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Abstract

It is suggest that a new fractal model for the Yang-Fourier transforms of discrete approximation
based on local fractional calculus and the Discrete Yang-Fourier transforms are investigated in
detail.
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1 Introduction

Fractional Fourier transform becomes a hot topic in both mathematics and engineering.
There are many definitions of fractional Fourier transforms [1-5]. Hereby we write down the
Yang-Fourier transforms [3-5]

F (X)) =1
and its inverse, denoted by [3,4]
f(x)=F}()“(w) :—L (i“ax) 17 ()(de)”, (1.2)

(27)

where local fractional integral of f (t) is denoted by[3-8]
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“Tira) [ ¢ (t)(ar)" (1.3)
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with At =t,, —t, andAt:max{Atl,Atz,Atj,...} , where for j=0,...,N -1, [t t ] is a partition
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of the interval [a,b] and t, =a,t, =b. Here, for|X— XO| <O withd >0, there exists any
X such that

‘f(x)—f(xo)‘<g". (1.4)
Now f (X) is called local fractional continuous at X = X, and we have [5]

lim f(x)=f(x). (1.5)

X—Xg
Suppose that{ fo, froeee, fN_l} is an N, order regular sampling with spacing AX some
piecewise local fractional continuous function over mammal window [0, L]. In the present
paper, our arms are to get some assurance that local fractional integral of f can be reasonably
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approximated by the corresponding integration of f and we will get the discrete Yang-Fourier
transforms.

2 A fractal model for the Yang-Fourier transforms of
discrete approximation

Now we determine from our data,
1 2N-1 1 2N —1At

r(1+a)J§itM JOLOICO} “Tra) W f(t)g(t)(dt)*

(2.1)
for any local fractional continuous function on the natural widow. This sampling can be used

to complete a corresponding sum approximation for the integration,
1 2N-1

r(1+ Ot)j‘iitAt F(t)(t)(dt)”
1 N2

f (kAt)p(kat)(At)” (2.2)

= fd(kAt)(At)".

Notice, however, that

where

r(l+a) _%it B(t) S (t)(dt)” = p(kAL), for k=0,1,---,N-1

So,

(2.4)

2N-1 N-1

el s 20 0

k=0
Suggesting that, with the natural window, we use

f(t): 1 N-1

> feSn (1), (2.5)
where f, = f, (At)" for k=0,1,---,N -1,

I(l+a)is

Now there are two natural choices: Either f define to be 0 outside the nature window, or

define f tobe periodic with period T equalling the length of the natural window,
T =NAt. 2.7
Combing with our definition of f on the natural window, the first choice would be give
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f(t)= Fra) & feSen (1), (2.8)

while the second choice would be give

1 © L
D S (1) (2.9)

+ a) k=—o0

1?(t)zr(l

with = f,.
Clearly, the latter is the more clear choice. That is to say, suppose that
{ fo, £, fol} is the N, order regular sampling with spacing At of some function f . The
corresponding discrete approximation of f is the periodic, regular array
f(t)=- (11+ 2 2. du(t) (210)
with spacing At index period N , and its coefficients
- | f(a)", if k=01--,N-1
f, = (2.12)
f.ns N general.
From the Yang-Fourier transform theory, we then know
F AT} =1()
is a local fractional continuous and is given by
.I:wF,a (Cl))

- r(lia)f; f(t)E, (-i“0"t*)(dt)"

- 2 f(D)E, (i t)(dt)”

~———[,  f(t)E,(-i"0"t")(dt)"

1 2’\‘2‘1 1oy . e )
_F(1+a) —%At (r( )kaé‘km(t)(At) ]Ea( t )(dt)

k=0

1 2N—lAt

TT(l+a)& fi (At)a[m —%it 5kAf(t)Ea(_iaa’ata)(dt)a}

I'(l+a)is (2.12)

So, approximation of the formula
1

I'(l+a)

IZ f(t)E, (-i“0"t*)(dt)"

reduces to
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1 &
F(1+ 0() k=0

.':F,oz(a))z

; fi (M) E, (0K (at)").  @13)
with T =NAt
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Taking w=nA® and ?”=Aa) in (2.13) implies that



- fE, (-i" (27)" n"k” IN")

AN > o(KE, (<" (22)" n°k N7

In the same manner, if

f(t)=—— [ E,(i"a8t") £7(e)(de)",
(27)

then we can write
N-1
f, (KAt~ 23" £7 (nAo)(A0)" E, (0" (A0)")

o (o}

(27r) n-0

with o =NAw

2
Takingt = kKAt and?ﬁ =Aw in(2.15) implies that

(k)
= f, (kAt)

) (2;1r)“ ’:Z_:f‘f'a (nAw)(Aw)”E, (iana (A" K (Aa))“)
:T%I:Z__;Mn)Ea(ianaka(zﬁ)a/Na)l

Combing the formulas (2.14) and (2.16), we have the following results:
1 Ta N-1
¢(n)=

kz(;¢(k)Ea (<" (27)" ke N7

F(1+a) N &

and
p(K)=2 X (0, ik (22) N7

n=

Setting F(n)= Tia¢(n) and interchanging k and n, we get

p(n)=Y F(K)E, (i"n"k” (27)" IN“)

and

F(k)= p()E, (-1 (27)" Nk IN").

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)



3 Discrete Yang-Fourier transforms of discrete-time
fractal signal

Definition 1

Suppose that F (k) be a periodic discrete-time fractal signal with period N . From (2.20)

the sequence f (Nn) is defined by
F(k L LSt (nE, (=i (22) nke  N° 3.1)
( )—mmnzo (n) a(—' (27)"n ) -
which is called N -point discrete Yang-Fourier transform of F (n), denoted by

£ (n) <> F (k).

Definition 2

Inverse discrete Yang-Fourier transform
From (2.19), the transform assigning the signal F (k) to f (n) is called the inverse
discrete Yang-Fourier transform, which is rewritten as

f(n) :EZ:;F (K)E, (i“n“k=(27)" IN“)

32
Suppose that f (n) <> F (k), f,(n) <> F,(k)and f,(n) <> F,(k), the following
relations are valid:
Property 1
af, (n)+bf,(n) <> aF, (k)+bF, (k). (3.3)

Proof. Taking into account the linear transform of discrete Yang-Fourier transform, we
directly deduce the result.

Property 2

Let f (k) be a periodic discrete fractal signal with period N . Then we have

j+N-1 N-1
> f(n)=>f(n). (3.4)
n=j n=0

Proof. We directly deduce the result when j =mN +1 with 0<I <N -1.

Theorem 3
Suppose that
1 18 . a
F(n)= —>» f(K)E (-i(2 “k“IN*),
()= Fea e | (0 (7 (2 ke )
then we have
N-1

f (k)= F(n, (i"n"k” (27)" IN)

n=

3.5
Proof. From the formulas (2.11)-(2.20) we deduce to the results.



4 Conclusions

In the present paper we discuss a model for the Yang-Fourier transforms of discrete
approximation. As well, we give the discrete Yang-Fourier transforms of fractal signal as
follows:

1 ’
F(k)=————%f(n (27)" ke | N”
(k)= F(l+a )N 5 (" (22)"n )

and
N-1

= F(K)E, (i"n"k* (27)" IN“).

Furthermore, some results are discussed.
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