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Abstract 

It is suggest that a new fractal model for the Yang-Fourier transforms of discrete approximation 
based on local fractional calculus and the Discrete Yang-Fourier transforms are investigated in 
detail.  
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1 Introduction 
Fractional Fourier transform becomes a hot topic in both mathematics and engineering. 

There are many definitions of fractional Fourier transforms [1-5]. Hereby we write down the 
Yang-Fourier transforms [3-5]  
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and its inverse, denoted by [3,4]  
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where local fractional integral of  f t is denoted by[3-8]  
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with 1j j jt t t   and  1 2max , , ,...jt t t t     , where for 0,..., 1j N  , 
1,j jt t     is a partition 

of the interval ,a b  and 0 , Nt a t b  . Here, for 0x x   with 0  , there exists any

x such that  

   0f x f x   .                     (1.4) 

Now  f x is called local fractional continuous at 0x x and we have [5] 
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Suppose that 0 1 1, , , Nf f f   is an thN order regular sampling with spacing x some 

piecewise local fractional continuous function over mammal window [0, ]L . In the present 

paper, our arms are to get some assurance that local fractional integral of f can be reasonably 
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approximated by the corresponding integration of f and we will get the discrete Yang-Fourier 

transforms.  

2 A fractal model for the Yang-Fourier transforms of 
discrete approximation 

Now we determine from our data, 
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           (2.1) 
for any local fractional continuous function on the natural widow. This sampling can be used 
to complete a corresponding sum approximation for the integration,  
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(2.2)

 
Notice, however, that  
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   (2.3) 

where 
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for 0,1, , 1k N   

So,  
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.         (2.4) 

Suggesting that, with the natural window, we use  
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    ,                (2.5) 

where  k kf f t
 

 
for 0,1, , 1.k N   

Now there are two natural choices: Either f define to be 0 outside the nature window, or 

define f  to be periodic with period T equalling the length of the natural window,  

T N t  .                          (2.7) 

Combing with our definition of f  on the natural window, the first choice would be give  
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while the second choice would be give  
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with k N kf f   .  

Clearly, the latter is the more clear choice. That is to say, suppose that 

 0 1 1, , , Nf f f   is the thN order regular sampling with spacing t of some function f . The 

corresponding discrete approximation of f is the periodic, regular array 
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with spacing t index period N , and its coefficients 
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 From the Yang-Fourier transform theory, we then know 

    ,FF f x f 
  

 
is a local fractional continuous and is given by  
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(2.12) 

So, approximation of the formula 
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1
f t E i t dt

  
 







    

reduces to  
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with T N t  .  

Taking n    and 
2

T

  
 

in (2.13) implies that  
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In the same manner, if 
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then we can write  
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 (2.15) 

with N   .  

Taking t k t  and
2

T

  
 

in (2.15) implies that  

 
 k

k

f k t



 
 

           
 

       
1

,

0

1

2

N
F

n

f n E i n t k
     

    






    
   

 

      

    
1

0

1
2 /

N

n

n E i n k N
T

   
  





  .                         (2.16) 

Combing the formulas (2.14) and (2.16), we have the following results: 
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and 

      
1

0

1
2 /

N

n

k n E i n k N
T

   
  





  .            (2.18) 

Setting    1
F n n

T   and interchanging k and n , we get  
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and  
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3 Discrete Yang-Fourier transforms of discrete-time 
fractal signal 

Definition 1 

Suppose that  F k
 

be a periodic discrete-time fractal signal with period N . From (2.20) 

the sequence  f n
 

is defined by  
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which is called N -point discrete Yang-Fourier transform of  F n , denoted by  

   f n F k . 

Definition 2  

Inverse discrete Yang-Fourier transform  

From (2.19), the transform assigning the signal  F k  to  f n  is called the inverse 

discrete Yang-Fourier transform, which is rewritten as 
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Suppose that    f n F k ,    1 1f n F k and    2 2f n F k , the following 

relations are valid: 

Property 1 

       1 2 1 2af n bf n aF k bF k   .               (3.3) 

Proof. Taking into account the linear transform of discrete Yang-Fourier transform, we 
directly deduce the result.  

Property 2 

Let  f k  be a periodic discrete fractal signal with period N . Then we have 
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Proof. We directly deduce the result when j mN l   with 0 1l N   . 

Theorem 3  

Suppose that 

        
1

0

1 1
2 /

1

N

k

F n f k E i n k N
N

   
 







 
   , 

then we have  
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.          (3.5) 
Proof. From the formulas (2.11)-(2.20) we deduce to the results.  
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4 Conclusions  
In the present paper we discuss a model for the Yang-Fourier transforms of discrete 

approximation. As well, we give the discrete Yang-Fourier transforms of fractal signal as 
follows: 
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Furthermore, some results are discussed.   
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