We denote this new complex by C′′
G. Clearly it is a G-CW -complex. Let H

be a finite subgroup of G, by (C) there exists a unique gGr ∈ G/Gr such that
H ≤ gGrg

−1, and therefore H fixes only the 0-cell gu. Then C′′
G is an EG and

dim(C′′
G)

sing = 0.
Let us now prove the previous claim. We have to show that the space C′

G is
simply connected and acyclic. Since the removed cells where attached to each
other, the space remains simply connected. By construction of the push-out,
we have a Mayer-Vietoris exact sequence which locally looks like

· · · → H2(CA∗B)⊕H2(CGr) → H2(CG) → H1 S
1 → H1(CA∗B)⊕H1(CGr) → . . .

Since φ is injective at the π1 level, the map H1 S
1 → H1(CA∗B) ⊕ H1(CGr) is

inyective. Moreover, by construction of C′
G, for i ≥ 2, Hi(C′

G) = Hi(CA∗B).
Hence for i ≥ 2, Hi(C′

G) = Hi(CA∗B) = Hi(CG) = 0. Since the boundary of α
and A∗B

√
rα in the 1-skeleton is the same, the identification do not change the

H1(CG). Then the space C′
G is acyclic.

Let (CA, dA) and (CB, dB) denote the integral cellular chain complexes of
CA and CB, the universal covers of CA and CB , Then the integral cellular chain
complex (C, d) of C′′

G has the form at the module level

• Ci
∼= (ZG⊗ZA CA

i )⊕ (ZG⊗ZB CB
i ) for i ≥ 2,

• C1
∼= (ZG⊗ZA CA

1 )⊕ (ZG⊗ZB CB
1 )⊕ Z[G× {e, f}],

• C0
∼= (ZG⊗ZA CA

0 )⊕ (ZG⊗ZB CB
0 )⊕ ZG/Gr.

and dk : Ck → Ck−1 are induced by (1⊗ dAk )⊕ (1⊗ dBk ) for k ≥ 2.

3.3 Hempel Groups and Cohen-Lyndon asphericity

In this subsection we discuss a family of two-relator groups wich include one-
relator quotients of fundamental groups of surfaces. Originally, Hempel [14] and
Howie [15] studied one-relator quotients of the fundamental groups of orientable
surfaces from a topological point of view. Hempel showed that such a group is
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an HNN -extension of a one relator group. These groups have recently attracted
the attention of various authors, see [1], [6] or [16].

In [1] a family of two-relator groups with a presentation of the form

(4) 〈x, y, z1, . . . , zd ‖ [x, y] · u, r〉 ,

where d ≥ 1, u ∈ 〈z1, . . . , zd | 〉 and r ∈ 〈x, y, z1, . . . , zd | 〉 , was studied.
By the classification of closed surfaces, any closed surface S with Euler

characteristic ≤ −2 can be decomposed as a connected sum of a torus and
projective planes or a torus and more tori. In any case, the fundamental group
of S admits a presentation of the form 〈x, y, z1, . . . , zd ‖ [x, y] · u〉 with u ∈
〈z1, . . . , zd | 〉 .

We will restrict to a subfamily of these two-relator groups, which we called
Hempel groups. The definition involves some technicality, but one may think
a Hempel group as a group admitting a presentation as (4) where r cannot be
replaced by a positive power x. If Y is a subset of a set X, we say that g ∈ 〈X | 〉
involves some element of Y if there is some element of Y in the freely reduced
word in X representing g.

3.1 Definition. Let d ≥ 1, F = 〈x, y, z1, . . . , zd | 〉 , and for f ∈ F, i ∈ Z

we denote yif by if. Let also X1 := {1x} ∪ {izj : j = 1, . . . , d; i = 0, 1, . . . },
u ∈ 〈z1, . . . , zd | 〉 and r ∈ F. We say that r is a Hempel relator for the
presentation 〈x, y, z1, . . . , zd ‖ [x, y] · u〉 , and that 〈x, y, z1, . . . , zd ‖ [x, y]u, r〉 is
a Hempel presentation, if the following conditions hold:

(H1). The element r belongs to 〈X1 | 〉 6 F.

(H2). In 〈X1 | 〉 , r is not conjugate to any element of
〈
(0u)−1 · (1x)

〉
.

(H3). With respect to X1, r is cyclically reduced.

(H4). With respect to X1, r involves some element of {0z1, . . . , 0zd}.

A group G admitting a Hempel presentation will be called a Hempel group.

3.2 Lemma ([1, Lemma 5.4]). Let d ≥ 1, F = 〈x, y, z1, . . . , zd | 〉 , r ∈ F, and
u ∈ 〈z1, . . . , zd | 〉 . Then there exists w ∈ F, v ∈

〈
F([x, y]u)

〉
and α ∈ Aut(F )

that fixes [x, y] and z1, . . . zd such that r′ = w(vα(r)) is either a non-negative
power of x or a Hempel relator for 〈x, y, z1, . . . , zd ‖ [x, y]u〉 .

3.3 Example. Let S be the fundamental group of an orientable, compact,
connected, closed surface of genus g ≥ 2, and s an element of S. Then S/

〈
Ss
〉

is a Hempel group.
The group S has presentation 〈x1, y1, . . . , xg, yg ‖ [x1, y1] · · · [xg, yg]〉 . Let

F = 〈x1, y1, xg, yg | 〉 and r ∈ F such that the image of r under the natu-
ral projection to S is s.
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We apply the process described in Lemma 3.2 to r and the above presen-
tation of S. If r′ is a Hempel relator, then S/

〈
Ss
〉
is a Hempel group; if not,

r′ = xm1 . In an analogous way, we can apply the same process to xm1 and the pre-
sentation 〈x2, y2, . . . , xg, yg, x1, y1 | [x2, y2] · · · [xg, yg][x1, y1]〉 . Since α fixes x1,
we obtain a Hempel relator and hence S/

〈
Ss
〉
is a Hempel group.

In [1, Notation 6.2] is shown that Hempel groups are HNN -extensions of one-
relator groups, and it is implicit in [1, Theorem 7.3], that Hempel presentations
are aspherical in the sense of 3.1.

Instead of invoking this results, we are going to show something stronger,
namely that Hempel groups are Cohen-Lyndon aspherical, which is one of the
strongest ways of being aspherical.

In [10], D.E. Cohen and R.C. Lyndon showed that the normal subgroup
generated by a single element r of a free group F has free basis form of certain
sets of conjugates of r.

The following definition is not standard, but suits with our objectives. See
[25, III.10.7].

3.4 Definition. Let F be a free group and R a subset of F. Let G := F/
〈
FR

〉

and for each r ∈ R, Gr := CF (r)/ 〈r〉 = 〈 F
√
r | r〉 a finite cyclic subgroup of G.

Then R is Cohen-Lyndon aspherical in F if and only if

(i).
〈
FR

〉
has a basis of conjugates of R;

(ii).
〈
FR

〉
ab

with the left G-action induced by the left F -conjugation action〈
FR

〉
is naturally isomorphic to ⊕r∈RZ[G/Gr].

3.5 Definition. A Cohen-Lyndon aspherical presentation 〈X ‖ R〉 is a presen-
tation where R is a Cohen-Lyndon aspherical subset of 〈X | 〉 .

A Cohen-Lyndon aspherical group is a group that admits a Cohen-Lyndon
aspherical presentation.

As mentioned above, the first example of Cohen-Lyndon groups are one-
relator groups [10]. A one-relator group is a group which admits a presentation
〈X ‖ R〉 with R having a single element.

3.6 Theorem (The Cohen-Lyndon theorem). If F is a free group and r ∈
F − {1}, then {r} is Cohen-Lyndon aspherical in F.

In [9], Chiswell, Collins and Huebschmann proved this theorem using the
Magnus induction. Let us briefly recall this technique (also called Magnus
breakdown), which is probably the main tool to study one-relator groups, and
was used by Magnus to prove the celebrated Freiheitssatz (see [25, Section IV.5]
for a reference).
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3.7 Review (Magnus Induction). Let 〈X ‖ r〉 be a one-relator presentation of
a group G. A Magnus subgroup G with respect to the presentation 〈X ‖ r〉 is
a subgroup generated by a subset Y of X such that r is not a word on Y ±1;
Magnus’ Freiheitssatz states that this subgroup is freely generated by Y.

The Magnus breakdown process takes a one-relator group and express it
as (a subgroup of) an HNN -extension of a one-relator group with a “simpler
relation”. More precisely, given a one-relator group G, there exists a finite
sequence of groups G0, G1, . . . , Gn, such that

1. Gn = G and G0 is a cyclic group;

2. G0, G1, . . . , Gn, are one-relator groups;

3. For i = 1, . . . , n, Gi is a subgroup of an HNN -extension of Gi−1 where
the associated subgroups are Magnus subgroups with respect to the same
presentation.

In [9], Chiswell, Collins and Huebschmann give a proof of the Cohen-Lyndon
theorem using the Magnus induction and two results which respectively allow
to construct new Cohen-Lyndon aspherical presentations from a given one by
HNN -extensions:

3.8 Theorem ([9, Theorem 3.4]). Let F be a free group and R a subset of
F. Let {x1, . . . , xd} and {y1, . . . , yd} be two subsets in F such that {x1, . . . , xd}
freely generates 〈x1, . . . , xd〉 and {y1, . . . , yd} freely generates 〈y1, . . . , yd〉 and

〈x1, . . . , xd〉 ∩
〈
FR

〉
= 〈y1, . . . , yd〉 ∩

〈
FR

〉
= ∅.

Let t be a symbol.
Then R+ := R ∪ {(txi)y−1

i : i ∈ 1, . . . , d} is Cohen-Lyndon aspherical in
F ∗ 〈t | 〉 if and only if R is Cohen-Lyndon aspherical in F.

These authors provide also a method to simplify presentations:

3.9 Lemma ([9, Lemma 5.1]). Let F be a free group, R a subset of F ∗ 〈x | 〉
and f ∈ F. Let φ : F ∗ 〈x | 〉 → F, x 7→ f, and h 7→ h for all h ∈ F. If
R+ := R ∪ {xf−1} is Cohen-Lyndon aspherical in F ∗ 〈x | 〉, then φ(R) is
Cohen-Lyndon aspherical in F.

We are going to show that Hempel groups are Cohen-Lyndon aspherical and
hence they lie in our family Gcct.

3.10 Theorem. Let 〈x, y, z1, . . . , zd ‖ [x, y]u, r〉 be a Hempel presentation of a
certain group.

Then {[x, y]u, r} is Cohen-Lyndon aspherical in F = 〈x, y, z1, . . . , zd | 〉
and 〈x, y, z1, . . . , zd | [x, y]u, r〉 is an HNN-extension of a one-relator group where
the associated subgroups are Magnus subgroups.
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The second part of the Theorem was proved in [1, Notation 6.2].

Proof. For f ∈ F, i ∈ Z we denote yif by if. Let

[i,j]Z := {iz1, . . . , izd, . . . , jz1, . . . , jzd}.

We simply write iZ for [i,i]Z.

By (H1) there exists a least integer ν such that r lie in the subgroup〈
1x, [0,ν]Z |

〉
. Since 1x = 0u · x, we can identify

〈
1x, [0,d]Z | r

〉

with 〈
x, [0,d]Z | r

〉
,

and thus view r as an element of a free group with two specified free-generating
sets. By (H2), r is not conjugate to any element of 〈x〉 and hence with respect to
{x}∪ [0,ν]Z, r involves some element of νZ. By (H4), with respect to {1x}∪ [0,ν]Z,
r involves some element of 0Z.

Let

G[0,ν] :=
〈
x, [0,ν]Z | r

〉
=

〈
1x, [0,ν]Z | r

〉
,

G[0,(ν−1)] :=
〈
x, [0,(ν−1)]Z |

〉
,

G[1,ν] :=
〈
1x, [1,ν]Z |

〉
.

By Magnus’ Freiheitssatz, the natural maps form G[0,(ν−1)] and G[1,ν] to
G[0,ν] are injective.

There is an isomorphism y : G[0,(ν−1)] → G[1,ν] given by x 7→ 1x and iz∗ 7→
i+1z∗, and we can form the HNN -extension G[0,ν] ∗(y : G[0,(ν−1)] → G[1,ν)]) which
gives us the group (recall that 1x = 0u · x)

(5)
〈
x, y, [0,ν]Z | r, yx = 0u · x, (y(iz∗) = i−1z∗ : i = 1, . . . ν)

〉
.

By the Cohen-Lyndon theorem, {r} is Cohen-Lyndon aspherical in
〈
x, [0,ν]Z |

〉
.

Now by Theorem 3.8, {r, yx = 0u · x} ∪ {y(iz∗) = i−1z∗ : i = 1, . . . ν)} is Cohen-
Lyndon aspherical in

〈
x, y, [0,ν]Z |

〉
.

Applying repeteadly Lemma 3.9 we can eliminate the free factor
〈
[1,ν]Z |

〉

and the set of relations {y(iz∗) = i−1z∗ : i = 1, . . . ν}, so we obtain that
{r, [x, y]u} is Cohen-Lyndon aspherical in 〈x, y, z1, . . . , zd | 〉 .
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3.4 Other examples

In [22], Lück and Stamm are interested in groups where the finite subgroups
satisfy a property similar to our condition (C). They provide two families of
examples, which we adapt to satisfy condition (C).

• Extensions 1 → Z
n → G → C → 1, where C is a finite and cyclic and the

conjugation action of C in Z
n is free outside 0 ∈ Z

n. See [22, Lemma 6.3].

• Cocompact NEC-groups that do not contain dihedral subgroups. By [22,
Lemma 4.5], they satisfy our property (C). An example of such groups are
groups with presentation

(6)
〈
a1, . . . , ar, c1, . . . , ct ‖ cγ11 = · · · = cγtt = c−1

1 · · · c−1
t a21 · · · a2r = 1

〉

where γi ≥ 2 for i = 1, . . . , t.

4 Bredon homology

Let G be a group in Gcct. By (C) there is a model for the classifying space for
proper G-actions EG with 0-dimensional singular part, which allows to compute
the Bredon homology of G. In turn, this will open the way to describe the
topological part of the Baum-Connes conjecture for these groups (see Section
5).

4.1 Background on Bredon homology

Our main source for this section has been [26, Section 3], while the original and
main reference goes back to [7].

Let G be a discrete group and F a non-empty family of subgroups of G
closed under subgroups and conjugation. The reader should have in mind the
family of finite subgroups of G, which we will denote by Fin(G), or simply Fin

if the group is understood.
The orbit category DF(G) is the category whose objects are left coset spaces

G/K with K ∈ F, and morphism sets mor(G/K,G/L) given by the G-maps
G/K → G/L; this set can be naturally identified with

(7) (G/L)K := {gL ∈ G/L : KgL = gL} = {gL ∈ G/L : g−1Kg 6 L},

that is, the cosets fixed by the K-multiplication action on G/L.
Let G-ModF and ModF-G be respectively the category of covariant and con-

travariant functors DF(G) → Ab from the orbit category to the category Ab

of abelian groups. Morphisms in G-ModF and ModF-G are natural transfor-
mations of functors. Notice that if F consists only on the trivial group then
G-ModF and ModF-G are the usual categories of right and left ZG-modules.
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The category ModF-G is abelian [26, page 8], and an object P ∈ ModF-G is
called projective if the functor

mor(P,−) : ModF -G → Ab

is exact. Every M ∈ ModF-G admits a projective resolution and projective
resolutions are unique up to chain homotopy.

Let M ∈ ModF-G and N ∈ G-ModF. By definition M ⊗F N is the abelian
group 

 ∑

G/K∈DF(G)

M(G/K) ⊗Z N(G/K)


 / ∼,

where ∼ is the equivalence relation generated by

M(φ)(m) ⊗ n ∼ m⊗N(φ)(n),

with φ ∈ mor(G/K,G/L) and m ∈ M(G/L), n ∈ N(G/K).
Let now Z denote the constant functor which assigns to each object the

abelian group Z. Then, for example

Z⊗F N =
∑

G/K∈DF(G)

N(G/K)/ ∼

In this context, n ∼ m if and only if n ∈ N(G/L) and m = N(φ)(n) for
φ ∈ mor(G/K,G/L). Hence

Z⊗F N = colimG/K∈DF(G)N(G/K).

Now Tori(−, N) is defined as the i-th left derived functor of the categorical
tensor product functor − ⊗F N : ModF -G → Ab, and the Bredon homology
groups of G with coefficients in N ∈ G-ModF are given by

HF
i (G;N) := Tori(Z, N), i ≥ 0,

where Z denotes the constant functor which assigns to each object the abelian
group Z.

For example, one has

(8) HF
0(G;N) = Z⊗F N = colimG/K∈DF(G)N(G/K).

Let X be a G-CW -complex such that all the G-stabilizers of X lie in F, and
N ∈ G-ModF; then one defines Bredon homology groups of X with coefficients
in N as

HF
i (X;N) := Hi(C∗(X)⊗F N), i ≥ 0,

where Cj(X) : DF(G) → Ab is defined by G/H 7→ Z[∆H
j ], being the latter the

free abelian group on the j-dimensional cells of X fixed by H. It can be shown
([26, Section 3]) that C∗(EF) → Z is a projective resolution and hence the

functors HF
i (EF;−) and HF

i (G;−) are equivalent.
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4.2 Bredon homology of groups in Gcct

From now on, we concentrate on the case F = Fin(G) the class of finite sub-
groups of G. Let RC denote the covariant functor DF(G) → Ab which sends
every left coset space G/H to the underlying abelian group of the complex
representation ring RC(H). Recall that every G-map f : G/H → G/K, with
f(H) = gK, gives rise to a group homomorphism f ′ : H → K, h 7→ g−1hg,
which is unique up to conjugation in K. Since inner automorphism act trivially
on the complex representation ring, the functor RC sends the map f to the
homomorphism RC(H) → RC(K) induced by f ′.

The main goal of this section is the description of the Bredon homology with
coefficients in the complex representation ring RC for a group G in Gcct, and
the reason of the choice of the category of coefficients comes from its role in the
context of Baum-Connes conjecture.

To undertake our problem, we first characterise the special shape of the
orbit category DF(G) of these groups. So, in all the sequel G will be a group
and {Gλ}λ∈Λ a family of non-trivial cyclic subgroups of G that satisfy (C). For
λ ∈ Λ, let F(λ) := {K : K 6 Gλ}, the set of subgroups of Gλ.

By (C), the set F of finite subgroups of G is the union up to conjugation of
the sets F(λ), that is

F = {gKλ : λ ∈ Λ, {1} 6= Kλ 6 Gλ, g ∈ G/Gλ} ∪ {{1}}.

For λ, µ ∈ Λ, a ∈ G/Gλ, b ∈ G/Gµ and {1} 6= Kλ 6 Gλ, {1} 6= Lµ 6 Gµ,
suppose that mor(G/aKλ, G/bLµ) 6= ∅; then by (7) there is some g ∈ G such
that gaKλg

−1 6 bLµ and the uniqueness in condition (C) implies that λ = µ.
Moreover, since Gλ is cyclic, we have K 6 L by the structure of the subgroups
of a cyclic group.

It is easy to show the converse, that is

(9) mor(G/aKλ, G/bLµ) 6= ∅ ⇔ α = µ and Kλ 6 Lµ

and for the case of the trivial group we have

(10) mor(G/{1}, G/bLµ) = G/bLµ and mor(G/aKλ, G/{1}) = ∅

Hence, the only non-trivial morphisms in this orbit category are inclusions.
Now we are ready to compute the 0-th Bredon homology groups we are

interested in. By (8)

HF
0(G;RC) = colimG/K∈DF(G)

RC(K).

Hence, if Λ is non-empty we have

HF
0(G;RC) =

∏

λ∈Λ

(colimK∈F(λ)RC(K)).
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By (9) and (10) all the subgroups in F(λ) are, up to conjugation, cyclic
subgroups of the cyclic Gλ, and the morphisms are given by restriction of rep-
resentations, we have

HF
0(G;RC) =

∏

λ∈Λ

RC(Gλ).

In the case Λ is empty, we have that HF
0(G;RC) = RC({1}) = Z.

Now we deal with the higher homology groups. As seen before, a classifying
space for proper actions EG can be used to compute HF

∗(G;RC). For example,
it is known that the virtually free groups are exactly the groups which admit
a tree as a model of EG, and their Bredon homology with coefficients in the
complex representation ring has been described by Mislin in [26, Theorem 3.17].

We denote by BG the orbit space (EG)/G, sometimes called “classifying
space for G-proper bundles” (see [4, Appendix 3] for the motivation of the
name). Note that an n-dimensional model for EG produces n-dimensional
models for its orbit space. Moreover, we define dim(EG)sing to be the minimum
of dim(Xsing) where X is a model for EG.

The following result relates the Bredon homology of EG and the ordinary
homology of BG:

4.1 Lemma ([26, Lemma 3.21]). Let G be an arbitrary group. Then there is a
natural map

HFin
i (EG;RC) → Hi(BG;Z)

which is an isomorphism in dimension i > dim(EG)sing + 1 and injective in
dimension i = dim(EG)sing + 1.

Now we are ready to state the main result of this section.

4.2 Theorem. Let G be a group on the class Gcct and let {Gλ}λ∈Λ be the
subgroups for which condition (C) holds. Then

(i). HF
i (G;RC) = Hi(BG;Z) for i ≥ 2.

(ii). HF
1(G;RC) = (G/Tor(G))ab where Tor(G) denotes the subgroup of G gen-

erated by the torsion elements.

(iii). HF
0(G;RC) =

∏
λ∈Λ RC(Gλ), if Λ 6= ∅ or HFin

0 (G;RC) = Z, if Λ = ∅.
Proof. (i) follows from Lemma 4.1, since by Proposition 2.1 dim(EG)sing = 0.
(iii) has been proved at the beginning of this section, so it only remains to prove
(ii).

By Proposition 2.1, we have a model X of EG such that dim(EG)sing = 0.
Moreover, the vertex set of X is in bijection with G ⊔ {gGλ : λ ∈ Λ, g ∈ G}.
Hence, we have the following exact augmented cellular chain complex of ZG-
modules

· · · → ⊕J2ZG → ⊕J1ZG → ZG⊕ (⊕r∈RZ[G/Gr]) → Z → 0
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where Ji is the number free G-orbits of i-dimensional cells in X.
Also using the cellular structure of X, we have the following projective res-

olution of Z on ModFin-G

· · · → C2(X) → C1(X) → C0(X) → Z → 0

where

Ci(X) : DFin(G) → Ab, Ci(X)(G/H) =

{
0 if H 6= {1}
ZGJi if H = 1

for i = 1, 2,
and C0(X) : DFin(G) → Ab, C0(X)(G/H) = Z[G/Gr] if H 6= 1 where Gr is

the unique subgroup that contains a conjugate of H, and

C0(X)(G/{1}) = ZG⊕ (⊕r∈RZ[G/Gr]).

Let us write Ci for Ci(Z) ⊗F RC and C∗ for the ordinary cellular chain
complex C∗(X/G). Then we have:

C0
∼= Z⊗ (⊗λ∈ΛRC(Gλ)) , C0

∼= Z⊗ (⊗λ∈ΛZ) .

We have the diagram in Figure 4.2,

ker(π)

mono

��

∼=
// ker(ǫ) =

∏
λ∈Λ R̃C(Gλ)

mono

��

C2
d2

//

=

��

C1
d1

//

=

��

C0
epi

//

π

��

∏
λ∈ΛRC(Gλ)

ǫ

��

C2
d2

// C1
d1

// C0
epi

//
∏

λ∈Λ Z

Figure 4.2.1: Comparing the two chain complexes

where π = (Id, ǫ) and ǫ :
∏

RC(Gλ) →
∏

Z is the augmentation. Now we are
ready to check the statements of the theorem.

By [21, Proposition 3] (see also [3]), π1(BG) = G/Tor(G) . Hence, H1(BG;Z) ∼=
(G/Tor(G))ab. By Lemma 4.1, the map HF

1(EG;RC) → H1(BG;Z) is injective.
We have to show that it is surjective too.

The diagram shows that ker d1 = ker d1, thus ker d1/ Im d2 → ker d1/ Im d2
is onto.

4.3 Remark. The model for EG of [23, 4.11] is given by a G-pushout which
involve EG and EGλ for λ ∈ Λ, so a Mayer-Vietoris argument may give some
extra information about the higher homology groups Hi(BG;Z) appearing in
Theorem 4.2 (i).
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For the concrete families described above, we may give sharper statements:

4.4 Corollary. Let A and B be locally indicable groups and r ∈ A ∗ B not
conjugate to an element of A nor of B.

Let G := (A ∗ B)/
〈
A∗Br

〉
and let Gr be the cyclic subgroup of G generated

by the image of A∗B
√
r.

Then

(i). HF
i (G;RC) = Hi(A;Z)⊕Hi(B;Z) for i > 2.

(ii). HF
2(G;RC) = H2(BG;Z).

(iii). HF
1(G;RC) = (G/Tor(G))ab where Tor(G) denotes the subgroup of G gen-

erated by the torsion elements.

(iv). HF
0(G;RC) = RC(Gr) if Gr 6= {1} or HFin

0 (G;RC) = Z if Gr = {1}.

Proof. By the discussion in the subsection 3.2, G and Gr are under the hypothe-
ses of Theorem 4.2, and (ii),(iii) and (iv) follow directly. Statement (i) follows
from the cellular chain complex of C′′

G described in 3.2.

4.5 Corollary. Let F be a free group and R be subset of F . Let G := F/
〈
FR

〉

and for each r ∈ R, let Gr be the cyclic subgroup of G generated by the image of
F
√
r. Suppose that

〈
FR

〉
ab

∼= ⊕r∈RZ[G/Gr], and let T (R) = {r ∈ R : Gr 6= 1}.
Then

(i). HF
i (G;RC) = 0 for i > 2.

(ii). HF
2(G;RC) = H2(G;Z).

(iii). HF
1(G;RC) = (G/Tor(G))ab where Tor(G) denotes the subgroup of G gen-

erated by the torsion elements.

(iv). HF
0(G;RC) =

∏
r∈T (R) RC(Gr) if T (R) 6= ∅ or HFin

0 (G;RC) = Z if T (R) =
∅.

Proof. By the discussion in the subsection 3.1, G and {Gr}r∈T (R) are again
under the hypothesis of Theorem 4.2, so (ii),(iii) and (iv) follow. Statement (i)
follows from the cellular chain complex (3) of C′′

G described in 3.1.

In the case of Hempel groups, we can be even more precise:

4.6 Theorem. Let G be a Hempel group with presentation 〈x1, . . . , xk ‖ w, r〉,
with k ≥ 3, w ∈ [x1, x2] 〈x3, . . . , xk〉 ⊆ 〈x1, . . . , xk | 〉 = F and such that r is a
Hempel relator for 〈x1, . . . , xk ‖ w〉 . Let Gr := CF (r)/ 〈r〉 = 〈 F

√
r | r〉 . Then

(i). HFin
i (G;RC) = 0 for i > 2.
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(ii). HFin
2 (G;RC) = H2(G;Z) = (

〈
Fr ∪ Fw

〉
∩ [F,F ])/[F,

〈
Fr ∪ Fw

〉
]

(iii). HFin
1 (G;RC) = (〈x1, . . . , xk | w, F

√
r〉)ab.

(iv). HFin
0 (G;RC) = RC(Gr) if Gr 6= {1} and Z in the other case.

Proof. By Theorem 3.10 we are in the hypothesis of Corollary 4.2. The last
equality of (ii) is the classical Hopf identity.

5 Relation with Baum-Connes conjecture

Let H be an aspherical group. Beyond their intrinsic interest, the results ob-
tained in the previous section show their relevance in the context of Baum-
Connes conjecture. More concretely, Corollary 4.5 will identify the equivari-
ant version KH

i (EH) of the K-homology of EH, as defined by Davis-Lück in
[11]. Given an arbitrary countable discrete group G, the K-groups KG

i (EG),
which are defined via the non-connective topological K-theory spectrum, can
be in turn identified with the Kasparov KK-groups KKG

i (EG), which are
constructed as homotopy classes of G-equivariant elliptic operators over EG.
These homotopical invariants are related with the topological algebraic K-
groups Ktop

i (C∗
r (G)) of the reduced C∗-algebra of G, an object which is defined

as the closure of a subalgebra of the Banach algebra B(l2(G)) of bounded oper-
ators over the space of square-summable complex functions over the group G,
and whose nature is thus essentially analytic. Bott periodicity holds for both
the homotopical and the analytical groups, and the relationship is given, for
i = 0, 1, by an index map:

Θ : KKG
i (EG) → Ktop

i (C∗
r (G)),

The Baum-Connes conjecture (or BCC for short) asserts that this index
map is an isomorphism for every second countable locally compact group G.
Originally stated in its definitive shape by Baum-Connes-Higson in [4], its im-
portance come mainly from two sources: first, it relates two objects of very dif-
ferent nature, being the analytical one particularly inaccessible; and moreover,
it implies a number of famous conjectures, as for example Novikov conjecture
on the higher signatures, or the weak version of Hyman Bass’ conjecture about
the Hattori-Stallings trace; see [26, Section 7] for a good survey on this topic.
The conjecture BCC has been verified for an important number of groups, and
in particular for the groups in the class LHT H, which is defined by means of
an analytical property (see [26, Section 5] for a detailed exposition). The class
LHT H contains for example the soluble groups, finite groups and free groups;
and as it also contains one-relator groups and it is closed under passing to sub-
groups and HNN -extensions, Theorem 3.10 implies that Hempel groups are in
LHT H.
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On the other hand, every one-relator group is also aspherical (see Theorem
3.6 above). However, it is unknown if BCC holds for the class of aspherical
groups, so it is interesting to investigate the value of the K-groups in both sides
of the conjecture for aspherical groups. The main goal of this paragraph is to
show how the results in the previous section allow to compute the topologi-
cal side of the conjecture. The key result here, owed to Mislin [26, Theorem
5.27], is in fact a collapsed version of an appropriate Atiyah-Hirzebruch spectral
sequence:

5.1 Theorem. Let G be an arbitrary group such that dim EG ≤ 2. Then there
is a natural short exact sequence:

0 → RC(G) → KG
0 (EG) → HFin

2 (G;RC),

and a natural isomorphism HFin
1 (G;RC) ≃ KG

1 (EG).

Now the description of the Kasparov Cohen-Lyndon aspherical groups comes
straight from Corollary 4.5, and generalizes Corollary 5.28 from [26]:

5.2 Proposition. Let G be an aspherical group. Then KG
0 (EG) fits in a short

exact sequence

RC(G) → KG
0 (EG) → H2(G;Z)

that splits, and moreover there is a natural isomorphism (G/Tor(G))ab ≃ KG
1 (EG).

In particular, BCC holds for Hempel groups, so we have also computed the
analytical of the conjecture for these groups:

5.3 Proposition. Let G be a Hempel group with presentation 〈x1, . . . , xk ‖ w, r〉,
with k ≥ 3, w ∈ [x1, x2] 〈x3, . . . , xk〉 ⊆ 〈x1, . . . , xk | 〉 = F and such that r is
a Hempel relator for 〈x1, . . . , xk ‖ w〉 . Let Gr := CF (r)/ 〈r〉 = 〈 F

√
r | r〉 . Then

KG
i (EG) ≃ Ktop

i (C∗
r (G)) for i = 0, 1, there is a split short exact sequence

RC(G) → KG
0 (EG) → (

〈
Fr ∪ Fw

〉
∩ [F,F ])/[F,

〈
Fr ∪ Fw

〉
]

and a natural isomorphism (〈x1, . . . , xk | w, F
√
r〉)ab ≃ KG

1 (EG).

Proof. It is a consequence of Theorem 4.6.
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