$W_{0}^{1,1}$ MINIMA OF NON COERCIVE FUNCTIONALS

LUCIO BOCCARDO, GISELLA CROCE, LUIGI ORSINA

Abstract. We study an integral non coercive functional defined on $H_{0}^{1}(\Omega)$, proving the existence of a minimum in $W_{0}^{1,1}(\Omega)$.

In this paper we study a class of integral functionals defined on $H_{0}^{1}(\Omega)$, but non coercive on the same space, so that the standard approach of the Calculus of Variations does not work. However, the functionals are coercive on $W_{0}^{1,1}(\Omega)$ and we will prove the existence of minima, despite the non reflexivity of $W_{0}^{1,1}(\Omega)$, which implies that, in general, the Direct Methods fail due to lack of compactness.

Let J be the functional defined as

$$
J(v)=\int_{\Omega} \frac{j(x, \nabla v)}{[1+b(x)|v|]^{2}}+\frac{1}{2} \int_{\Omega}|v|^{2}-\int_{\Omega} f v, \quad v \in H_{0}^{1}(\Omega) .
$$

We assume that Ω is a bounded open set of $\mathbb{R}^{N}, N>2$, that j : $\Omega \times \mathbb{R}^{N} \rightarrow \mathbb{R}$ is such that $j(\cdot, \xi)$ is measurable on Ω for every ξ in \mathbb{R}^{N}, $j(x, \cdot)$ is convex and belongs to $C^{1}\left(\mathbb{R}^{N}\right)$ for almost every x in Ω, and

$$
\begin{gather*}
\alpha|\xi|^{2} \leq j(x, \xi) \leq \beta|\xi|^{2}, \tag{1}\\
\left|j_{\xi}(x, \xi)\right| \leq \gamma|\xi| \tag{2}
\end{gather*}
$$

for some positive α, β and γ, for almost every x in Ω, and for every ξ in \mathbb{R}^{N}. We assume that b is a measurable function on Ω such that

$$
\begin{equation*}
0 \leq b(x) \leq B, \quad \text { for almost every } x \text { in } \Omega, \tag{3}
\end{equation*}
$$

where $B>0$, while f belongs to some Lebesgue space. For $k>0$ and $s \in \mathbb{R}$, we define the truncature function as $T_{k}(s)=\max (-k, \min (s, k))$.
In [3] the minimization in $H_{0}^{1}(\Omega)$ of the functional

$$
I(v)=\int_{\Omega} \frac{j(x, \nabla v)}{[1+|v|]^{\theta}}-\int_{\Omega} f v, \quad 0<\theta<1, f \in L^{m}(\Omega)
$$

was studied. It was proved that $I(v)$ is coercive on the Sobolev space $W_{0}^{1, q}(\Omega)$, for some $q=q(\theta, m)$ in (1,2), and that $I(v)$ achieves its minimum on $W_{0}^{1, q}(\Omega)$. This approach does not work for $\theta>1$ (see Remark 7 below). Here we will able to overcome this difficulty thanks to the presence of the lower order term $\int_{\Omega}|v|^{2}$, which will yield the coercivity of J on $W_{0}^{1,1}(\Omega)$; then we will prove the existence of minima in $W_{0}^{1,1}(\Omega)$, even if it is a non reflexive space.

Integral functionals like J or I are studied in [1], in the context of the Thomas-Fermi-von Weizsäcker theory.

We are going to prove the following result.
Theorem 1. Let $f \in L^{2}(\Omega)$. Then there exists u in $W_{0}^{1,1}(\Omega) \cap L^{2}(\Omega)$ minimum of J, that is,

$$
\begin{equation*}
\int_{\Omega} \frac{j(x, \nabla u)}{[1+b(x)|u|]^{2}}+\frac{1}{2} \int_{\Omega}|u|^{2}-\int_{\Omega} f u \leq \int_{\Omega} \frac{j(x, \nabla v)}{[1+b(x)|v|]^{2}}+\frac{1}{2} \int_{\Omega}|v|^{2}-\int_{\Omega} f v, \tag{4}
\end{equation*}
$$

for every v in $H_{0}^{1}(\Omega)$. Moreover $T_{k}(u)$ belongs to $H_{0}^{1}(\Omega)$ for every $k>0$.
In [2] we studied the following elliptic boundary problem:

$$
\left\{\begin{array}{cl}
-\operatorname{div}\left(\frac{a(x) \nabla u}{(1+b(x)|u|)^{2}}\right)+u=f & \text { in } \Omega \tag{5}\\
u=0 & \text { on } \partial \Omega
\end{array}\right.
$$

under the same assumptions on Ω, b and f, with $0<\alpha \leq a(x) \leq \beta$. It is easy to see that the Euler equation of J, with $j(x, \xi)=\frac{1}{2} a(x)|\xi|^{2}$, is not equation (5). Therefore Theorem 1 cannot be deduced from [2]. Nevertheless some technical steps of the two papers (for example, the a priori estimates) are similar.

We will prove Theorem 1 by approximation. Therefore, we begin with the case of bounded data.

Lemma 2. If g belongs to $L^{\infty}(\Omega)$, then there exists a minimum w belonging to $H_{0}^{1}(\Omega) \cap L^{\infty}(\Omega)$ of the functional

$$
v \in H_{0}^{1}(\Omega) \mapsto \int_{\Omega} \frac{j(x, \nabla v)}{[1+b(x)|v|]^{2}}+\frac{1}{2} \int_{\Omega}|v|^{2}-\int_{\Omega} g v .
$$

Proof. Since the functional is not coercive on $H_{0}^{1}(\Omega)$, we cannot directly apply the standard techniques of the Calculus of Variations. Therefore, we begin by approximating it. Let $M>0$, and let J_{M} be the functional defined as

$$
J_{M}(v)=\int_{\Omega} \frac{j(x, \nabla v)}{\left[1+b(x)\left|T_{M}(v)\right|\right]^{2}}+\frac{1}{2} \int_{\Omega}|v|^{2}-\int_{\Omega} g v, \quad v \in H_{0}^{1}(\Omega) .
$$

Since J_{M} is both weakly lower semicontinuous (due to the convexity of j and to De Giorgi's theorem, see [4) and coercive on $H_{0}^{1}(\Omega)$, for every $M>0$ there exists a minimum w_{M} of J_{M} on $H_{0}^{1}(\Omega)$. Let $A=\|g\|_{L^{\infty}(\Omega)}$, let $M>A$, and consider the inequality $J_{M}\left(w_{M}\right) \leq J_{M}\left(T_{A}\left(w_{M}\right)\right)$, which holds true since w_{M} is a minimum of J_{M}. We have

$$
\begin{aligned}
& \int_{\Omega} \frac{j\left(x, \nabla w_{M}\right)}{\left[1+b(x) \mid T_{M}\left(w_{M}\right)\right]^{2}}+\frac{1}{2} \int_{\Omega}\left|w_{M}\right|^{2}-\int_{\Omega} g w_{M} \\
& \quad \leq \int_{\Omega} \frac{j\left(x, \nabla T_{A}\left(w_{M}\right)\right)}{\left[1+b(x)\left|T_{M}\left(T_{A}\left(w_{M}\right)\right)\right|\right]^{2}}+\frac{1}{2} \int_{\Omega}\left|T_{A}\left(w_{M}\right)\right|^{2}-\int_{\Omega} g T_{A}\left(w_{M}\right) \\
& \quad=\int_{\left\{\left|w_{M}\right| \leq A\right\}} \frac{j\left(x, \nabla w_{M}\right)}{\left[1+b(x)\left|T_{M}\left(w_{M}\right)\right|\right]^{2}}+\frac{1}{2} \int_{\Omega}\left|T_{A}\left(w_{M}\right)\right|^{2}-\int_{\Omega} g T_{A}\left(w_{M}\right),
\end{aligned}
$$

$$
W_{0}^{1,1} \text { MINIMA OF NON COERCIVE FUNCTIONALS }
$$

where, in the last passage, we have used that $T_{M}\left(T_{A}\left(w_{M}\right)\right)=T_{M}\left(w_{M}\right)$ on the set $\left\{\left|w_{M}\right| \leq A\right\}$, and that $j(x, 0)=0$. Simplifying equal terms, we thus get

$$
\begin{aligned}
& \int_{\left\{\left|w_{M}\right| \geq M\right\}} \frac{j\left(x, \nabla w_{M}\right)}{\left[1+b(x)\left|T_{M}\left(w_{M}\right)\right|\right]^{2}} \\
& \quad+\frac{1}{2} \int_{\Omega}\left[\left|w_{M}\right|^{2}-\left|T_{A}\left(w_{M}\right)\right|^{2}\right] \leq \int_{\Omega} g\left[w_{M}-T_{A}\left(w_{M}\right)\right]
\end{aligned}
$$

Dropping the first term, which is nonnegative, we obtain

$$
\frac{1}{2} \int_{\Omega}\left[w_{M}-T_{A}\left(w_{M}\right)\right]\left[w_{M}+T_{A}\left(w_{M}\right)\right] \leq \int_{\Omega} g\left[w_{M}-T_{A}\left(w_{M}\right)\right]
$$

which can be rewritten as

$$
\frac{1}{2} \int_{\Omega}\left[w_{M}-T_{A}\left(w_{M}\right)\right]\left[w_{M}+T_{A}\left(w_{M}\right)-2 g\right] \leq 0
$$

We then have, since $w_{M}=T_{A}\left(w_{M}\right)$ on the set $\left\{\left|w_{M}\right| \leq A\right\}$,
$\frac{1}{2} \int_{\left\{w_{M}>A\right\}}\left[w_{M}-A\right]\left[w_{M}+A-2 g\right]+\frac{1}{2} \int_{\left\{w_{M}<-A\right\}}\left[w_{M}+A\right]\left[w_{M}-A-2 g\right] \leq 0$.
Since $|g| \leq A$, we have $A-2 g \geq-A$, and $-A-2 g<A$, so that

$$
0 \leq \frac{1}{2} \int_{\left\{w_{M}>A\right\}}\left[w_{M}-A\right]^{2}+\frac{1}{2} \int_{\left\{w_{M}<-A\right\}}\left[w_{M}+A\right]^{2} \leq 0
$$

which then implies that meas $\left(\left\{\left|w_{M}\right| \geq A\right\}\right)=0$, and so $\left|w_{M}\right| \leq A$ almost everywhere in Ω. Recalling the definition of A, we thus have

$$
\begin{equation*}
\left\|w_{M}\right\|_{L^{\infty}(\Omega)} \leq\|g\|_{L^{\infty}(\Omega)} \tag{6}
\end{equation*}
$$

Since $M>\|g\|_{L^{\infty}(\Omega)}$, we thus have $T_{M}\left(w_{M}\right)=w_{M}$. Starting now from $J_{M}\left(w_{M}\right) \leq J_{M}(0)=0$ we obtain, by (6),

$$
\int_{\Omega} \frac{j\left(x, \nabla w_{M}\right)}{\left[1+b(x)\left|w_{M}\right|\right]^{2}}+\frac{1}{2} \int_{\Omega}\left|w_{M}\right|^{2} \leq \int_{\Omega} g w_{M} \leq \operatorname{meas}(\Omega)\|g\|_{L^{\infty}(\Omega)}^{2}
$$

which then implies, by (11) and (31), and dropping the nonnegative second term,

$$
\frac{\alpha}{\left[1+B\|g\|_{L^{\infty}(\Omega)}\right]^{2}} \int_{\Omega}\left|\nabla w_{M}\right|^{2} \leq \operatorname{meas}(\Omega)\|g\|_{L^{\infty}(\Omega)}^{2}
$$

Thus, $\left\{w_{M}\right\}$ is bounded in $H_{0}^{1}(\Omega) \cap L^{\infty}(\Omega)$, and so, up to subsequences, it converges to some function w in $H_{0}^{1}(\Omega) \cap L^{\infty}(\Omega)$ weakly in $H_{0}^{1}(\Omega)$, strongly in $L^{2}(\Omega)$, and almost everywhere in Ω. We prove now that

$$
\begin{equation*}
\int_{\Omega} \frac{j(x, \nabla w)}{[1+b(x)|w|]^{2}} \leq \liminf _{M \rightarrow+\infty} \int_{\Omega} \frac{j\left(x, \nabla w_{M}\right)}{\left[1+b(x)\left|w_{M}\right|\right]^{2}} \tag{7}
\end{equation*}
$$

Indeed, since j is convex, we have

$$
\begin{aligned}
& \int_{\Omega} \frac{j\left(x, \nabla w_{M}\right)}{\left[1+b(x)\left|w_{M}\right|\right]^{2}} \\
& \quad \geq \int_{\Omega} \frac{j(x, \nabla w)}{\left[1+b(x)\left|w_{M}\right|\right]^{2}}-\int_{\Omega} \frac{j_{\xi}(x, \nabla w)}{\left[1+b(x)\left|w_{M}\right|\right]^{2}} \cdot \nabla\left[w_{M}-w\right] .
\end{aligned}
$$

Using assumption (1), the fact that w belongs to $H_{0}^{1}(\Omega)$, the almost everywhere convergence of w_{M} to w and Lebesgue's theorem, we have

$$
\begin{equation*}
\lim _{M \rightarrow+\infty} \int_{\Omega} \frac{j(x, \nabla w)}{\left[1+b(x)\left|w_{M}\right|\right]^{2}}=\int_{\Omega} \frac{j(x, \nabla w)}{[1+b(x)|w|]^{2}} \tag{8}
\end{equation*}
$$

Using assumption (2), the fact that w belongs to $H_{0}^{1}(\Omega)$, and the almost everywhere convergence of w_{M} to w, we have by Lebesgue's theorem that

$$
\lim _{M \rightarrow+\infty} \frac{j_{\xi}(x, \nabla w)}{\left[1+b(x)\left|w_{M}\right|\right]^{2}}=\frac{j_{\xi}(x, \nabla w)}{[1+b(x)|w|]^{2}}, \quad \text { strongly in }\left(L^{2}(\Omega)\right)^{N} .
$$

Since ∇w_{M} tends to ∇w weakly in the same space, we thus have that

$$
\begin{equation*}
\lim _{M \rightarrow+\infty} \int_{\Omega} \frac{j_{\xi}(x, \nabla w)}{\left[1+b(x)\left|w_{M}\right|\right]^{2}} \cdot \nabla\left[w_{M}-w\right]=0 \tag{9}
\end{equation*}
$$

Using (8) and (9), we have that (7) holds true. On the other hand, using (11) and Lebesgue's theorem again, it is easy to see that

$$
\lim _{M \rightarrow+\infty} \int_{\Omega} \frac{j(x, \nabla v)}{\left[1+b(x)\left|T_{M}(v)\right|\right]^{2}}=\int_{\Omega} \frac{j(x, \nabla v)}{[1+b(x)|v|]^{2}}, \quad \forall v \in H_{0}^{1}(\Omega)
$$

Thus, starting from $J_{M}\left(w_{M}\right) \leq J_{M}(v)$, we can pass to the limit as M tends to infinity (using also the strong convergence of w_{M} to w in $L^{2}(\Omega)$), to have that w is a minimum.

As stated before, we prove Theorem 1 by approximation. More in detail, if $f_{n}=T_{n}(f)$ then Lemma 2 with $g=f_{n}$ implies that there exists a minimum u_{n} in $H_{0}^{1}(\Omega) \cap L^{\infty}(\Omega)$ of the functional

$$
J_{n}(v)=\int_{\Omega} \frac{j(x, \nabla v)}{[1+b(x)|v|]^{2}}+\frac{1}{2} \int_{\Omega}|v|^{2}-\int_{\Omega} f_{n} v, \quad v \in H_{0}^{1}(\Omega)
$$

In the following lemma we prove some uniform estimates on u_{n}.
Lemma 3. Let u_{n} in $H_{0}^{1}(\Omega) \cap L^{\infty}(\Omega)$ be a minimum of J_{n}. Then

$$
\begin{gather*}
\int_{\Omega} \frac{\left|\nabla u_{n}\right|^{2}}{\left(1+b(x)\left|u_{n}\right|\right)^{2}} \leq \frac{1}{2 \alpha} \int_{\Omega}|f|^{2} \tag{10}\\
\int_{\Omega}\left|\nabla T_{k}\left(u_{n}\right)\right|^{2} \leq \frac{(1+B k)^{2}}{2 \alpha} \int_{\Omega}|f|^{2} \tag{11}\\
\int_{\Omega}\left|u_{n}\right|^{2} \leq 4 \int_{\Omega}|f|^{2} \tag{12}
\end{gather*}
$$

$$
\begin{align*}
\int_{\Omega}\left|\nabla u_{n}\right| \leq & {\left[\frac{1}{2 \alpha} \int_{\Omega}|f|^{2}\right]^{\frac{1}{2}}\left(\operatorname{meas}(\Omega)^{\frac{1}{2}}+2 B\left[\int_{\Omega}|f|^{2}\right]^{\frac{1}{2}}\right) } \tag{13}\\
& \int_{\Omega}\left|G_{k}\left(u_{n}\right)\right|^{2} \leq 4 \int_{\left\{\left|u_{n}\right| \geq k\right\}}|f|^{2}, \tag{14}
\end{align*}
$$

where $G_{k}(s)=s-T_{k}(s)$ for $k \geq 0$ and s in \mathbb{R}.
Proof. The minimality of u_{n} implies that $J_{n}\left(u_{n}\right) \leq J_{n}(0)$, that is,

$$
\begin{equation*}
\int_{\Omega} \frac{j\left(x, \nabla u_{n}\right)}{\left[1+b(x)\left|u_{n}\right|\right]^{2}}+\frac{1}{2} \int_{\Omega} u_{n}^{2} \leq \int_{\Omega} f_{n} u_{n} \tag{15}
\end{equation*}
$$

Using (11) on the left hand side, and Young's inequality on the right hand side gives

$$
\alpha \int_{\Omega} \frac{\left|\nabla u_{n}\right|^{2}}{\left[1+b(x)\left|u_{n}\right|\right]^{2}}+\frac{1}{2} \int_{\Omega} u_{n}^{2} \leq \frac{1}{2} \int_{\Omega} u_{n}^{2}+\frac{1}{2} \int_{\Omega} f_{n}^{2}
$$

which then implies (10). Let now $k \geq 0$. The above estimate, and (3), give

$$
\frac{1}{(1+B k)^{2}} \int_{\Omega}\left|\nabla T_{k}\left(u_{n}\right)\right|^{2} \leq \int_{\left\{\left|u_{n}\right| \leq k\right\}} \frac{\left|\nabla u_{n}\right|^{2}}{\left[1+b(x)\left|u_{n}\right|\right]^{2}} \leq \frac{1}{2 \alpha} \int_{\Omega}|f|^{2}
$$

and therefore (11) is proved. On the other hand, dropping the first positive term in (15) and using Hölder's inequality on the right hand side, we have

$$
\frac{1}{2} \int_{\Omega}\left|u_{n}\right|^{2} \leq \int_{\Omega}\left|f_{n} u_{n}\right| \leq\left[\int_{\Omega}\left|f_{n}\right|^{2}\right]^{\frac{1}{2}}\left[\int_{\Omega}\left|u_{n}\right|^{2}\right]^{\frac{1}{2}}
$$

that is, (12) holds. Hölder's inequality, assumption (3), and estimates (10) and (12) give (13):

$$
\begin{align*}
\int_{\Omega}\left|\nabla u_{n}\right| & \leq\left[\int_{\Omega} \frac{\left|\nabla u_{n}\right|^{2}}{\left[1+b(x)\left|u_{n}\right|\right]^{2}}\right]^{\frac{1}{2}}\left[\int_{\Omega}\left[1+b(x)\left|u_{n}\right|\right]^{2}\right]^{\frac{1}{2}} \tag{16}\\
& \leq\left[\frac{1}{2 \alpha} \int_{\Omega}|f|^{2}\right]^{\frac{1}{2}}\left(\operatorname{meas}(\Omega)^{\frac{1}{2}}+2 B\left[\int_{\Omega}|f|^{2}\right]^{\frac{1}{2}}\right)
\end{align*}
$$

We are left with estimate (14). Since $J_{n}\left(u_{n}\right) \leq J_{n}\left(T_{k}\left(u_{n}\right)\right)$ we have

$$
\begin{aligned}
& \frac{1}{2} \int_{\Omega} \frac{j\left(x, \nabla u_{n}\right)}{\left[1+b(x)\left|u_{n}\right|\right]^{2}}+\frac{1}{2} \int_{\Omega}\left|u_{n}\right|^{2}-\int_{\Omega} f_{n} u_{n} \\
& \leq \frac{1}{2} \int_{\Omega} \frac{j\left(x, \nabla T_{k}\left(u_{n}\right)\right)}{\left[1+b(x)\left|T_{k}\left(u_{n}\right)\right|\right]^{2}}+\frac{1}{2} \int_{\Omega}\left|T_{k}\left(u_{n}\right)\right|^{2}-\int_{\Omega} f_{n} T_{k}\left(u_{n}\right) .
\end{aligned}
$$

Recalling the definition of $G_{k}(s)$, and using that $|s|^{2}-\left|T_{k}(s)\right|^{2} \geq$ $\left|G_{k}(s)\right|^{2}$, the last inequality implies

$$
\frac{1}{2} \int_{\Omega} \frac{j\left(x, \nabla G_{k}\left(u_{n}\right)\right)}{\left[1+b(x)\left|u_{n}\right|\right]^{2}}+\frac{1}{2} \int_{\Omega}\left|G_{k}\left(u_{n}\right)\right|^{2} \leq \int_{\Omega} f_{n} G_{k}\left(u_{n}\right)
$$

Dropping the first term of the left hand side and using Hölder's inequality on the right one, we obtain

$$
\frac{1}{2} \int_{\Omega}\left|G_{k}\left(u_{n}\right)\right|^{2} \leq\left[\int_{\left\{\left|u_{n}\right| \geq k\right\}}|f|^{2}\right]^{\frac{1}{2}}\left[\int_{\Omega}\left|G_{k}\left(u_{n}\right)\right|^{2}\right]^{\frac{1}{2}}
$$

that is, (14) holds.
Lemma 4. Let u_{n} in $H_{0}^{1}(\Omega) \cap L^{\infty}(\Omega)$ be a minimum of J_{n}. Then there exists a subsequence, still denoted by $\left\{u_{n}\right\}$, and a function u in $W_{0}^{1,1}(\Omega) \cap L^{2}(\Omega)$, with $T_{k}(u)$ in $H_{0}^{1}(\Omega)$ for every $k>0$, such that u_{n} converges to u almost everywhere in Ω, strongly in $L^{2}(\Omega)$ and weakly in $W_{0}^{1,1}(\Omega)$, and $T_{k}\left(u_{n}\right)$ converges to $T_{k}(u)$ weakly in $H_{0}^{1}(\Omega)$. Moreover,

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \frac{\nabla u_{n}}{1+b(x)\left|u_{n}\right|}=\frac{\nabla u}{1+b(x)|u|} \quad \text { weakly in }\left(L^{2}(\Omega)\right)^{N} \text {. } \tag{17}
\end{equation*}
$$

Proof. By (13), the sequence u_{n} is bounded in $W_{0}^{1,1}(\Omega)$. Therefore, it is relatively compact in $L^{1}(\Omega)$. Hence, up to subsequences still denoted by u_{n}, there exists u in $L^{1}(\Omega)$ such that u_{n} almost everywhere converges to u. From Fatou's lemma applied to (12) we then deduce that u belongs to $L^{2}(\Omega)$.

We are going to prove that u_{n} strongly converges to u in $L^{2}(\Omega)$. Let E be a measurable subset of Ω; then by (14) we have

$$
\begin{aligned}
\int_{E}\left|u_{n}\right|^{2} & \leq 2 \int_{E}\left|T_{k}\left(u_{n}\right)\right|^{2}+2 \int_{E}\left|G_{k}\left(u_{n}\right)\right|^{2} \\
& \leq 2 k^{2} \operatorname{meas}(E)+2 \int_{\Omega}\left|G_{k}\left(u_{n}\right)\right|^{2} \\
& \leq 2 k^{2} \operatorname{meas}(E)+8 \int_{\left\{\left|u_{n}\right| \geq k\right\}}|f|^{2} .
\end{aligned}
$$

Since u_{n} is bounded in $L^{2}(\Omega)$ by (12), we can choose k large enough so that the second integral is small, uniformly with respect to n; once k is chosen, we can choose the measure of E small enough such that the first term is small. Thus, the sequence $\left\{u_{n}^{2}\right\}$ is equiintegrable and so, by Vitali's theorem, u_{n} strongly converges to u in $L^{2}(\Omega)$.

Now we to prove that u_{n} weakly converges to u in $W_{0}^{1,1}(\Omega)$. Let E be a measurable subset of Ω. By Hölder's inequality, assumption (3), and (10), one has, for $i \in\{1, \ldots, N\}$,

$$
\begin{aligned}
\int_{E}\left|\frac{\partial u_{n}}{\partial x_{i}}\right| \leq \int_{E}\left|\nabla u_{n}\right| & \leq\left[\int_{E} \frac{\left|\nabla u_{n}\right|^{2}}{\left[1+b(x)\left|u_{n}\right|\right]^{2}}\right]^{\frac{1}{2}}\left[\int_{E}\left[1+b(x)\left|u_{n}\right|\right]^{2}\right]^{\frac{1}{2}} \\
& \leq\left[\frac{1}{2 \alpha} \int_{\Omega}|f|^{2}\right]^{\frac{1}{2}}\left[\int_{E}\left[1+B\left|u_{n}\right|\right]^{2}\right]^{\frac{1}{2}}
\end{aligned}
$$

Since the sequence $\left\{u_{n}\right\}$ is compact in $L^{2}(\Omega)$, this estimate implies that the sequence $\left\{\frac{\partial u_{n}}{\partial x_{i}}\right\}$ is equiintegrable. Thus, by Dunford-Pettis
theorem, and up to subsequences, there exists Y_{i} in $L^{1}(\Omega)$ such that $\frac{\partial u_{n}}{\partial x_{i}}$ weakly converges to Y_{i} in $L^{1}(\Omega)$. Since $\frac{\partial u_{n}}{\partial x_{i}}$ is the distributional partial derivative of u_{n}, we have, for every n in \mathbb{N},

$$
\int_{\Omega} \frac{\partial u_{n}}{\partial x_{i}} \varphi=-\int_{\Omega} u_{n} \frac{\partial \varphi}{\partial x_{i}}, \quad \forall \varphi \in C_{0}^{\infty}(\Omega)
$$

We now pass to the limit in the above identities, using that $\partial_{i} u_{n}$ weakly converges to Y_{i} in $L^{1}(\Omega)$, and that u_{n} strongly converges to u in $L^{2}(\Omega)$: we obtain

$$
\int_{\Omega} Y_{i} \varphi=-\int_{\Omega} u \frac{\partial \varphi}{\partial x_{i}}, \quad \forall \varphi \in C_{0}^{\infty}(\Omega) .
$$

This implies that $Y_{i}=\frac{\partial u}{\partial x_{i}}$, and this result is true for every i. Since Y_{i} belongs to $L^{1}(\Omega)$ for every i, u belongs to $W_{0}^{1,1}(\Omega)$, as desired.

Since by (11) it follows that the sequence $\left\{T_{k}\left(u_{n}\right)\right\}$ is bounded in $H_{0}^{1}(\Omega)$, and since u_{n} tends to u almost everywhere in Ω, then $T_{k}\left(u_{n}\right)$ weakly converges to $T_{k}(u)$ in $H_{0}^{1}(\Omega)$, and $T_{k}(u)$ belongs to $H_{0}^{1}(\Omega)$ for every $k \geq 0$.
Finally, we prove (17). Let Φ be a fixed function in $\left(L^{\infty}(\Omega)\right)^{N}$. Since u_{n} almost everywhere converges to u in Ω, we have

$$
\lim _{n \rightarrow+\infty} \frac{\Phi}{1+b(x)\left|u_{n}\right|}=\frac{\Phi}{1+b(x)|u|} \quad \text { almost everywhere in } \Omega .
$$

By Egorov's theorem, the convergence is therefore quasi uniform; i.e., for every $\delta>0$ there exists a subset E_{δ} of Ω, with meas $\left(E_{\delta}\right)<\delta$, such that

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \frac{\Phi}{1+b(x)\left|u_{n}\right|}=\frac{\Phi}{1+b(x)|u|} \quad \text { uniformly in } \Omega \backslash E_{\delta} . \tag{18}
\end{equation*}
$$

We now have

$$
\begin{aligned}
& \left|\int_{\Omega} \frac{\nabla u_{n}}{1+b(x)\left|u_{n}\right|} \cdot \Phi-\int_{\Omega} \frac{\nabla u}{1+b(x)|u|} \cdot \Phi\right| \\
& \quad \leq\left|\int_{\Omega \backslash E_{\delta}} \nabla u_{n} \cdot \frac{\Phi}{1+b(x)\left|u_{n}\right|}-\int_{\Omega \backslash E_{\delta}} \nabla u \cdot \frac{\Phi}{1+b(x)|u|}\right| \\
& \quad+\|\Phi\|_{L^{\infty}(\Omega)} \int_{E_{\delta}}\left[\left|\nabla u_{n}\right|+|\nabla u|\right] .
\end{aligned}
$$

Using the equiintegrability of $\left|\nabla u_{n}\right|$ proved above, and the fact that $|\nabla u|$ belongs to $L^{1}(\Omega)$, we can choose δ such that the second term of the right hand side is arbitrarily small, uniformly with respect to n, and then use (18) to choose n large enough so that the first term is arbitrarily small. Hence, we have proved that

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \frac{\nabla u_{n}}{1+b(x)\left|u_{n}\right|}=\frac{\nabla u}{1+b(x)|u|} \quad \text { weakly in }\left(L^{1}(\Omega)\right)^{N} . \tag{19}
\end{equation*}
$$

On the other hand, from (10) it follows that the sequence $\frac{\nabla u_{n}}{1+b(x)\left|u_{n}\right|}$ is bounded in $\left(L^{2}(\Omega)\right)^{N}$, so that it weakly converges to some function σ
in the same space. Since (19) holds, we have that $\sigma=\frac{\nabla u}{1+b(x)|u|}$, and (17) is proved.

Remark 5. The fact that we need to prove (17) is one of the main differences with the paper [2].

Proof of Theorem 1. Let u_{n} be as in Lemma 4. The minimality of u_{n} implies that

$$
\begin{align*}
& \int_{\Omega} \frac{j\left(x, \nabla u_{n}\right)}{\left[1+b(x)\left|u_{n}\right|\right]^{2}}+\frac{1}{2} \int_{\Omega}\left|u_{n}\right|^{2}-\int_{\Omega} f_{n} u_{n} \tag{20}\\
& \quad \leq \int_{\Omega} \frac{j(x, \nabla v)}{[1+b(x)|v|]^{2}}+\frac{1}{2} \int_{\Omega}|v|^{2}-\int_{\Omega} f_{n} v
\end{align*}
$$

for every v in $H_{0}^{1}(\Omega)$. The result will then follow by passing to the limit in the previous inequality. The right hand side of (20) is easy to handle since f_{n} converges to f in $L^{2}(\Omega)$. Let us study the limit of the left hand side of (20). The convexity of j implies that

$$
\begin{aligned}
& \int_{\Omega} \frac{j\left(x, \nabla u_{n}\right)}{\left[1+b(x) \mid u_{n}\right]^{2}} \geq \int_{\Omega} \frac{j\left(x, \nabla T_{k}(u)\right)}{\left[1+b(x)\left|u_{n}\right|\right]^{2}} \\
& \quad-\int_{\Omega} \frac{j_{\xi}\left(x, \nabla T_{k}(u)\right)}{\left[1+b(x)\left|u_{n}\right|\right]} \cdot\left(\frac{\nabla u_{n}}{\left[1+b(x)\left|u_{n}\right|\right]}-\frac{\nabla T_{k}(u)}{\left[1+b(x)\left|u_{n}\right|\right]}\right) .
\end{aligned}
$$

By (17), assumptions (11) and (2), and Lebesgue's theorem, we have

$$
\begin{aligned}
\liminf _{n \rightarrow+\infty} \int_{\Omega} \frac{j\left(x, \nabla u_{n}\right)}{\left[1+b(x)\left|u_{n}\right|\right]^{2}} \geq & \int_{\Omega} \frac{j\left(x, \nabla T_{k}(u)\right)}{[1+b(x)|u|]^{2}} \\
& -\int_{\Omega} \frac{j_{\xi}\left(x, \nabla T_{k}(u)\right)}{[1+b(x)|u|]} \cdot \frac{\nabla\left[u-T_{k}(u)\right]}{[1+b(x)|u|]}
\end{aligned}
$$

that is, since $j_{\xi}\left(x, \nabla T_{k}(u)\right) \cdot \nabla\left(u-T_{k}(u)\right)=0$,

$$
\int_{\Omega} \frac{j\left(x, \nabla T_{k}(u)\right)}{[1+b(x)|u|]^{2}} \leq \liminf _{n \rightarrow+\infty} \int_{\Omega} \frac{j\left(x, \nabla u_{n}\right)}{\left[1+b(x)\left|u_{n}\right|\right]^{2}} .
$$

Letting k tend to infinity, and using Levi's theorem, we obtain

$$
\begin{equation*}
\int_{\Omega} \frac{j(x, \nabla u)}{[1+b(x)|u|]^{2}} \leq \liminf _{n \rightarrow+\infty} \int_{\Omega} \frac{j\left(x, \nabla u_{n}\right)}{\left[1+b(x)\left|u_{n}\right|\right]^{2}} \tag{21}
\end{equation*}
$$

Inequality (21) and Lemma 4 imply that

$$
\begin{aligned}
& \liminf _{n \rightarrow+\infty} \int_{\Omega} \frac{j\left(x, \nabla u_{n}\right)}{\left[1+b(x)\left|u_{n}\right|\right]^{2}}+\frac{1}{2} \int_{\Omega}\left|u_{n}\right|^{2}-\int_{\Omega} f_{n} u_{n} \\
& \quad \geq \int_{\Omega} \frac{j(x, \nabla u)}{[1+b(x)|u|]^{2}}+\frac{1}{2} \int_{\Omega}|u|^{2}-\int_{\Omega} f u .
\end{aligned}
$$

Thus, for every v in $H_{0}^{1}(\Omega)$,

$$
\int_{\Omega} \frac{j(x, \nabla u)}{[1+b(x)|u|]^{2}}+\frac{1}{2} \int_{\Omega}|u|^{2}-\int_{\Omega} f u \leq \int_{\Omega} \frac{j(x, \nabla v)}{[1+b(x)|v|]^{2}}+\frac{1}{2} \int_{\Omega}|v|^{2}-\int_{\Omega} f v,
$$

so that u is a minimum of J; its regularity has been proved in Lemma 4.

Remark 6. If we suppose that the coefficient $b(x)$ satisfies the stronger assumption

$$
0<A \leq b(x) \leq B, \quad \text { almost everywhere in } \Omega,
$$

it is possible to prove that $J(u) \leq J(w)$ not only for every w in $H_{0}^{1}(\Omega)$, but also for the test functions w such that

$$
\left\{\begin{array}{l}
T_{k}(w) \text { belongs to } H_{0}^{1}(\Omega) \text { for every } k>0 \tag{22}\\
\log (1+A|w|) \text { belongs to } H_{0}^{1}(\Omega) \\
w \text { belongs to } L^{2}(\Omega)
\end{array}\right.
$$

Indeed, if w is as in (22), we can use $T_{k}(w)$ as test function in (4) and we have
$J(u) \leq J\left(T_{k}(w)\right)=\int_{\Omega} \frac{j\left(x, \nabla T_{k}(w)\right)}{\left[1+b(x)\left|T_{k}(w)\right|\right]^{2}}+\frac{1}{2} \int_{\Omega}\left|T_{k}(w)\right|^{2}-\int_{\Omega} f T_{k}(w)$.
In the right hand side is possible to pass to the limit, as k tends to infinity, so that we have $J(u) \leq J(w)$, for every test function w as in (22).

Remark 7. We explicitly point out the differences, concerning the coercivity, between the functionals studied in 3 and the functionals studied in this paper. Indeed, let $0<\rho<\frac{N-2}{2}$, and consider the sequence of functions

$$
v_{n}=\exp \left[T_{n}\left(\frac{1}{|x|^{\rho}}-1\right)\right]-1
$$

defined in $\Omega=B_{1}(0)$. Then

$$
\log \left(1+\left|v_{n}\right|\right)=T_{n}\left(\frac{1}{|x|^{\rho}}-1\right)
$$

is bounded in $H_{0}^{1}(\Omega)$ (since the function $v(x)=\frac{1}{|x|^{\rho}}-1$ belongs to $H_{0}^{1}(\Omega)$ by the assumptions on ρ), but, by Levi's theorem,

$$
\lim _{n \rightarrow+\infty} \int_{\Omega}\left|\nabla v_{n}\right|=\rho \int_{\Omega} \frac{\exp \left[\frac{1}{|x|^{\rho}}-1\right]}{|x|^{\rho+1}}=+\infty
$$

Hence, the functional

$$
v \in H_{0}^{1}(\Omega) \mapsto \int_{\Omega} \frac{|\nabla v|^{2}}{(1+|v|)^{2}}=\int_{\Omega}|\nabla \log (1+|v|)|^{2},
$$

which is of the type studied in [3], is non coercive on $W_{0}^{1,1}(\Omega)$. On the other hand, recalling (16), we have

$$
\int_{\Omega}|\nabla v|=\int_{\Omega} \frac{|\nabla v|}{1+|v|}(1+|v|) \leq \frac{1}{2} \int_{\Omega} \frac{|\nabla v|^{2}}{(1+|v|)^{2}}+\frac{1}{2} \int_{\Omega}(1+|v|)^{2} .
$$

Thus, the functional

$$
v \in H_{0}^{1}(\Omega) \mapsto \int_{\Omega} \frac{|\nabla v|^{2}}{(1+|v|)^{2}}+\int_{\Omega}|v|^{2}
$$

which is of the type studied here, is coercive on $W_{0}^{1,1}(\Omega)$.

References

[1] R. Benguria, H. Brezis, E.H. Lieb: The Thomas-Fermi-von Weizsäcker theory of atoms and molecules, Comm. Math. Phys. 79 (1981), 167-180.
[2] L. Boccardo, G. Croce, L. Orsina: A semilinear problem with a $W_{0}^{1,1}$ solution, submitted.
[3] L. Boccardo, L. Orsina: Existence and regularity of minima for integral functionals noncoercive in the energy space. Dedicated to Ennio De Giorgi, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 25 (1997), 95-130.
[4] E. De Giorgi: Teoremi di semicontinuità nel calcolo delle variazioni. Lezioni tenute all'Istituto Nazionale di Alta Matematica, Roma, 1968-69; appunti redatti da U. Mosco, G. Troianiello, G. Vergara.
L.B. - Dipartimento di Matematica, "Sapienza" Università di Roma, P.le A. Moro 2, 00185 Roma (ITALY)

E-mail address: boccardo@mat.uniroma1.it
G.C. - Laboratoire de Mathématiques Appliquées du Havre, Université du Havre, 25, Rue Philippe Lebon, 76063 Le Havre (FRANCE)

E-mail address: gisella.croce@univ-lehavre.fr
L.O. - Dipartimento di Matematica, "Sapienza" Università di Roma, P.le A. Moro 2, 00185 Roma (ITALY)

E-mail address: orsina@mat.uniroma1.it

