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Hausdorff limits of Rolle leaves

JEAN-MARIE LION AND PATRICK SPEISSEGGER

Let R be an o-minimal expansion of the real field. We introduce a class of Hausdorff
limits, the T∞ -limits over R, that do not in general fall under the scope of Marker
and Steinhorn’s definability-of-types theorem. We prove that if R admits analytic cell
decomposition, then everyT∞ -limit over R is definable in the pfaffian closure ofR.

Introduction

We fix an o-minimal expansionR of the real field. In this paper, we studyT∞ -limits over
R as defined in Section1 below; they generalize the pfaffian limits overR introduced in
[5, Section 4]. Pfaffian limits overR are definable in the pfaffian closureP(R) of R [7],
by the variant of Marker and Steinhorn’s definability-of-types theorem [6] found in van
den Dries [1, Theorem 3.1] and [4, Theorem 1]. TheT∞ -limits over R considered here
do not seem to fall under the scope of these theorems, as explained in Section1 below.
Nevertheless,T∞ -limits were used by Lion and Rolin [3] to establish the o-minimality of
the expansion ofRan by all Rolle leaves overRan of codimension one.

To state our results, we work in the setting of [5, Introduction]; in particular, recall that a
setW ⊆ R

n is aRolle leaf overR if there exists a nested Rolle leaf (W0, . . . ,Wk) overR
such thatW = Wk .

First, we obtain the following generalization of [3, Théor̀eme 1].

Proclaim (Theorem A) Let N (R) be the expansion ofR by all Rolle leaves overR.

(1) There is an o-minimal expansionT∞(R) of N (R) in which everyT∞ -limit over R
is definable.

(2) Let M ⊆ R
n be a bounded, definableC2-manifold andd be a definable and integrable

nested distribution onM . Let K ⊆ R
n be a T∞ -limit obtained from d. Then

dimK ≤ dimd.

http://arxiv.org/abs/1107.0648v1
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The question then arises howT∞(R) relates to the pfaffian closureP(R) of R. Indeed, we
do not know in general ifT∞(R) is interdefinable withN (R) or P(R), or if T∞(T∞(R)) is
interdefinable withT∞(R). Based on [5], we can answer such questions under an additional
hypothesis:

Proclaim (Theorem B) Assume thatR admits analytic cell decomposition.

(1) Every T∞ -limit over P(R) is definable inP(R).

(2) The structuresT∞(R) and P(R) are interdefinable; in particular,T∞(R) and
T∞(T∞(R)) are interdefinable.

We view the combination of Theorems A(2) and B(1) as a non-first order extension of [1,
Theorem 3.1] and [4, Theorem 1].

Our proofs of these theorems rely heavily on terminology andnotation introduced in [5,
Introduction and Section 2]; we do not repeat the respectivedefinitions here. We prove
Theorem A in Section3 below using the approach of [7], but based on a straightforward
adaptation of some results of [5, Section 4] toT∞ -limits carried out in Section2below. The-
orem B then follows by adapting [5, Proposition 7.1] toT∞ -limits and using [5, Proposition
10.4]; the details are given in Section4.

1 The definitions

Let M ⊆ R
n be a bounded, definableC2-manifold of dimensionm. We adopt the termi-

nology and results found in [5, Introduction and Section 2], and we letd = (d0, . . . ,dk) be
a definable and integrable nested distribution onM .

A sequence (Vι)ι∈N of integral manifolds ofdk is a T∞ -sequence of integral manifolds
of d if there are a core distributione = (e0, . . . ,el) of d, a sequence (Wι) of Rolle leaves
of e and a definable familyB of closed integral manifolds ofdk−l such that eachVι is an
admissible integral manifold ofd with coreWι corresponding toe and definable part inB
corresponding toWι , as defined in [5, Definition 4.1].

In this situation, we call (Wι) thecore sequenceof the sequence (Vι) corresponding to e
andB adefinable part of the sequence (Vι) corresponding to (Wι).

Remarks (1) We think of the core sequence of (Vι) as representing the “non-definable
part” of (Vι). If Wι = W1 for all ι, then (Vι) is an admissible sequence of integral
manifolds ofd as defined in [5, Definition 4.3].
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(2) Let (Vι) be aT∞ -sequence of integral manifolds ofd. Then there is aT∞ -sequence
(Uι) of integral manifolds of (d0, . . . ,dk−1) such thatVι ⊆ Uι for ι ∈ N.

Let (Vι) be a T∞ -sequence of integral manifolds ofd. If (Vι) converges toK in Kn

(the space of all compact subsets ofR
n equipped with the Hausdorff metric), we callK a

T∞ -limit over R. In this situation, we say thatK is obtained from d, and we put

degK := min{degf : K is obtained fromf} .

Remarks (3) It is unknown whether the family of all Rolle leaves ofe is definable
in P(R) 1. As a consequence, contrary to the situation described by [5, Lemma
4.5] for pfaffian limits overR, the variant of Marker and Steinhorn’s definability-
of-types theorem [6] found in [1, Theorem 3.1] and [4, Theorem 1] does not apply;
in particular, we do not know in general whether aT∞ -limit over R is definable in
P(R).

(4) If Wι = W1 for all ι, thenK is a pfaffian limit overR as introduced in [5, Definition
4.4].

2 Towards the proof of Theorem A

Let M ⊆ R
n be a definableC2-manifold of dimensionm.

Pfaffian fiber cutting

We fix a finite family∆ = {d1, . . . ,dq} of definable nested distributions onM ; we write
dp = (dp

0, . . . ,d
p
k(p)) for p = 1, . . . ,q. As in [5, Section 3], we associate to∆ the following

set of distributions onM :

D∆ :=
{

d0
0 ∩ d1

k(1) ∩ · · · ∩ dp−1
k(p−1) ∩ dp

j : p = 1, . . . ,q andj = 0, . . . , k(p)
}

,

where we putd0
0 := gM . If N is a C2-submanifold ofM compatible withD∆ , we let

d∆,N =

(

d∆,N
0 , . . . ,d∆,N

k(∆,N)

)

be the nested distribution onN obtained by listing the set
{

gN : g ∈ D∆

}

in order of decreasing dimension. In this situation, ifVp is an integral
manifold of dp

k(p) , for p = 1, . . . ,q, then the setN ∩ V1 ∩ · · · ∩ Vq is an integral manifold

of d∆,N
k(∆,N) .

Let A ⊆ M be definable. ForI ⊆ {1, . . . ,q} we put∆(I ) := {dp : p ∈ I}.

1For instance, a positive answer to this question for alle definable inP(R) would imply the
second part of Hilbert’s 16th problem.



4 Jean-Marie Lion and Patrick Speissegger

Lemma 2.1 Let I ⊆ {1, . . . ,q}. Then there is a finite partitionP of definableC2-cells
contained inA such thatP is compatible withD∆(J) for everyJ ⊆ {1, . . . ,q} and

(i) dim d∆(I),N
k(∆(I),N) = 0 for everyN ∈ P ;

(ii) wheneverVp is a Rolle leaf ofdp for p ∈ I , every component ofA ∩
⋂

p∈I Vp

intersects some cell inP .

Proof By induction on dimA; if dim A = 0, there is nothing to do, so we assume dimA > 0
and the corollary is true for lower values of dimA. By [5, Proposition 2.2] and the inductive
hypothesis, we may assume thatA is a C2-cell compatible withD∆(J) for J ⊆ {1, . . . ,q}.
Thus, if dimd∆(I),A

k(∆(I),A) = 0, we are done; otherwise, we letφ andB be as in [5, Lemma 3.1]
with ∆(I ) in place of∆.

Let Vp be a Rolle leaf ofdp for each p; it suffices to show that every component of
X := A ∩

⋂

p∈I Vp intersectsB. However, sinced∆(I),A
k(∆(I),A) has dimension,X is a closed,

embedded submanifold ofA. Thus,φ attains a maximum on every component ofX, and
any point inX whereφ attains a local maximum belongs toB.

Corollary 2.2 Let d be a definable nested distribution onM andm ≤ n. Then there is a
finite partitionP of C2-cells contained inA such that for every Rolle leafV of d, we have

Πm(A∩ V) =
⋃

N∈P

Πm(N ∩ V)

and for everyN ∈ P , the setN ∩ V is a submanifold ofU , Πm↾(N∩V) is an immersion and
for everyn′ ≤ n and every strictly increasingλ : {1, . . . ,n′} −→ {1, . . . ,n}, the projection
Πλ↾(N∩V) has constant rank.

Proof Apply Lemma2.1 with q := n+ 1, dp := kerdxp for p = 1, . . . ,n, dq := d and
I := {1, . . . ,m,n+ 1}.

T∞ -limits

We assume thatM has a definableC2-carpeting functionφ, and we letd = (d0, . . . ,dk) be
a definable distribution onM with core distributione= (e0, . . . ,el ).

First, we reformulate [5, Proposition 4.7]. We adopt the notation introduced before[5,
Proposition 4.6] and note that theq in [5, Remark 4.2] can be chosen independent of the
particularW.
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Proposition 2.3 Let (Vι) be aT∞ -sequence of integral manifolds ofd with core sequence
(Wι), and assume thatK′ := limι fr Vι exists. ThenK′ is a finite union ofT∞ -limits
obtained fromdM′

with core sequences among
(

(Wι)M′

1

)

ι
, . . . ,

(

(Wι)M′

q

)

ι
.

Proof Exactly as for [5, Proposition 4.7], except for replacing “coreW” by “core sequence
(Wι)” and “coreWM′

p ” by “core sequence
(

(Wι)M′

p

)

”.

Second, as we do not know yet whetherT∞ -limits are definable in an o-minimal structure,
we work with the following notion of dimension (see also van den Dries and Speissegger
[2, Section 8.2]): we callN ⊆ R

n a C0-manifold of dimension p if N 6= ∅ and each point
of N has an open neighbourhood inN homeomorphic toRp; in this casep is uniquely
determined (by a theorem of Brouwer), and we writep = dim(N). Correspondingly, a set
S⊆ R

n has dimensionif S is a countable union ofC0-manifolds, and in this case put

dim(S) :=

{

max{dim(N) : N ⊆ S is aC0-manifold} if S 6= ∅

−∞ otherwise.

It follows (by a Baire category argument) that, ifS=
⋃

i∈N Si and eachSi has dimension,
thenS has dimension and dim(S) = max{dim(Si ) : i ∈ N}. Thus, ifN is aC1-manifold of
dimensionp, thenN has dimension in the sense of this definition and the two dimensions
of N agree.

Corollary 2.4 In the situation of [5, Lemma 1.5], the setlimι Vι \ limι fr Vι is either empty
or has dimensionp.

Therefore, we replace [5, Lemma 4.5] by

Proposition 2.5 Let K be aT∞ -limit obtained fromd. ThenK has dimension and satisfies
dimK ≤ dimd.

Proof Let (Vι) be aT∞ -sequence of integral manifolds ofd such thatK = limι Vι . We
proceed by induction on dimd. If dim d = 0, then [5, Corollary 3.3(2)] gives a uniform
bound on the cardinality ofVι , soK is finite. So assume dimd > 0 and the corollary holds
for lower values of dimd.

By [5, Proposition 2.2 and Remark 4.2], we may assume thatM is a definableC2-cell; in
particular, there is a definableC2-carpeting functionφ on M . For eachσ ∈ Σn, let Mσ,2n

be as before [5, Lemma 1.3] withdk in place ofd. Then by that lemma,M =
⋃

σ∈Σ Mσ,2n

and eachMσ,2n is an open subset ofM . Henced is compatible with eachMσ,2n, and after
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passing to a subsequence if necessary, we may assume thatKσ = limι(Vι ∩ Mσ,2n) exists
for eachσ . It follows thatK =

⋃

σ∈Σn
Kσ , so by [5, Lemma 1.3(2)], after replacingM with

eachσ−1(Mσ,2n), we may assume thatdk is 2n-bounded. Passing to a subsequence again,
we may assume thatK′ := limι fr Vι exists as well. Then by Corollary2.4, the setK \ K′

is either empty or has dimension dimd. By Proposition2.3 and the discussion before [5,
Proposition 4.6], the setK′ is a finite union ofT∞ -limits obtained from a definable nested
distributiond′ on a definable manifoldM′ that satisfies degd′ ≤ degd and dimd′ < dimd.
SoK′ has dimension with dimK′ < dimd by the inductive hypothesis, and the proposition
is proved.

Definition 2.6 A T∞ -limit K ⊆ R
n obtained fromd is proper if dim K = dimd.

Corollary 2.7 Let K ⊆ R
n be aT∞ -limit obtained fromd. ThenK is a finite union of

properT∞ -limits overR of degree at mostdegd.

Proof We proceed by induction on dimd; as in the previous proof, we assume dimd > 0
and the corollary holds for lower values of dimd. If dim K = dimd, we are done, so
assume that dimK < dimd. Also as in the previous proof, we now reduce to the case where
dk is 2n-bounded andK′ := limι fr Vι exists. Then Corollary2.4 implies thatK = K′ , so
the corollary follows from Proposition2.3and the inductive hypothesis.

Finally, T∞ -limits overR are well behaved with respect to intersecting with closed definable
sets. To see this, defineM := M × (0,1) and write (x, ǫ) for the typical element ofM
with x ∈ M and ǫ ∈ (0,1). We consider the components ofd as distributions onM in the
obvious way, and we setd0 := gM , d1 := dǫ↾M andd1+i := di ∩ d1 for i = 1, . . . , k and
put d := (d0, . . . ,d1+k). Moreover, whenevere is a core distribution ofd, we similarly
define a corresponding core distributione= (e0, . . . ,e1+l) of d. In this situation, for every
Rolle leafW of e and everyǫ ∈ (0,1), the setW := W× {ǫ} is a Rolle leaf ofe.

Proposition 2.8 Let K be aT∞ -limit obtained fromd, and letC ⊆ R
n be a definable

closed set. Then there is a definable open subsetN of M and there areq ∈ N andT∞ -limits
K1, . . . ,Kq ⊆ R

n+1 obtained fromdN such thatK ∩ C = Πn(K1) ∪ · · · ∪Πn(Kq).

Sketch of proof For ǫ > 0 putT(C, ǫ) := {x ∈ R
n : d(x,C) < ǫ}. Note first thatK∩C =

⋂

ǫ>0

(

K ∩ T(C, ǫ)
)

, and the latter is equal to limǫ→0
(

K ∩ T(C, ǫ)
)

in the sense of [5,
Definition 1.7]. Next, let (Vι) be aT∞ -sequence of integral manifolds ofd such thatK =

limι Vι . Then for everyǫ > 0, there is a subsequence (ι(κ)) of (ι) such that the sequence
(Vι(κ) ∩ T(C, ǫ)) converges to some compact setKǫ . Note thatKǫ ∩ T(C, ǫ) = K ∩ T(C, ǫ),
sinceT(C, ǫ) is an open set.
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Fix a sequence (ǫκ) of positive real numbers approaching 0, and for eachκ, chooseι(κ)
such thatd(Vι(κ) ∩ T(C, ǫκ),Kǫκ) < ǫκ . Passing to a subsequence if necessary, we may
assume that limκ Kǫκ and limκ

(

Vι(κ)∩T(C, ǫκ)
)

exist; note that these limits are then equal.
Hence by the above,

K ∩ C = lim
κ

(

K ∩ T(C, ǫκ)
)

= lim
κ

(

Kǫκ ∩ T(C, ǫκ)
)

⊆ lim
κ

Kǫκ = lim
κ

(

Vι(κ) ∩ T(C, ǫκ)
)

.

The reverse inclusion is obvious, soK ∩ C = limκ

(

Vι(κ) ∩ T(C, ǫκ)
)

. Therefore, put
N := {(x, ǫ) ∈ M : d(x,C) < ǫ}; then N is an open, definable subset ofM and by the
aboveK ∩ C = limκ(Vι(κ) ∩ Nǫκ), whereNǫ := {x ∈ M : (x, ǫ) ∈ N}. HenceK ∩ C =

limκΠn
(

(Vι(κ)×{ǫκ})∩N
)

. Since limκ ǫκ = 0, it follows thatK∩C = Πn
(

limκ

(

(Vι(κ)×

{ǫκ})∩N
))

. Since the sequence
(

Vι(κ) ×{ǫκ}
)

is aT∞ -sequence of integral manifolds of
d, the proposition now follows from [5, Remark 4.2].

Remark 2.9 Let B andC be two definable families of closed subsets ofR
n. Then theT∞ -

limits in the previous proposition depend uniformly onC ∈ C , for all T∞ -limits obtained
from d with definable partB . That is, there areµ,q ∈ N, a bounded, definable manifold
M ⊆ R

n+µ+1, a definable nested distributiond on M and a definable familyB of subsets
of Rn+ν+1 such that wheneverK is a T∞ -limit obtained fromd with definable partB and
C ∈ C , there areT∞ -limits K1, . . . ,Kq ⊆ R

n+ν+1 obtained fromd with definable partB
such thatK ∩ C = Πn(K1) ∪ · · · ∪Πn(Kq).

3 O-minimality and proof of Theorem A

Similar to [3, 7], we show that all sets definable inT∞(R) are of the following form:

Definition 3.1 A set X ⊆ R
m is abasicT∞ -set if there existn ≥ m, a definable, bounded

C2-manifold M ⊆ R
n, a definable nested distributiond on M with core distributione and,

for κ ∈ N, a T∞ -sequence (Vκ,ι)ι of integral manifolds ofd with core sequence (Wκ,ι)ι
corresponding toe and definable partB independent ofκ, such that:

(i) for eachκ, the limit Kκ := limι Vκ,ι exists inKn;

(ii) the sequence (Πm(Kκ))κ is increasing and has unionX.

In this situation, we say thatX is obtained from d with core distribution e anddefinable
part B . A T∞ -set is a finite union of basicT∞ -sets. We denote byT∞

m the collection of
all T∞ -sets inRm and putT∞ := (T∞

m )m∈N .
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Proposition 3.2 In the situation of Definition3.1, there is anN ∈ N such that every
basicT∞ -set obtained fromd with core distributione and definable partB has at mostN
components. In particular, ifX ⊆ R

m is a T∞ -set andl ≤ m, there is anN ∈ N such that
for everya ∈ R

l the fiberXa has at mostN components.

Proof Let N be a bound on the number of components of the setsW∩B asW ranges over
all Rolle leaves ofe and B ranges overB . Let X be a basicT∞ -set as in Definition3.1.
Then eachVκ,ι has at mostN components, so eachKκ has at mostN components, and
henceX has at mostN components. Combining this observation with Remark2.9 yields,
for every T∞ -set X ⊆ R

m, a uniform bound on the number of connected components of
the fibers ofX.

Proposition 3.3 (1) Any coordinate projection of aT∞ -limit over R is a T∞ -set.

(2) Every bounded definable set is aT∞ -set.

(3) Let d be a definable nested distribution onM := (−1,1)n and L be a Rolle leaf of
d. ThenL is a T∞ -set.

Proof (1) is obvious. For (2), letC ⊆ R
n be a bounded, definable cell. By cell decompo-

sition, it suffices to show thatC is a T∞ -set. Letφ be a definable carpeting function on
C. Then C =

⋃

∞

i=1 cl
(

φ−1((1/i,∞))
)

, so let C := {(x, r) ∈ C× (0,1) : φ(x) > r} and
put d1 := kerdr↾C and d := (gC,d1). Then for r > 0, the setCr = φ−1((r,∞)) × {r}
is an admissible integral manifold ofd with core C and definable partCr , so cl(Cr ) is a
T∞ -limit obtained fromd.

(3) Let φ be a carpeting function onM . Then

L =

∞
⋃

i=1

cl
(

L ∩ φ−1((1/i,∞))
)

,

so we letM := {(x, r) ∈ M × (0,1) : φ(x) > r} and put d0 := gM , d1 := kerdr ↾M ,
d1+i := d1∩di for i = 1, . . . , k andd := (d0, . . . ,d1+k). Let L1, . . . ,Lq be the components
of (L × (0,1)) ∩ M ; note that eachLp is a Rolle leaf ofd. Thus for r > 0 and eachp,
the setLp ∩ φ−1((r,∞)) is an admissible integral manifold ofd with coreLp and definable
part M r = φ−1((r,∞)) × {r}.

Proposition 3.4 The collection of allT∞ -sets is closed under taking finite unions, finite
intersections, coordinate projections, cartesian products, permutations of coordinates and
topological closure.
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Proof Closure under taking finite unions, coordinate projectionsand permutations of co-
ordinates is obvious from the definition and the properties of nested pfaffian sets over
R.

For topological closure, letX ⊆ R
m be a basicT∞ -set with associated data as in Definition

3.1. Then
cl(X) = lim

κ
Πm(Kκ) = Πm(lim

κ
lim
ι

Vκ,ι) = Πm(lim
κ

Vκ,ι(κ))

for some subsequence (ι(κ))κ , so cl(X) is a T∞ -set by Proposition3.3(1).

For cartesian products, letX1 ⊆ R
m1 and X2 ⊆ R

m2 be basicT∞ -sets, and letMi ⊆ R
ni ,

di = (di
0, . . . ,d

i
ki ), ei = (ei

0, . . . ,e
i
li ) and

(

Vi
ι,κ

)

be the data associated toXi as in Definition
3.1, for i = 1,2. We assume that bothM1 andM2 are connected; the general case is easily
reduced to this situation. Define

M :=
{

(x, y,u, v) : (x,u) ∈ M1 and (y, v) ∈ M2} ,

wherex ranges overRm1 , y over Rm2 , u over Rn1−m1 and v over Rn2−m2 . We interpret
di and ei as sets of distributions onM correspondingly, fori = 1,2, and we define
d := (d1

0, . . . ,d
1
k1,d1

k1 ∩d2
1, . . . ,d

1
k1 ∩d2

k2) ande := (e1
0, . . . ,e

1
l1,e

1
l1 ∩e2

1, . . . ,e
1
l1 ∩e2

l2). Since
M1 andM2 are connected, each set

Vκ,ι :=
{

(x, y,u, v) : (x,u) ∈ V1
κ,ι and (y, v) ∈ V2

κ,ι

}

is an admissible integral manifold ofd with core distributione. It is now easy to see that
for eachκ, the limit Kκ := limι Vκ,ι exists inKn1+n2 , and that the sequence

(

Πk1+k2(Kκ)
)

is increasing and has unionX1 × X2.

For intersections, letX1,X2 ⊆ R
m be basicT∞ -sets. ThenX1 ∩ X2 = Πk((X1 × X2) ∩∆),

where∆ := {(x, y) ∈ R
m × R

m : xi = yi for i = 1, . . . ,m}. Therefore, we letX ⊆ R
m

be a basicT∞ -set andC ⊆ R
m be closed and definable, and we show thatX ∩ C is a

T∞ -set. Let the data associated toX be as in Definition3.1, and let M , d and e be
associated to that data as before Proposition2.8. Let also N be the open subset ofM
given by that proposition withC′ := C × R

n−m in place ofC. Then by that proposition,
there is aq ∈ N such that for everyκ the setKκ ∩ C′ is the union of the projections of
T∞ -limits K1

κ, . . . ,K
q
κ obtained fromdN . Note that eachK j

κ is the limit of aT∞ -sequence
of integral manifolds ofdN with core distributioneN . Replacing each sequence

(

K j
κ

)

by a

(possibly finite) subsequence if necessary, we may assume that each sequence
(

Πm(K j
κ)
)

is

increasing. Then eachXj :=
⋃

κ K j
κ is a basicT∞ -set andX ∩ C = X1 ∪ · · · ∪ Xq.

Proposition 3.5 Let X ⊆ R
m be aT∞ -set. Thenbd(X) is contained in a closedT∞ -set

with empty interior.
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Proof Let the data associated toX be given as in Definition3.1and writed = (d0, . . . ,dk).
Note that

bd(X) ⊆ lim
κ

bd(Πm(Kκ)).

Fix an arbitraryκ; sinceΠm(Kκ) = limιΠm(Vκ,ι) we may assume, by Corollary2.2, [5,
Remark 4.2] and after replacingM if necessary, thatΠk↾dk is an immersion and has constant
rank r ≤ m; in particular, dim(Vκ,ι) ≤ m. If r < m, then eachΠm(Kκ) has empty interior
by Proposition2.4, so

lim
κ

bd(Πm(Kκ)) = lim
κ

Πm(Kκ) = Πm(lim
κ

Kκ) = Πm(lim
κ

Vκ,ι(κ))

for some subsequence (ι(κ)), and we conclude by Propositions2.5and3.3(1) in this case.
So assume thatr = m; in particular,Πm(Vκ,ι) is open for everyκ andι. In this case, since
M is bounded, we have bd(Πm(Kκ)) ⊆ Πm(limι fr Vκ,ι) for eachκ. Hence

lim
κ

bd(Πm(Kκ)) ⊆ Πm(lim
κ

lim
ι

fr Vκ,ι) = Πm(lim
κ

fr Vκ,ι(κ))

for some subsequence (ι(κ)). Now use Propositions2.3and3.3(1).

Following [8] and [3], and proceeding exactly as in [7, Corollary 3.11 and Proposition 3.12]
using the previous propositions, we obtain:

Proposition 3.6 (1) Let X ⊆ R
m be a T∞ -set, and let1 ≤ l ≤ m. Then the set

B :=
{

a ∈ R
l : cl(Xa) 6= cl(X)a

}

has empty interior.

(2) Let X ⊆ [−1,1]m be aT∞ -set. Then[−1,1]m \ X is also aT∞ -set.

For m∈ N, let Tm be the collection of allT∞ -setsX ⊆ Im.

Corollary 3.7 The collectionT := (Tm)m∈N forms an o-minimal structure onI .

Proof of Theorem A For eachm, let τm : Rm −→ (−1,1)m be the (definable) homeo-
morphism given by

τm(x1, . . . , xm) :=

(

x1

1+ x2
1

, . . . ,
xm

1+ x2
m

)

,

and letSm be the collection of setsτ−1
m (X) with X ∈ Tm. By Corollary3.7, the collection

S = S := (Sm)m gives rise to an o-minimal expansionT∞(R) of R. By Proposition
3.3(2), every definable set is definable inT∞(R). But if L is a Rolle leaf of a definable
nested distributiond on R

n, thenτn(L) is a Rolle leaf of the pullback (τ−1
n )∗d. It follows

from Proposition3.3(3) thatτn(L) ∈ Tn, so L is definable inT∞(R). Therefore,N (R) is
a reduct ofT∞(R) in the sense of definability.
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4 Proof of Theorem B

First, we establish [5, Proposition 7.1] with “T∞ -limit” and “ T∞(R)” in place of “pfaffian
limit” and “P(R)”. To do so, we proceed exactly as in [5], making the following additional
changes.

(B1) Replacing “admissible sequence” with “T∞ -sequence”, we obtain corresponding
versions of Lemma 4.8, Remark 4.9, Proposition 4.11, Corollary 4.13 and Proposition
5.3 in [5].

(B2) Using (B1), we obtain the corresponding version of [5, Proposition 7.1].

Second, assuming thatR admits analytic cell decomposition, (B2) and [5, Proposition
10.4] imply that everyT∞ -limit over R is definable inN (R); in particular,T∞(R) and
N (R) are interdefinable. Hence, by [5, Corollary 1],T∞(R) andP(R) are interdefinable.
Replacing once moreR by P(R), Theorem B is now proved.
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Ann. Fac. Sci. Toulouse Math. (6) 7 (1998) 93–112

[4] J-M Lion , P Speissegger, A geometric proof of the definability of Hausdorff limits, Selecta
Math. (N.S.) 10 (2004) 377–390

[5] J-M Lion , P Speissegger, The theorem of the complement for nested sub-pfaffian sets, Duke
Math. J. 155 (2010) 35–90

[6] D Marker , C I Steinhorn, Definable types in o-minimal theories, J. Symbolic Logic 59
(1994) 185–198

[7] P Speissegger, The Pfaffian closure of an o-minimal structure, J. Reine Angew. Math. 508
(1999) 189–211

[8] A J Wilkie , A theorem of the complement and some new o-minimal structures, Selecta
Math. (N.S.) 5 (1999) 397–421

http://dx.doi.org/10.1090/S0002-9947-98-02105-9
http://www.numdam.org/item?id=AFST_1998_6_7_1_93_0
http://dx.doi.org/10.1007/s00029-004-0360-z
http://dx.doi.org/10.2307/2275260
http://dx.doi.org/10.1515/crll.1999.026
http://dx.doi.org/10.1007/s000290050052


12 Jean-Marie Lion and Patrick Speissegger

IRMAR, Universit́e de Rennes I, Campus de Beaulieu, 35042 Rennes cedex, France

Department of Mathematics & Statistics, McMaster University, 1280 Main Street West, Hamilton,
Ontario L8S 4K1, Canada

jean-marie.lion@univ-rennes1.fr, speisseg@math.mcmaster.ca

mailto:jean-marie.lion@univ-rennes1.fr
mailto:speisseg@math.mcmaster.ca

	1 The definitions
	2 Towards the proof of Theorem A
	3 O-minimality and proof of Theorem A
	4 Proof of Theorem B
	Bibliography

