arXiv:1107.1134v1 [math.AP] 6 Jul 2011

I/Vol’1 MINIMA OF NON COERCIVE FUNCTIONALS
LUCIO BOCCARDO, GISELLA CROCE, LUIGI ORSINA

ABSTRACT. We study an integral non coercive functional defined
on H{(Q), proving the existence of a minimum in Wol’l(Q).

In this paper we study a class of integral functionals defined on
H(2), but non coercive on the same space, so that the standard ap-
proach of the Calculus of Variations does not work. However, the
functionals are coercive on W, ' (Q) and we will prove the existence of
minima, despite the non reflexivity of W, (€2), which implies that, in
general, the Direct Methods fail due to lack of compactness.

Let J be the functional defined as

J(v)—/[lfzw /|v|2 /fv v e HYQ).

We assume that  is a bounded open set of RV, N > 2, that j :
Q x RY — R is such that j(-, &) is measurable on € for every ¢ in RY,
j(z,-) is convex and belongs to C1(RY) for almost every z in €2, and

(1) algl” < j(x,€) < BIES,
(2) e, ) < vl¢l,

for some positive «a, § and ~, for almost every x in §2, and for every &
in RY. We assume that b is a measurable function on €2 such that

(3) 0<b(z)<B, foralmostevery x in €,

where B > 0, while f belongs to some Lebesgue space. For k£ > 0 and
s € R, we define the truncature function as T (s) = max(—k, min(s, k)).
In [3] the minimization in H}(Q) of the functional

(x,Vv) m
I(v):/[+|v| /fv 0<O<1, fel™Q),

was studied. It was proved that I(v) is coercive on the Sobolev space
Wy 9(Q), for some ¢ = ¢(@,m) in (1,2), and that I(v) achieves its
minimum on Wy %(Q). This approach does not work for § > 1 (see
Remark [T below). Here we will able to overcome this difficulty thanks
to the presence of the lower order term [, |v|?, which will yield the
coercivity of J on WO1 1(Q); then we will prove the existence of minima
in W, (€2), even if it is a non reflexive space.

Integral functionals like J or I are studied in [I], in the context of

the Thomas-Fermi-von Weizsacker theory.
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We are going to prove the following result.

THEOREM 1. Let f € L*(Q). Then there exists u in Wy (Q) N L*(Q)
minimum of J, that is,

(4) _ Vo)

x, Vu) ) z, Vv) )
I T AR Ry R e e Y L
for every v in H} (Q). Moreover Ty (u) belongs to Hl(Q) for every k > 0.

In [2] we studied the following elliptic boundary problem:

41%%) Yu=f inQ,

u =20 on 0f),

(5)

under the same assumptions on €2, b and f, with 0 < o < a(z) < 6.
It is easy to see that the Euler equation of J, with j(z, &) = La(z)|¢|?,
is not equation (Bl). Therefore Theorem [I] cannot be deduced from [2].
Nevertheless some technical steps of the two papers (for example, the
a priori estimates) are similar.

We will prove Theorem [l by approximation. Therefore, we begin
with the case of bounded data.

LEMMA 2. If g belongs to L*({2), then there exists a minimum w
belonging to Hj(2) N L>®(2) of the functional

v e Hy( >—>/ (= Vv / lv]? — /
z)[ol]?

Proof. Since the functional is not coercive on H}(Q), we cannot directly
apply the standard techniques of the Calculus of Variations. Therefore,
we begin by approximating it. Let M > 0, and let Jy; be the functional
defined as

JM(U):/Q[ f‘c);; /|v|2 /ng, ve H\(Q).

Since Jy; is both weakly lower semlcontmuous (due to the convexity of
j and to De Giorgi’s theorem, see [4]) and coercive on H{ (), for every
M > 0 there exists a minimum wy; of Jyy on H}(Q). Let A = ||g||Loo(Q),

let M > A, and consider the inequality Jy(war) < Jp(Ta(wpr)), which
holds true since wj, is a minimum of Jy;. We have

[l et [~ [ e
SL[1+i(x,VTA(wM)) +EL|TA(MM)|2_LQTA(MM)

(@) [T (Talwn)) [ 2
J(x, Vwy) 1

- /{|wM|§A}[1+b(x)\TM(wM)|P * §/Q|TA(wM)| —/QgTA(wM),
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where, in the last passage, we have used that Ty (Ta(wnr)) = Tar(war)
on the set {|wy| < A}, and that j(z,0) = 0. Simplifying equal terms,
we thus get

/ j(x, Vwy)
fwarzary 1+ 0(@) | Tas (war)[]?
+5 [l = 1Zatan)] < [ gloa — Tatuns)]

Dropping the first term, which is nonnegative, we obtain

1
5 [ lw = Tatwan)] fwar + Tatwan)] < [ gl = Tatwar).
Q Q
which can be rewritten as

1

3 | s = Tt} ns + Tawnr) —20) < 0,

We then have, since wy; = Ta(wys) on the set {|wy| < A},
1 1
1 / g — Alfwar+ A—2g] 4~ / (wnr+Alftn—A—2g] < 0.
2 Jwn> Ay {wp<—A}
Since |g| < A, we have A —2g > —A, and —A — 2g < A, so that
1 1
o<y [ fww-APes [ AP <o,
2 {wM>A} 2 {w1W<_A}

which then implies that meas({|wy| > A}) = 0, and so |wy| < A
almost everywhere in 2. Recalling the definition of A, we thus have

Since M > HgHLOO(Q), we thus have Ty (wys) = wyy. Starting now from
Jrr(war) < Jy(0) = 0 we obtain, by (@),

J(@, Vwyy) 1/ 2 / 2
_ < <m 9]
/Q [1+ b(z)|wa|]? * 2 Ja o™ < ngM < meas(®) ”gHL‘X’(Q) ’

which then implies, by () and (B]), and dropping the nonnegative sec-
ond term,

«
Vwy? < N lgll? .
BTl Jo Tt S mes @l

Thus, {w} is bounded in H}(Q)NL>(Q2), and so, up to subsequences,
it converges to some function w in H}(Q) N L®(Q) weakly in H}(Q),
strongly in L?(Q2), and almost everywhere in 2. We prove now that

M imin J(, V)
I A e e A
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Indeed, since j is convex, we have

/ J(x, Vwyy)
e (e, V)
7z, Vw _ Je(x, Vw Vo — .
- /Q (14 b(x)|wa|)? /Q [1 -+ b(z)|wy]2 4 ]

Using assumption (), the fact that w belongs to Hj(f2), the almost
everywhere convergence of wj; to w and Lebesgue’s theorem, we have

. j(x, Vw) _ j(z, Vw)
(®) Y / 1+ b(@)[wn P / 1+ @

Using assumption (2), the fact that w belongs to Hj (), and the almost
everywhere convergence of wy; to w, we have by Lebesgue’s theorem
that

Je(x, V) _ Je(x, Vw)
M=too [14b(z)[wa]?  [1+ b(z)[wl]?’
Since Vw,, tends to Vw weakly in the same space, we thus have that
, Je(z, Vw)
9 | : —w|=0.
©) fYai /Q o b P )

Using (8) and (@), we have that (7)) holds true. On the other hand,
using (1) and Lebesgue’s theorem again, it is easy to see that

. j(l’, VU) / j(l’, VU) 1
lim = , Yve Hy(Q).
PN R e o I A o
Thus, starting from Jy(wy) < Jy(v), we can pass to the limit as

M tends to infinity (using also the strong convergence of wy; to w in
L?(£2)), to have that w is a minimum. O

strongly in (L?(Q2))V

As stated before, we prove Theorem [ by approximation. More in
detail, if f, = T,,(f) then Lemma 2] with ¢ = f, implies that there
exists a minimum w,, in H(Q) N L>®(Q) of the functional

n) = [ G255 [op = [0, ve @),

In the following lemma we prove some uniform estimates on u,,.

LEMMA 3. Let u, in H}(Q) N L>(Q) be a minimum of .J,,. Then

‘vun‘Q 2.
(10 /Q<1+b( )un])? 2a/|f|

(1) [i9nr < EEEEE e,

(12) JAERYALE
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(13) .LWMAS{%iéﬁfr(m%ﬁm%+ﬂﬂllﬁﬂv;

(14 [iGtr <a [ e,
where G (s) = s — Ty (s) for k > 0 and s in R.

Proof. The minimality of u,, implies that J,(u,) < J,(0), that is,
J(z, Vuy,) / /

15 / PSRN fn -

" o 11+ () el

Using () on the left hand side, and Young’s inequality on the right
hand side gives

|V |? 1/ 2 1/ 2 1/ 2
/sa[1+b(x)|un\]2 2 Jo 2Jo " 2o

which then implies (I0). Let now k£ > 0. The above estimate, and (3],
give

1 Vw2
v (v, 2g/ﬂ n /" 2
<1+Bk>2/ﬂ' )< [ TT o) eP = 2a Jo

and therefore (II]) is proved. On the other hand, dropping the first
positive term in (IH) and using Holder’s inequality on the right hand
side, we have

< [ [ 18] T[]

that is, (I2) holds. Holder’s inequality, assumption (3]), and estimates

(I0) and (I2) give ([I3):

o s oo

< [—/ |f\2] (meas(ﬂ)émg[/\fﬁr).

We are left with estimate (). Since Jy(un) < Ju(Th(un)) we have
oy Az /‘“"'2 f

§§Aﬂ+dﬂﬂun /H““ _AhﬂW“'

Recalling the definition of Gy(s), and using that |s|*> — |Ti(s)|* >
|G1(5)]?, the last inequality implies

1 (l‘VGkun 2
3 R 3 f 0P < [ At
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Dropping the first term of the left hand side and using Holder’s in-
equality on the right one, we obtain

! G < | / uank}\fﬁH / |Gk<un>|2]é,

that is, (I4]) holds. O

LEMMA 4. Let u, in H}(2) N L®(Q) be a minimum of J,. Then
there exists a subsequence, still denoted by {u,}, and a function w in
Wyl (Q) N LA(Q), with Ty(u) in HY(Q) for every k > 0, such that u,,
converges to u almost everywhere in 2, strongly in L*(Q) and weakly
in W, (Q), and Ty (u,) converges to Tj,(u) weakly in H}(Q). Moreover,

Vu, Vu
1 I _
an ]~ 15 b))

Proof. By (I3), the sequence u,, is bounded in W, (Q). Therefore, it is
relatively compact in L' (). Hence, up to subsequences still denoted by
U, there exists u in L'(Q2) such that u,, almost everywhere converges to
u. From Fatou’s lemma applied to (I2]) we then deduce that u belongs
to L*(Q).

We are going to prove that u, strongly converges to u in L*(€2). Let
E be a measurable subset of 2; then by (I4]) we have

[imk <2 [ TP +2 [ (Gl

< 2k*meas(E) +2/ |G(un)?
0

weakly in (L?(Q))N

< 2k’meas(F) +8/ 7.
{lun|>k}

Since u,, is bounded in L*(Q) by (I2)), we can choose k large enough so
that the second integral is small, uniformly with respect to n; once k
is chosen, we can choose the measure of F small enough such that the
first term is small. Thus, the sequence {u?} is equiintegrable and so,
by Vitali’s theorem, u,, strongly converges to u in L*().

Now we to prove that u, weakly converges to u in VVO1 1(Q) Let E

be a measurable subset of 2. By Hélder’s inequality, assumption (3]),
and (I0), one has, for i € {1,..., N},

L5 fiwei<] [ [1+‘Z<u§\|;n H/E““@'un”f
<|5 12| ] [ mae]

Since the sequence {u,} is compact in L?(Q), this estimate implies
that the sequence {%} is equiintegrable. Thus, by Dunford-Pettis
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theorem, and up to subsequences, there exists Y; in L'(Q) such that
9un weakly converges to Y; in L'(Q). Since 2% is the distributional
partial derivative of u,,, we have, for every n in N,

ou, Op
=— n . Vo eGP ().
[ To=—[w3E, Yeecr@
We now pass to the limit in the above identities, using that d;u,, weakly

converges to Y; in L'(Q), and that u,, strongly converges to u in L*():
we obtain

0y -
/QYZ-QO——/Quaxi, Vo € C3°(92).

This implies that Y; = %, and this result is true for every . Since Y;

belongs to L'(Q) for every 4, u belongs to Wy (), as desired.

Since by () it follows that the sequence {7} (u,)} is bounded in
H} (), and since u, tends to u almost everywhere in 2, then T} (u,,)
weakly converges to Ty (u) in HJ (), and T(u) belongs to H} () for
every k > 0.

Finally, we prove (IT). Let ® be a fixed function in (L>°(€))". Since
u, almost everywhere converges to u in €2, we have

. o P
lim =
n—too 14 b(x)|u,| 1+ b(x)|u|
By Egorov’s theorem, the convergence is therefore quasi uniform; i.e.,

for every § > 0 there exists a subset Ej of {2, with meas(Es) < §, such
that

almost everywhere in 2.

o o
1 I —
(18 A @~ T

We now have

Vu, Vu
v e | —"
/Q 1+ b(z)|un| /Q 14 b(z)|ul '
0] 0]

O Sy
Jos, ¥ T ~ o ¥ TR
#12l,- g, [ [V0] + (7],

5

Using the equiintegrability of |Vu,| proved above, and the fact that
|Vu| belongs to L'(€2), we can choose § such that the second term of
the right hand side is arbitrarily small, uniformly with respect to n,
and then use (I8) to choose n large enough so that the first term is
arbitrarily small. Hence, we have proved that
Vuy, \Y

(19) lim 2

e TH 0] 1+ B0l
On the other hand, from (I0) it follows that the sequence % is
bounded in (L%(2))¥, so that it weakly converges to some function o

uniformly in Q\ Ej.

<

weakly in (L'(Q))V.
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Vu

150(2)[a]’ and

in the same space. Since (I9) holds, we have that o =
(I7) is proved.

REMARK 5. The fact that we need to prove (I7) is one of the main
differences with the paper [2].

Proof of Theorem[d. Let u, be as in Lemma [ The minimality of w,
implies that

(20) / 1 +(:Z vm| o / |un|? — / o
</[1+:ZU /II2 /fn

for every v in Hj(€). The result will then follow by passing to the
limit in the previous inequality. The right hand side of (20) is easy to
handle since f, converges to f in L*(2). Let us study the limit of the
left hand side of (20). The convexity of j implies that

[aTu) [ e
[1+b(x)unl]* ~ Jo [1 4 b(z)|un|]?
/]é@ , VT (u)) ( Vuy,  VTi(u) )
[1+0(x)unl] \[L+b(@)|ual]  [1+b(z)|unl]
By (), assumptions () and (2), and Lebesgue’s theorem, we have

s Jo T+ b@)unlP = Jo [1+ bl
_/ Je(z, VI (u))  Viu—Tp(u)]
o L+b@)ul]  [1+b@)ul]
that is, since je(x, VIi(u)) - V(u — T (u)) =0,
o [L+b(@)[ul]> = n=too Jo [1+ b(x)|un]]?
Letting k tend to infinity, and using Levi’s theorem, we obtain

(21) /[J(%i)z gliminf/ﬂw

o [14b(@)[ul]> = notoe Jo [1+b(2) un]*

Inequality (2I) and Lemma @] imply that

liminf/ ](x Viin) /|Un|2 /fnun
n—+o00 [1 -+ b |un|

= ﬁ)(vu 3 = [ g

Thus, for every v in HJ (),

T A REE Arerrr e At
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so that u is a minimum of J; its regularity has been proved in Lemma

4 O

REMARK 6. If we suppose that the coefficient b(x) satisfies the stronger
assumption

0<A<b(x)< B, almosteverywhere in 2,

it is possible to prove that J(u) < J(w) not only for every w in H} (<),
but also for the test functions w such that

Ti(w) belongs to H(Q) for every k > 0,
(22) log(1 + A|w|) belongs to H (),

w belongs to L*(9).

Indeed, if w is as in (22]), we can use Tj(w) as test function in () and
we have

J(u) gJ(Tk(w)):/ﬂ[l ij(v)ﬁik /|Tk —/Qka(w)

In the right hand side is possible to pass to the limit, as k£ tends to
infinity, so that we have J(u) < J(w), for every test function w as in

@).

REMARK 7. We explicitly point out the differences, concerning the

coercivity, between the functionals studied in [3] and the functionals

studied in this paper. Indeed, let 0 < p < ¥=2 and consider the

2
sequence of functions

1
“"ZGXP{T"(W”)}‘“

defined in © = B;(0). Then
1
o1+ ) =, (11 =1

is bounded in H}(Q) (since the function v(z) = IrI”

H}(Q) by the assumptions on p), but, by Levi’s theorem,

‘ exp [le" — 1]
lim /|an| —p/ P = 400.

n—-+o0o

— 1 belongs to

Hence, the functional
[Vol? / 2
v E H ) Vlog(1l+ |v])|%,
Q) > [ S = [ 1Vlog(1-+1ul)

which is of the type studied in [3], is non coercive on Wy (€). On the
other hand, recalling ([If]), we have

B |Vo| 1 |Vo? 1 )
= [ e s [ gop e o wr
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Thus, the functional

2
v E H '—>/ |VU| /|
+ |v])?

which is of the type studied here, is coercive on W' (Q).
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