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TRANSLATION INVARIANT EQUATIONS AND THE METHOD

OF SANDERS

THOMAS F. BLOOM

Abstract. We extend the recent improvement of Roth’s theorem on three term
arithmetic progressions by Sanders to obtain similar results for the problem of locat-
ing non-trivial solutions to translation invariant linear equations in many variables
in both Z/NZ and Fq[t].

1. Introduction

This paper concerns solutions to a linear equation in s ≥ 3 variables,

(1.1) c1x1 + · · ·+ csxs = 0,

working inside some fixed ring R, and we restrict our attention to those equations
with coefficients satisfying c1+ · · ·+ cs = 0. These are often referred to as translation
invariant systems, since it follows that if (x1, . . . , xs) ∈ Rs is a solution then so is
(x1 + x, . . . , xs + x) for any x ∈ R. Following Ruzsa [14] we define the genus of an
equation of the shape (1.1) to be the largest number m with the property that there
is a partition of {1, . . . , s} into m disjoint nonempty sets Tj where

∑
i∈Tj

ci = 0. Note

that the genus is well defined and positive, as a consequence of translation invariance.
Given an equation (1.1) of genus m and a finite set A one obtains |A|m solutions
x ∈ As by setting xi = xi′ whenever i, i

′ ∈ Tj . We call such solutions trivial, and seek
an upper bound on the size of sets which contain only trivial solutions to (1.1). In this
paper we generalise a recent result of Sanders which gives the best known bound in the
case with s = 3 and R = Z/NZ to obtain quantitative results of comparable quality
for any s ≥ 3 in circumstances where R is either Z/NZ or the polynomial ring Fq[t].
Despite the analogies between these rings having been well-explored throughout most
of number theory, the problems of additive combinatorics have been little studied in
the Fq[t] setting, and we hope that this paper will encourage others to obtain further
results of this nature in polynomial rings. We also wish to promote the philosophy that
Fq[t] is a useful model case for such problems, acting as a ‘halfway house’ between the
currently popular finite field model case FN

p and Z/NZ, which is technically simpler
than the latter but captures more of the interesting behaviour of the integer case than
the former.

The problem of finding large sets with no non-trivial solutions to (1.1) may be
posed in any ring (or indeed any module), but since the work of Roth (see [12, 13]) it
has received most attention in the integers Z, or rather finite truncations {1, . . . , N}
that may conveniently be viewed as the cyclic group Z/NZ. In the special case
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s = 3 and (c1, c2, c3) = (1,−2, 1) this is equivalent to finding a three term arithmetic
progression a, a + d, a + 2d, with non-trivial solutions satisfying d 6= 0. If s ≥ 3 and
c ∈ (Z/NZ)s is such that (1.1) has genus m ≥ 1 then we define r(N) = rs,c(N) to be
the cardinality of the largest subset of Z/NZ which contains no non-trivial solutions
to (1.1). Roth showed that r(N) ≪s,c N/ log logN . This was improved for s = 3 by
Heath-Brown [8] and Szemerédi [18] to r(N) ≪ N/ logcN for some absolute constant
c > 0, the value of which was subsequently improved by Bourgain (see [2, 3]), first
to c = 1/2 − o(1) and then to c = 2/3 − o(1). Sanders further improved this to
c = 3/4− o(1) in [15] before the recent breakthrough result of [16],

(1.2) r(N) ≪ N
log log5N

logN
.

We expect that as the number of variables s increases non-trivial solutions to (1.1)
should become easier to find, and hence we should obtain improved bounds for r(N).
The first result of this paper confirms this expectation, generalising the result of
Sanders to handle arbitrary s ≥ 3.

Theorem 1.1. Let s ≥ 3, and suppose c ∈ Zs satisfies the condition that the equation

(1.1) has genus m ≥ 1. Then

rs,c(N) ≪s,c N

(
log log5 N

logN

)s−2

.

We remark that the implicit constant in Theorem 1.1 in fact depends only on
ℓ = max1≤i≤s|ci|. In [14] Ruzsa showed that if the equation (1.1) has genus m then
r(N) ≪ N1/m, which is far superior to Theorem 1.1 whenever m ≥ 2. The power of
the methods used to obtain the bounds listed above, which originated in Roth [12],
is that they give a non-trivial result in the most difficult case m = 1. When s ≥ 6,
recent work of Schoen and Shkredov [17], building on other work of Sanders, shows
that for some absolute positive constants C and c we have the near-optimal bound
r(N) ≪ N exp(−C logcN). Theorem 1.1, however, gives the sharpest known bounds
for s = 4 and s = 5.

By partial summation we obtain the following corollary.

Corollary 1.1. If A ⊂ N satisfies
∑

a∈A a−1 = ∞ then A contains infinitely many

non-trivial solutions to every translation invariant equation of the form (1.1) having
s ≥ 4 variables.

For comparison, a conjecture of Erdős asserts that if
∑

a∈A a−1 = ∞ then A must
contain infinitely many arithmetic progressions of length k for any k ∈ N. In the case
k = 3, this would follow were Corollary 1.1 to hold with s = 3, which would in turn
follow if one could improve the log log5N factor in Theorem 1.1 to log log−2N , for
example.

Another popular setting for the problem of finding solutions to the equation (1.1) is
FN
p , an N -dimensional vector space over the finite field Fp. Here we have coefficients

ci ∈ Fp and we define rs,c(N) to be the cardinality of the largest subset of FN
p that

contains only trivial solutions to the equation (1.1). The best known bounds here
are superior to those in Z/NZ. Thus, for example, the simple method of Meshulam
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[11] yields r(N) ≪ pN/N , a conclusion comparable to r(N) ≪ N/ logN in the
integer case. Furthermore, Bateman and Katz [1] have recently improved this upper
bound to show that for some absolute constant ǫ > 0, one has r(N) ≪ pN/N1+ǫ.
The investigation of such problems in FN

p has recently become popular since it is

often conceptually easier to prove results in FN
p , taking advantage of the vector space

structure, and then ‘translate’ the methods to the more difficult case Z/NZ (see [7]
for a comprehensive discussion of this technique).

One setting that has received comparatively little attention is Fq[t], the ring of
polynomials over a finite field; as in the case of Z it is more convenient to deal with
finite truncations of this infinite ring, so we shall work in the additive subgroup of
polynomials with degree strictly less than N , which we shall denote by GN . There are
many well-known analogies between number theory in Z and in Fq[t], and theorems
in one often have a natural counterpart in the other. We should expect, in particular,
some result analogous to (1.2) to hold for solutions to the equation (1.1) where c ∈
Fq[t]

s. Perhaps part of the reason why this problem has been largely overlooked is that
GN is additively isomorphic to FN

q , since both are N -dimensional vector spaces over
Fq. Hence in the classical case, with s = 3 and c = (1,−2, 1), the strong bounds of the
FN
q setting are available. In general, such bounds are available whenever c ∈ Fs

p, where
p is the characteristic of Fq. In the Fq[t] setting, however, this restricts all coefficients
to have degree zero, and hence trivial size under the usual valuation |a| = qdeg a.
Viewed in this way it is not surprising that we can obtain such impressive bounds
with such a strong restriction on the coefficients of our linear equation. Note in
particular that such issues of triviality do not arise in the Z/NZ case, since s ≥ 3
and translation invariance forces at least one of the coefficients of the equation (1.1)
to have non-trivial size.

When s ≥ 3 and c ∈ Fq[t]
s, denote by r(N) the size of the largest subset of GN

which contains no non-trivial solutions to the equation (1.1). The sharpest bound for
r(N) currently available in the case where c ∈ Fs

q is due to Liu and Spencer [10] who

showed that r(N) ≪ qN/N s−2. The second result of this paper adapts the method of
Sanders to give a comparable bound even when the coefficients ci have large degree.
As above, this result gives a bound which improves as s increases.

Theorem 1.2. Let s ≥ 3, and suppose c ∈ Fq[t]
s satisfies the condition that the

equation (1.1) has genus m ≥ 1. Then

rs,c(N) ≪s,ℓ q
N

(
log4N

N

)s−2

,

where ℓ = max(deg ci).

Note here that the implicit constant depends only on the highest degree of the
coefficients ci.

It is not difficult to get some kind of quantitative bound for r(N) even when the
coefficients have large degree, and indeed the original method of Roth can be adapted
with little effort to obtain r(N) ≪ qN/ logN . Theorem 1.2 goes beyond this to show
that we can obtain a quantitative bound comparable to the best known in Z/NZ.
Indeed, in Fq[t] we are able to do slightly better (by a factor of logN) than the
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analogue of (1.2). This improvement is a consequence of the vector space structure
of Fq[t] which we are able to exploit even when the coefficients have large degree.

We remark that the methods of [14] are easily adapted to the Fq[t] setting to give
r(N) ≪ qN/m whenever (1.1) has genus m, a conclusion sharper than that of Theorem
1.2 whenever m ≥ 2. The strength of Theorem 1.2 is that it applies when m = 1,
which appears to be the most difficult case.

The main ideas and techniques used to establish Theorems 1.1 and 1.2 are those of
the original argument in [16], but we are able to make many technical simplifications
in Fq[t], largely thanks to the fact that the analogue of ‘Bohr sets’ are closed under
addition. Indeed, we hope that this paper may also serve as an exposition of the
methods in [16], for in Fq[t] the fundamental ideas are less obscured by technical
difficulties. We further hope that this paper will indicate how to translate many
results of additive combinatorics to an analogous result in Fq[t], which we believe to
be a technically simpler model for such results.

In recent years there has been a focus on obtaining such results in FN
p and then

translating the methods used so as to obtain a result in Z/NZ. We believe that the
translation from FN

p to Fq[t] and thence to Z/NZ is simpler to perform and more
intuitive. We are confident that this new method will stimulate further progress in
other problems of additive combinatorics.

Thus, for example, the approach taken in this paper is to first establish Theorem
1.2, the Fq[t] case, and then sketch how to adapt the proof to obtain Theorem 1.1, the
Z/NZ case. In Section 2 we explain the notation used in the rest of the paper and
prove two useful lemmas. Sections 3 and 4 provide the two tools used in the approach
of Sanders [16], namely a combinatorial transformation of sets inspired by the work
of Katz and Koester [9] and an application of the useful probabilistic theorem due
to Croot and Sisask [5]. Section 5 combines these tools in the ‘density increment’
strategy so as to conclude the proof of Theorem 1.2. Section 6 then sketches a proof
of Theorem 1.1. Here we are brief, since the proofs are the same as those for Theorem
1.2 except for routine technical changes.

2. Notation and preliminaries

Throughout the rest of this paper, let N be some fixed large integer and Fq be
the finite field with q elements. We shall write G = GN = {x ∈ Fq[t] : deg x < N},
and note in particular that G is an N -dimensional vector space over Fq. We will
frequently use the expectation notation

E
x∈X

f(x) =
1

|X|

∑

x∈X

f(x).

Unless denoted otherwise, all expectations are taken over G. When considering C ⊂
G, we use µC to denote the measure induced by C, so that µC(A) = |A∩C|/|C|. For
notational convenience we will also use β to denote µB. Given a subspace B ⊂ G
we will denote subsets of B by capital Roman letters, and their density within B by
the corresponding lower case Greek letter, so that µB(A) = α, for example. By a
convenient abuse of notation, we use the same letter for the set and its characteristic
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function. We draw special attention to our novel notation for the balanced function
of a subset A ⊂ B, defined by

A(x) := (A− αB)(x) =





1− α if x ∈ A,

−α if x ∈ B\A, and

0 otherwise,

so that EA(x) = 0. We define

〈f, g〉µX
=E

x∈X

f(x)g(x),

and similarly, for any 1 ≤ p < ∞,

‖f‖p(µX) =

(
E
x∈X

|f(x)|p
)1/p

and ‖f‖∞(µX) = sup
x∈X

|f(x)|.

Where the measure is omitted these expectations should be taken over G. There is
an analogue of Fourier analysis in the Fq[t] setting. If x =

∑
i<N ait

i ∈ Fq((1/t)) then
we define

e(x) := exp(2πiTr(a−1)/p)

where Tr : Fq → Fp is the familiar trace map. We may now define a character on G

as the map x 7→ e(ξx) where ξ is a member of the dual group Ĝ which is defined by

Ĝ = {a−1t
−1 + · · ·+ a−N t

−N : ai ∈ Fq, −N ≤ i ≤ −1}.

The usual definitions and results of Fourier analysis apply in this case, so we define
the Fourier transform of f ∈ L1(G) by

f̂(ξ) =E f(x)e(ξx),

and we have Parseval’s identity
∑

ξ

f̂(ξ)ĝ(ξ) = 〈f, g〉.

In most cases, when we use the convolution operator it will be with respect to the
measure over some subspace B (which will be clear from the context), and hence we
define

f ∗ g(x) =E
y∈B

f(y)g(x− y).

In some cases, g will be a measure µC for some other set C, and there we define

f ∗ µC(x) =E
y∈C

f(x− y).

As usual, the Fourier transform converts convolution into multiplication, with an
appropriate scaling factor:

µG(B)f̂ ∗ g(ξ) = f̂(ξ)ĝ(ξ).

This has the useful corollary, frequently used without mention in what follows, that

µG(B)E f ∗ g =E fE g.
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For k ∈ N and Γ ⊂ Ĝ we define the Bohr set Bk(Γ) to be the set

{x : deg{xξ} < −k for all ξ ∈ Γ}

where if x =
∑

i<N ait
i ∈ Fq((1/t)) then {x} =

∑
i<0 ait

i. We call the size of Γ the
rank of B, denoted by rk(B), and call k the width of B. We note the easy estimate

|Bk(Γ)| ≥ qN−k|Γ|.

Furthermore, note that Bk(Γ) is itself a vector space over Fq. This is analogous to
the traditional Bohr set in the context of Z/NZ,

Bohrρ(Γ) = {x : ‖xξ‖ < ρ for all ξ ∈ Γ}

where ‖ · ‖ measures the distance to the nearest integer. For both concepts, the idea
is to find a set on which a given set of characters is ‘approximately’ trivial. This
is made easier in our setting of Fq[t], since a character can only take finitely many
values even as N → ∞, unlike the Z/NZ case. The significant observation here is
that the other important feature of Bohr sets is that they are approximately closed
under dilation by the coefficients of our linear equation; in the Fq[t] case this follows
from the inclusion λ · Bk+m(Γ) ⊂ Bk(Γ) which holds whenever deg λ ≤ m. We also
desire that they be, at least approximately, closed under addition. This has obscured
the dilation preservation feature in the traditional settings of Z/NZ and FN

p , since
this follows from closure under addition using crude estimates such as 2 ·A ⊂ A+A.

In the density increment procedure used to prove Theorem 1.2 we will need to
dilate a Bohr set by some c ∈ Fq[t] and ensure that this dilate is itself a Bohr set,
so that the next iteration can be performed. The following lemma shows that this
is true, and that the rank of this new Bohr set can only increase by some bounded
amount. Recall that Gm denotes the set of polynomials in Fq[t] with degree strictly
less than m.

Lemma 2.1. If c ∈ Fq[t] and B = Bk(Γ) is a Bohr set such that B ⊂ GN−deg c then

c · B is a Bohr set with rank at most rk(B) + qdeg c and width k.

Proof. Choose c−1 ∈ Fq((1/t)) such that c−1c = 1 and let Γ′ = c−1(Γ∪Gdeg c). Let Γ̃ be

the truncation of Γ′ to the firstN negative coefficients, that is, the set of all γ ∈ Ĝ such

that γ ≡ {x} (mod t−N) for some x ∈ Γ′. We have Γ̃ ⊂ Ĝ and |Γ̃| ≤ |Γ′| ≤ |Γ|+qdeg c,
so to complete the proof it remains to show that c · B = Bk(Γ̃).

We first note that, by orthogonality, we have the identity

∑

l∈Gdeg c

e(c−1lx) =

{
0 when c ∤ x, and

qdeg c when c | x.

By the definition of e(·), however, we also have
∑

l∈Gdeg c
e(c−1lx) = qdeg c if and only

if Tr(c−1lx) = 0 for all l ∈ Gdeg c, which is true if and only if deg{c−1lx} < −1 for all
l ∈ Gdeg c since Fq ·Gdeg c = Gdeg c. It follows that c | x if and only if deg{c−1lx} < −1

for all l ∈ Gdeg c. If we have some y ∈ Bk(Γ̃), therefore, then we must have y = cx for
some x ∈ GN−deg c. Furthermore, for all γ ∈ Γ we have deg{xγ} = deg{yc−1γ} < −k

and hence Bk(Γ̃) ⊂ c ·B. Finally, if x ∈ B then for any γ ∈ Γ we have deg{cxc−1γ} =
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deg{xγ} < −k and for any l ∈ Gdeg c we have deg{cxc−1l} < −k, so that cx ∈ Bk(Γ̃)

and hence Bk(Γ̃) = c ·B as required. �

We will frequently use both the big-O notation and the Vinogradov ≪ symbol,
where the implicit constant depends on at most s, ℓ and q. We will also sometimes
use a c or C to denote some positive constant, again depending on at most s, ℓ and q,
which may vary from line to line. All these constants may be made explicit, though
we do not do so here.

We shall now define the dual concepts of spectra and symmetry sets. As above, we
suppose B is some subspace of G which shall be clear from context, and we define
the η-spectrum of a function f ∈ L1(B) to be

∆η(f) = {ξ ∈ B̂ : |f̂(ξ)| ≥ η‖f‖1},

where B̂ is the image of B under the canonical identification of G with Ĝ. Further-
more, for any L,K ⊂ B we define the η-symmetry set, which is the physical space
analogue of the spectrum, to be

Symη(L,K) = {x ∈ B : L ∗K(x) ≥ η}.

We will need some structural information on spectra due to Chang [4]. The following
version is proved as Lemma 4.36 in [19].

Lemma 2.2. Let B be some subspace of G and D ⊂ B. If η > 0 then there is a

subset ∆̃ ⊂ ∆η(D) such that |∆̃| ≪ η−2 log(1/δ) and

∆η(D) ⊂ {−1, 0, 1}|∆̃| · ∆̃.

We now use this to convert the fact that we have large Fourier coefficients over a
large spectrum into a more useful density increment property. The idea goes back to
the work of Heath-Brown [8] and Szemerédi [18], and was developed into the following
form by Sanders [15].

Lemma 2.3. For any Bohr set B ⊂ G and η > 0 if A,D ⊂ B satisfy
∑

γ∈∆η(D)

|Â(γ)|2 ≥ να2µG(B)

then there is a Bohr set B′ ⊂ B with

rk(B′) ≤ rk(B) +O(η−2 log(1/δ)) and µB(B
′) ≥ exp(−Cη−2 log(1/δ))

such that ‖A ∗ β ′‖∞ ≥ α(1 + ν).

Proof. Let ∆̃ ⊂ ∆η(D) be the set given by Lemma 2.2, and refine the Bohr set B by
setting

B′ = {x ∈ B : deg{xγ} < −1 for all γ ∈ ∆̃}.

It follows that rk(B′) ≤ rk(B) + |∆̃| ≤ rk(B) +O(η−2 log(1/δ)), and hence µB(B
′) ≥

exp(−Cη−2 log(1/δ)). Furthermore, for all γ ∈ ∆η(D) we have β̂ ′(γ) = Ex∈B′e(xγ) =
1. By Parseval’s identity and the initial hypothesis

‖A ∗ β ′‖22 =
∑

γ∈Ĝ

|Â(γ)|2|β̂ ′(γ)|2 ≥
∑

γ∈∆η(D)

|Â(γ)|2 ≥ να2µG(B).
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Furthermore, note that B∗β ′(y) = Ex∈B′B(y−x) = B(y), and hence 〈B∗β ′, B∗β ′〉 =
µG(B). Similarly,

〈A ∗ β ′, B ∗ β ′〉 = µG(B)E
x∈B
E
y∈B′

A(y − x) = αµG(B).

In particular,

‖A ∗ β ′‖22 = ‖A ∗ β ′‖22 + α2〈B ∗ β ′, B ∗ β ′〉 − 2α〈A ∗ β ′, B ∗ β ′〉

= ‖A ∗ β ′‖22 − α2µG(B).

It follows that ‖A ∗ β ′‖22 ≥ α2(1 + ν)µG(B). Combining Hölder’s inequality with the
equality ‖A ∗ β ′‖1 = αµG(B) gives ‖A ∗ β ′‖∞ ≥ α(1 + ν) as required. �

We make one final remark on the values of the densities α of the various A ⊂ G
we consider, where these A will be sets with no non-trivial solutions to the equation
(1.1). Recall that we may assume α ≤ r(N) ≪ 1/ logN by adapting the method of
Roth. In particular, for sufficiently large N , we will assume that α < 1/e2, so that
log(1/α) > 2. Making this assumption avoids some notational awkwardness.

3. A combinatorial transformation

We begin with a generalisation of one of the two main tools in the method of
Sanders, a combinatorial transformation. This has its origins in the work of Katz
and Koester [9], though a similar transformation known as the Dyson e-transform
has been a useful tool in additive combinatorics since [6].

The idea is to find, given subsets A1, . . . , Ak+1 of a Bohr set B, corresponding
L, S1, . . . , Sk ⊂ B such that L is ‘thick’, the Si are not too ‘thin’ and

L ∗ S1 ∗ · · · ∗ Sk ≤ α−2
1 A1 ∗ A2 ∗ · · · ∗ Ak+1.

Since solutions to (1.1) are counted by 〈(c1 ·A) ∗ · · · ∗ (cs−1 · A), cs · A〉 to find many
solutions to (1.1) in A it then suffices to find a lower bound for 〈L ∗ · · · ∗Ss−2, cs ·A〉.
The large density of L may then be efficiently exploited using the recent probabilistic
method of Croot and Sisask, as we shall do in the next section. When we cannot find
such sets we find a strong density increment and jump to the final stage of the proof.

We first give a simplified proof of Lemma 4.2 from [16], taking advantage of the fact
that our Bohr sets are subspaces in order to streamline the proof. We also observe
that the proof gives a slightly stronger statement than is recorded in [16]. We then
apply this technical lemma iteratively to construct sets L, S1, . . . , Sk as above to prove
the main theorem of this section. This is a generalisation of Proposition 4.1 from [16],
taking advantage of the large number of convolutions to run a more efficient iterative
procedure.

Lemma 3.1. Let B be a Bohr set and K, T, L, S ⊂ B. If λ < 1/4 then either

(1) there exists a Bohr set B′ ⊂ B with rank at most rk(B) + O(λκ−1 log(1/τ)),
density µB(B

′) ≥ exp(−Cλκ−1 log(1/τ)) such that, for some x ∈ B, β ′(K +
x) ≥ κ/32λ, or
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(2) there are L′, S ′ ⊂ B with β(L′) ≥ λ+ κ/2 and β(S ′) ≥ τσ/2 such that, for all

x ∈ G,

L′ ∗ S ′(x) ≤ L ∗ S(x) +K ∗ T (x).

Proof. For an arbitrary x ∈ B, let Lx = L ∪ (K + x) and Sx = S ∩ (T − x). By
construction,

Lx ∗ Sx ≤ L ∗ Sx + (K + x) ∗ Sx ≤ L ∗ S +K ∗ T.

Furthermore, we have

β(Lx) = λ+ κ− β(L ∩ (K + x)) = λ+ κ− L ∗ (−K)(x)

and β(Sx) = (−S) ∗ T (x). Hence if |Symτσ/2(−S, T )| > |Symκ/2(−L,K)| then we are
in the second case by taking L′ = Lx and S ′ = Sx for some x ∈ Symτσ/2(−S, T )\Symκ/2(L,−K).
Note that

β(Symτσ/2(−S, T ))σ + στ/2 ≥E
x∈B

(−S) ∗ T (x) = στ,

so that β(Symτσ/2(−S, T )) ≥ τ/2. Hence either we are in the second case of the
theorem, or we may assume that D = Symκ/2(−L,K) has density at least τ/4, say.
We have

〈(−L) ∗K,D〉β ≥ κβ(D)/2.

Note that
〈(−L) ∗B,D〉β = λβ(D).

Hence, by the triangle inequality,

|〈(−L) ∗K, D〉β| ≥ κβ(D)(1/2− λ) ≥ κβ(D)/4.

Taking the Fourier transform of the left hand side we see that∣∣∣∣∣∣
∑

γ∈Ĝ

(̂−L)(γ)K̂(γ)D̂(γ)

∣∣∣∣∣∣
≥ κβ(D)µG(B)2/4.

The Cauchy-Schwarz inequality combined with Parseval’s identity then gives
∑

γ∈Ĝ

|K̂(γ)|2|D̂(γ)|2 ≥ κ2β(D)2µG(B)3/16λ.

Furthermore, if we let η2 = κ/32λ then by Parseval’s identity again we have
∑

γ /∈∆η(D)

|K̂(γ)|2|D̂(γ)|2 ≤ κ2β(D)2µG(B)3/32λ.

Using the trivial upper bound |D̂(γ)| ≤ β(D)µG(B) it follows that
∑

γ∈∆η(D)

|K̂(γ)|2 ≥ κ2µG(B)/32λ.

Applying Lemma 2.3, we have a Bohr set B′ ⊂ B with rank and size as required
and β ′(K + x) ≥ κ/32λ for some x ∈ X . �

We now apply Lemma 3.1 iteratively to prove the main theorem of this section.
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Theorem 3.1. Let B be a Bohr set and suppose A1 ⊂ B with density α1 and

A2, . . . , Ak+1 ⊂ B all with density at least α. Then either

(1) there exists a Bohr set B′ ⊂ B with rank rk(B′) ≤ rk(B)+O(α
−1/k
1 log(1/α)),

density µB(B
′) ≥ exp(−Cα

−1/k
1 log(1/α)) and, for some x ∈ B, we have

β ′(A1 + x) ≥ 2α1, or

(2) there are sets L ⊂ B and S1, . . . , Sk ⊂ B with λ ≥ 2−k−6 and σi ≥ αCα
−1/k
1 for

1 ≤ i ≤ k such that

L ∗ S1 ∗ · · · ∗ Sk(x) ≤ α−2
1 A1 ∗ A2 ∗ · · · ∗ Ak+1(x)

for all x ∈ G.

Proof. Let L0 = A1. We show by induction on 1 ≤ j ≤ k that we may either find
X1, . . . , Xj ⊂ B such that Lj = A1 +X1 + · · ·+Xj satisfies

λj ≥ max(α1|X1| · · · |Xj|/2
j, α

1−j/k
1 /2j)

and S1, . . . , Sj ⊂ B satisfying σi ≥ αCα
−1/k
1 for 1 ≤ i ≤ j such that

Lj ∗ S1 ∗ · · · ∗ Sj ∗ Aj+2 ∗ · · · ∗ Ak+1(x) ≤ α
−2j/k
1 A1 ∗ A2 ∗ · · · ∗ Ak+1(x)

for all x ∈ G, or there is a Bohr set B′ ⊂ B such that rk(B′) ≤ rk(B)+O(α
−1/k
1 log(1/α))

and for some x ∈ B we have β ′(Lj−1+x) ≥ 2α1|X1| · · · |Xj−1|. If we are in the second
case for any 1 ≤ j ≤ k then we halt the inductive procedure and by the pigeonhole
principle we must have, for some xi ∈ Xi, β

′(A1+x1+ · · ·+xj−1+x) ≥ 2α1, giving us
the first case of the theorem. Otherwise, setting j = k and L = Lk gives the second
case of the theorem.

We now fix 1 ≤ j ≤ k and suppose that we have produced Lj−1 and S1, . . . , Sj−1

as above. We produce a sequence of sets L
(i)
j , S

(i)
j ⊂ B iteratively such that λj−1i ≥

λ
(i)
j ≥ λj−1i/2, σ

(i)
j ≥ (α/2)i, and L

(i)
j ∗ S

(i)
j ≤ iLj−1 ∗ Aj+1. We begin the iteration

by letting L
(1)
j := Lj−1 and S

(1)
j := Aj+1.

We now repeatedly apply Lemma 3.1, with K = Lj−1 and T = Aj+1, and note that

an examination of the proof shows that we take L
(i+1)
j = L

(i)
j ∪ (Lj−1+xi+1) for some

xi+1 ∈ B so that L
(i)
j = Lj−1 +X

(i)
j where |X

(i)
j | ≤ i. If we can continue the process

for i′ = ⌈α
−1/k
1 ⌉ steps, then we can halt and set Lj = L

(i′)
j , so that Lj = Lj−1 + Xj

where

λj ≥ λj−1⌈α
−1/k
1 ⌉/2 ≥ max(α1|X1| · · · |Xj|/2

j, α
1−j/k
1 /2j)

by inductive hypothesis. Furthermore, if we set Sj = S
(i′)
j then σj ≥ (α/2)i

′

≥ αCα
−1/k
1

and by inductive hypothesis again,

Lj ∗ · · · ∗ Sj ∗ Aj+2 ∗ · · · ∗ Ak+1 ≤ ⌈α
−1/k
1 ⌉Lj−1 ∗ · · · ∗ Sj−1 ∗ Aj+1 ∗ · · · ∗ Ak+1

≤ α
−2j/k
1 A1 ∗ A2 ∗ · · · ∗ Ak+1

as required.
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Otherwise, we must halt at some i′ ≤ α
−1/k
1 with the first alternative from Lemma

3.1, so that there is a Bohr set B′ ⊂ B with rank at most

rk(B) +O(λ
(i′)
j λ−1

j−1 log(1/α)) ≤ rk(B) +O(α
−1/k
1 log(1/α))

and density µB(B
′) ≥ exp(−Cα

−1/k
1 log(1/α)) such that, for some x ∈ B,

β ′(Lj−1 + x) ≥ λj−1/32λ
(i′)
j ≥ α1|X1| · · · |Xj−1|/2

j+5λ
(i′)
j ≥ 2α1|X1| · · · |Xj−1|

since if λ
(i′)
j > 2−j−6 > 2−k−6 we may end the entire procedure with the second case

of the theorem. This completes the induction. �

4. The Croot-Sisask probabilistic method

We now use the new Croot-Sisask method of random sampling from [5] to find
a density increment that can exploit the fact that one set in a convolution is very
dense, while allowing us to ignore the density loss in the other sets that results from
applying Theorem 3.1. The operator τt is defined by τt(f)(x) = f(x−t). The theorem
finds a large set T such that the translation operator τt is essentially constant on the
convolution L∗S1 ∗ · · · ∗Sk for all t ∈ T . This set may have no structure initially, but
Croot and Sisask observed that we may recover some structure by taking repeated
sumsets of T .

We first state the theorem from [5] that we require, before proving an analogue of
Corollary 5.2 of [16] for multiple convolutions. The proof given here is very similar,
but once again we are able to present a simplified and streamlined version using the
subspace structure of our Bohr sets.

Theorem 4.1. Let B be an additive group, S ⊂ B and f ∈ L1(B). Then for any

ǫ > 0 and p ≥ 2 there is some T ⊂ B with β(T ) ≥ σCǫ−2p such that

‖τt(f ∗ µS)− f ∗ µS‖p(β) ≤ ǫ‖f‖p(β)

for all t ∈ T .

This is a global version of Theorem 5.1 from [16], which we are able to apply here
because Bohr sets are additive groups. When they are only approximately closed
under addition, as in Z/NZ, the local theorem of [16] must be used. A proof may be
found in [5] and [16]. The following theorem applies this to obtain a useful density
increment.

Theorem 4.2. Let B be a Bohr set, and suppose A,L, S1, . . . , Sk ⊂ B. Then either

(1) 〈L ∗ S1 ∗ · · · ∗ Sk, A〉β ≥ λσ1 · · ·σkα/2, or
(2) for any integer l there exists a Bohr set B′ ⊂ B such that

rk(B′) ≤ rk(B) +O(λ−2−1/lα−1/ll2 log(1/α) log(1/σk)),

µB(B
′) ≥ exp(−Cλ−2−1/lα−1/ll2 log(1/α) log(1/σk))

and, for some x ∈ B, we have β ′(A+ x) ≥ α(1 + cλ).
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Proof. Applying Theorem 4.1 with parameters p and ǫ to be chosen later, where

f = L ∗ µS1 ∗ · · · ∗ µSk−1
, there is a set T ⊂ B such that |T | ≥ σCǫ−2p

k |B| and

‖τt(L ∗ µS1 ∗ · · · ∗ µSk
)− L ∗ µS1 ∗ · · · ∗ µSk

‖p(β) ≤ ǫ‖L ∗ µS1 ∗ · · · ∗ µSk−1
‖p(β)

≤ ǫ‖L‖p(β)

for all t ∈ T , or after rescaling,

‖τt(L ∗ S1 ∗ · · · ∗ Sk)− L ∗ S1 ∗ · · · ∗ Sk‖p(β) ≤ ǫσ1 · · ·σkλ
1/p ≤ ǫσ1 · · ·σk.

By the triangle inequality, for any l ∈ N and t ∈ l,

‖τt(L ∗ S1 ∗ · · · ∗ Sk)− L ∗ S1 ∗ · · · ∗ Sk‖p(β) ≤ lǫσ1 · · ·σk.

If we let g := µT ∗ · · · ∗ µT with l copies of µT , then after recalling the definition of τt
and applying the triangle inequality again we get

‖L ∗ S1 ∗ · · · ∗ Sk ∗ g − L ∗ S1 ∗ · · · ∗ Sk‖p(β) ≤ lǫσ1 · · ·σk.

By Hölder’s inequality,

|〈L ∗ S1 ∗ · · · ∗ Sk ∗ g, A〉β − 〈L ∗ S1 ∗ · · · ∗ Sk, A〉β| ≤ lǫσ1 · · ·σk‖A‖p/p−1(β)

≤ λσ1 · · ·σkα/4

if we let p = ⌈log(1/α)⌉ and ǫ = λ/4el. Hence either we are in the first case, or

〈L ∗ S1 ∗ · · · ∗ Sk ∗ g, A〉β ≤ 3λσ1 · · ·σkα/4.

Since Ex∈Bg = 1 we have

E
x∈B

L ∗ S1 ∗ · · · ∗ Sk ∗ g(x) = λσ1 · · ·σk.

Hence
|〈L ∗ S1 ∗ · · · ∗ Sk ∗ g,A〉β| ≥ λσ1 · · ·σkα/4.

We complete the proof by a standard conversion into Fourier space, as in the proof
of Lemma 3.1. Taking the Fourier transform of this inequality we see that∣∣∣∣∣∣

∑

γ∈Ĝ

L̂(γ)Ŝ1(γ) · · · Ŝk(γ)ĝ(γ)Â(γ)

∣∣∣∣∣∣
≥ λσ1 · · ·σkαµG(B)k+1/4.

Using the Cauchy-Schwarz inequality combined with Parseval’s identity and the trivial

bound |Ŝi(γ)| ≤ σiµG(B) gives
∑

γ∈Ĝ

∣∣∣ĝ(γ)Â(γ)
∣∣∣
2

≥ λα2µG(B)/16.

Recalling the definition of g this is
∑

γ∈Ĝ

|µ̂T (γ)|
2l
∣∣∣Â(γ)

∣∣∣
2

≥ λα2µG(B)/16.

Furthermore, if we let η2l = λα/32 then, by Parseval’s identity,
∑

γ 6∈∆η(T )

|µ̂T (γ)|
2l
∣∣∣Â(γ)

∣∣∣
2

≤ λα2µG(B)/32.
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Combining these inequalities we have
∑

γ∈∆η(T )

∣∣∣Â(γ)
∣∣∣
2

≥
∑

γ∈∆η(T )

|µ̂T (γ)|
2l
∣∣∣Â(γ)

∣∣∣
2

≥ λα2µG(B)/32

and the first case follows from Lemma 2.3. �

5. Density increment strategy

We now prove Theorem 1.2 using the traditional density increment strategy: we
construct a series of Bohr sets B(i) such that at each stage, either A∩B(i) has many
solutions to (1.1), or we may find a new Bohr set B(i+1) ⊂ B(i) on which the density
of A increases. Since the density is always trivially bounded above by 1, we can only
iterate this a bounded number of times before we must end with the first alternative,
from which we deduce the existence of many solutions to (1.1) in the original set
A, and hence deduce that A must contain at least one non-trivial solution if α is
sufficiently large.

We define Λ(A) by letting Λ(A)|G|s−1 be the number of solutions (x1, . . . , xs) to
(1.1) with xi ∈ A. Note in particular that we include the trivial solutions so that
Λ(A) ≥ |A|m|G|1−s, where m is the genus of (1.1).

We first combine the results from the previous two sections to obtain a density
increment which we then iterate to provide a lower bound for Λ(A), from which we
deduce Theorem 1.2 as a corollary. This proof is a generalised form of the one found
in [16].

Lemma 5.1. Let B be a Bohr set and Ai ⊂ B for 1 ≤ i ≤ s, all with density at least

α. Then either

(1) 〈A1 ∗ A2 · · · ∗ As−1, As〉β ≫ αCα−1/(s−2)
, or

(2) we have a Bohr set B′ ⊂ B of rank rk(B) +O(α−1/(s−2) log4(1/α)) and size

µB(B
′) ≥ exp(−Cα−1/(s−2) log4(1/α))

such that for some x ∈ B and i ∈ {1, s} we have β ′(Ai + x) ≥ α(1 + c).

Proof. By Theorem 3.1, either we are in the second case of the theorem or there are
L, S1, . . . , Ss−2 ⊂ B with λ > 2−s−3 and σi ≥ αCα−1/(s−2)

for 1 ≤ i ≤ s− 2 such that

A1 ∗ A2 · · · ∗ As−1 ≥ α2L ∗ S1 ∗ · · · ∗ Ss−2.

We may now apply Theorem 4.2 to get that either for any integer l we have a Bohr
set B′ ⊂ B such that

rk(B′) ≤ rk(B) +O(α−1/(s−2)−1/2ll2 log2(1/α))

and, for some x ∈ B, we have β ′(As + x) ≥ α(1 + c), or

〈L ∗ S1 ∗ · · · ∗ Ss−2, As〉β ≥ σ1 · · ·σs−2λα
2/2 ≫ αCα−1/(s−2)

.

Combining this with the bound above, we are either in the first or third case of the
theorem, after taking a roughly optimal choice of l = ⌈log(1/α)⌉. �

We now prove the following generalisation of Theorem 1.2 using the traditional
density increment strategy.
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Theorem 5.1. Let s ≥ 3, and suppose that c ∈ Fq[t]
s satisfies the condition that

(1.1) has genus m ≥ 1. Then there exists a constant C > 0, depending only on s, q
and ℓ = max(deg ci), such that if A ⊂ G then

Λ(A) ≥ exp(−Cα−1/(s−2) log4(1/α)).

Proof. We shall iteratively construct a sequence of Bohr sets B(i) and sets A(i) ⊂ G,
each a translate and dilate of A. Let rk(B(i)) = d(i) and β(i)(A(i)) = α(i). We
shall insist that, given B(i) and A(i), we can either find a B(i+1) and A(i+1) such
that for some constant c′ > 0 (depending only on s, ℓ and q), the density satisfies
α(i+1) ≥ α(i)(1 + c′),

d(i+1) ≤ d(i) +O(α(i)(−1/(s−2)) log4 α−(i)),

and
µB(i)(B(i+1)) ≥ exp(−C(d(i) + α(i)(−1/(s−2)) log4 α−(i))),

or we have
Λ(A) ≥ exp(−Cd(i))µG(B

(i))s−1αCα−1/(s−2)

.

We begin the iteration by letting B(1) = GN−sℓ and A(1) = A∩B(1) (so that d(1) ≤
qsℓ and α(1) ≥ α − qsℓ−N). Since we always have the trivial bound α(i) ≤ 1, we can
iterate this process only O(log(1/α)) times, hence at some B(K), with K ≪ log(1/α),
we have the second alternative. Here we have

d(K) ≪
K∑

i=1

α(i)(−1/(s−2)) log4 α−(i) ≪ α−1/(s−2) log4(1/α)
K∑

i=0

(1 + c′)−i

≪ α−1/(s−2) log4(1/α).

Similarly,

µG(B
(K)) ≥ exp(−Cα−1/(s−2) log4(1/α))

from which the result follows.
We now discuss the iterative procedure. We are given a Bohr set B(i) and a set

A(i). To reduce notation in what follows, let Ã = A(i) ∩ B(i) and B = B(i). We have

Ã ⊂ B with density α̃ = α(i), where B is a Bohr set with rank d and width k. Note

that for any B′ ⊂ B we have Ex∈BÃ∗β ′(x) = Ex∈B′Ã∗β(x) = α̃. In particular, let B′

be the Bohr set with the same frequency set as B but width k+ sℓ, and for 1 ≤ j ≤ s
define Bj = c1 · · · cj−1cj+1 · · · cs · B

′. Since Bj ⊂ B for all 1 ≤ j ≤ s, we have

E
x∈B

(Ã ∗ β1 + · · ·+ Ã ∗ βs)(x) = sα̃

and in particular there is some x ∈ B such that

Ã ∗ β1(x) + · · ·+ Ã ∗ βs(x) ≥ sα̃.

Note that if

Ã ∗ βj(x) ≥ α̃

(
1 +

c

2(s− 1)

)

for any 1 ≤ j ≤ s then we may proceed to the next stage of the iteration, letting
B(i+1) = Bj and A(i+1) = A(i). Here we use Lemma 2.1 which ensures Bj is a
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genuine Bohr set, after noting that since we chose B(1) = GN−sℓ the condition B′ ⊂

GN−deg{c1···cj−1cj+1···cs} will always be satisfied. Otherwise we must have Ã ∗ βj(x) ≥

α̃
(
1− c

2

)
for all 1 ≤ j ≤ s.

Hence if we let B′′ = c1 ·B1 = · · · = cs ·Bs, and similarly Aj = cj(A
(i)−x), then we

have β ′′(Aj) ≥ α̃
(
1− c

2

)
for 1 ≤ j ≤ s. By Lemma 2.1 we see that B′′ is a genuine

Bohr set and furthermore B′′ ⊂ B. We now satisfy the conditions of Lemma 5.1;
hence either

〈A1 ∗ A2 · · · ∗ As−1, As〉β′′ ≥ αCα−1/(s−2)

,

or there is a Bohr set B∗ ⊂ B′′ of rank d+O(α−1/(s−2) log4(1/α)) and density

µB(B
∗) = µB(B

′′)µB′′(B∗) ≥ exp(−C(d + α−1/(s−2) log4(1/α)))

such that either A1 or As has density increment at least α̃(1 + c)(1− c
2
) ≥ α̃(1 + c

4
).

In this case we are done, letting B(i+1) = B∗ and A(i+1) be A1 or As as appropriate.
Otherwise, note that

Λ(A) ≥ µG(B
′′)s−1〈A1 ∗ A2 · · · ∗ As−1, As〉β′′ .

Here is where we make essential use of the translation invariant condition
∑

ci = 0,
for the inner product on the right hand side only counts solutions in a set which may
be translated and dilated many times from our original A, but each solution can be
retranslated and dilated to give a solution in the original set. Putting this all together
and noting the estimate µB(B

′′) ≥ exp(−Cd) we have

Λ(A) ≥ µG(B
′′)s−1αCα−1/(s−2)

≥ exp(−Cd)µG(B)s−1αCα−1/(s−2)

as required. �

We finally prove Theorem 1.2 as a corollary.

Proof of Theorem 1.2. Suppose A ⊂ G with density α has no non-trivial solutions to
(1.1), so that Λ(A) = αmq(1+m−s)N . Theorem 5.1 then impliesN ≪ α−1/(s−2) log4(1/α).
If α ≪ N−s+2 then we are done; otherwise, we have log(1/α) ≪ logN , and hence

α ≪

(
log4N

N

)s−2

as required. �

6. The integer case

We now sketch how to prove Theorem 1.1 using the ideas from previous sections.
The results here will be much closer in spirit to [16], and we focus on explaining the
process of translating a proof in Fq[t] to one in Z/NZ.

Given ρ > 0 and Γ ⊂ Z/NZ we define the Bohr set Bρ(Γ) to be

Bρ(Γ) = {x ∈ Z/NZ : |e(γx)− 1| < ρ for all γ ∈ Γ}

where we are now using the character given by e(x) = exp(2πix/N). As in the Fq[t]
case, we define rk(B) = |Γ| and call ρ the width of Bρ(Γ). We have the analogous
size estimate |Bρ(Γ)| ≥ ρ|Γ|N .
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The reason for the extra technical complications in the Z/NZ case is that it is no
longer true that B + B = B for a Bohr set B. In general, the best we can do is
Bρ(Γ) + Bρ(Γ) ⊂ B2ρ(Γ), which may be exponentially larger. The key insight here,
originating with Bourgain [2], is that if we restrict ourselves to instead consider B+B′

for some smaller Bohr set B′ ⊂ B, and if B is sufficiently well-behaved, then we know
that B+B′ is mostly contained within B, and this is enough to run the previous sort
of arguments while incurring only a small error term.

To make this precise we call a Bohr set B = Bρ(Γ), where rk(B) = k, regular if

|B|

1 + k|η|/100
≤ |B(1+η)ρ(Γ)| ≤ (1 + k|η|/100)|B|

whenever |η| ≤ 1/100k. Given any Bohr set B we can always find a regular Bohr set
that closely approximates it. The following is given as Lemma 4.25 in [19].

Lemma 6.1. Given a Bohr set Bρ(Γ) there is ǫ ∈ [1/2, 1) such that Bǫρ(Γ) is regular.

Any statement which relies on the subspace structure of Bohr sets B in the previous
arguments can then be replaced with an approximate version, incurring an error
term dependent on the width parameter ρ, which can be controlled by choosing ρ
sufficiently small. In many cases this means ρ must depend on α, which results in
the extra logarithmic factors in Theorem 1.1. For example, the appeal to the identity
〈A,B ∗ β ′〉 = αµG(B) in the proof of Lemma 2.3 can be replaced by an appeal to the
following lemma.

Lemma 6.2. If B = Bρ(Γ) is a regular Bohr set with rank k and B′ ⊂ Bǫρ(Γ) for

some ǫ ≪ 1/k then for any f ∈ L1(G) with ‖f‖∞ ≤ 1 we have

〈f, B ∗ β ′〉 =

(
E
x∈B

f(x) +O(ǫk)

)
µG(B).

Proof. Since supp(B ∗ β ′) = B +B′ ⊂ B(1+ǫ)ρ(Γ), we have

|G|〈f, B ∗ β ′〉 =
∑

x∈B(1+ǫ)ρ(Γ)

f(x)B ∗ β ′(x).

Furthermore, whenever x ∈ B(1−ǫ)ρ(Γ), we have B′ + x ⊂ B and hence B ∗ β ′(x) = 1.
It follows that the sum above is∑

x∈B

f(x) +
∑

x∈B\B(1−ǫ)ρ(Γ)

f(x)(B ∗ β ′(x)− 1) +
∑

x∈B(1+ǫ)ρ(Γ)\B

f(x)B ∗ β ′(x).

By regularity, however, in each of the second sums there are O(ǫk)|B| summands,
and the result follows by the triangle inequality. �

We restrict ourselves to stating the main tools needed for the proof of Theorem
1.1, which closely follows the proof of Theorem 1.2. Making the required technical
changes is a simple but lengthy matter, and is easily done by comparing the proofs
given in the rest of this paper to the proofs for the s = 3 and Z/NZ case given in
[16], which works in this more complicated setting from the beginning.

The following are the analogues of Theorems 3.1 and 4.2 (and also Proposition 4.1
and Corollary 5.2 from [16]) respectively. Note that the only change is that we restrict
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certain sets to be inside a sub-Bohr set of the main Bohr set, with width suitably
restricted.

Theorem 6.1. Let Bρ(Γ) and B′ = Bρ′(Γ
′) be regular rank d Bohr sets such that

B′ ⊂ Bǫρ(Γ). Suppose further that A1 ⊂ B and A2, . . . , Ak+1 ⊂ B′ all with density at

least α. Finally, suppose ǫ ≤ cα1/d and ǫ′ ≤ cα/d for some sufficiently small absolute

constant c > 0. Then either

(1) there exists a regular Bohr set B′′ ⊂ B′ such that

rk(B′′) ≤ rk(B) +O(α
−1/k
1 log(1/α)),

µB′(B′′) ≥

(
α1

d log(1/α)

)C(d+α
−1/k
1 log(1/α))

and, for some x ∈ B, we have β ′′(A1 + x) ≥ 2α1, or

(2) there are sets L ⊂ B and S1, . . . , Sk ⊂ B′′ with λ ≫ 1 and σi ≥ αCα
−1/k
1 for

1 ≤ i ≤ k such that

L ∗ S1 ∗ · · · ∗ Sk(x) ≤ α−2
1 A1 ∗ A2 ∗ · · · ∗ Ak+1(x)

for all x ∈ G, where all convolutions are taken over the measure β ′.

Theorem 6.2. Let Bρ(Γ) and B′ be regular rank d Bohr sets such that B′ ⊂ Bǫρ(Γ)
and suppose A,L ⊂ B and S1, . . . , Sk ⊂ B′. Suppose further that ǫ ≤ cλα/d for some

sufficiently small absolute constant c > 0. Then either

(1) 〈L ∗ S1 ∗ · · · ∗ Sk, A〉β ≫ λσ1 · · ·σkα, or
(2) for any integer l there exists a regular Bohr set B′′ ⊂ B′ and an m satisfying

m ≪ λ−2−1/2lα−1/2ll2 log(1/α) log(1/σk)

with rank rk(B′′) ≤ rk(B) + m, density µB′(B′′) ≥ (1/dm)C(d+m) and, for

some x ∈ B, we have β ′′(A + x) ≥ α(1 + cλ).

The following is the main density increment lemma needed to prove Theorem 1.1,
and is proved by combining Theorems 6.1 and 6.2 as in the proof of the analogous
Lemma 5.1.

Lemma 6.3. Let Bρ(Γ) and B′ = Bρ′(Γ
′) such that B′ ⊂ Bǫρ(Γ). Suppose further

that A1, As ⊂ B and A2, . . . , As−1 ⊂ B′ all with density at least α. Finally, suppose

that ǫ ≤ c/dmin(α1, αs) and ǫ′ ≤ cα/d for some sufficiently small absolute constant

c > 0. Then either

(1) 〈A1 ∗ A2 · · · ∗ As−1, As〉β ≫ αCα
−1/(s−2)
1 αs, or

(2) we have a Bohr set B′′ ⊂ B′ such that

rk(B′′) ≤ rk(B) +O(α
−1/(s−2)
1 log3(1/αs) log(1/α)),

µB′(B′′) ≥

(
α1

d log(1/α)

)C(d+α
−1/(s−2)
1 log3(1/αs) log(1/α))

such that for some x ∈ B and i ∈ {1, s}, β ′′(Ai + x) ≥ α(1 + c) for some

absolute constant c > 0.
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Theorem 1.1 is then proved by repeated applications of Lemma 6.3, following the
strategy of the proof of Theorem 5.1.
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