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THE GROSS-KUZ’MIN CONJECTURE FOR CM

FIELDS

PREDA MIHĂILESCU

Abstract. Let A′ = lim
←−n

be the projective limit of the p-parts

of the ideal class groups of the p integers in the Zp-cyclotomic ex-
tension K∞/K of a CM number field K. We prove in this paper
that the T part (A′)−(T ) = 0. This fact has been explicitly con-
jecture by Kuz’min in 1972 and was proved by Greenberg in 1973,
for abelian extensions K/Q. Federer and Gross had shown in 1981
that (A′)−(T ) = 0 is equivalent to the non-vanishing of the p-adic
regulator of the p-units of K.

1. Introduction

Let p be an odd prime andK be a galois CM extension, while (Kn)n∈N
are the intermediate fields of its cyclotomic Zp-extension K∞. Thus
K∞ = K · B, where B/Q is the Zp-extension of Q. Let An = (C(Kn))p
be the p-parts of the ideal class groups of Kn and A = lim

←−n
An be their

projective limit. The subgroups Bn ⊂ An are generated by the classes
containing ramified primes above p and we let

A′
n = An/Bn,(1)

B = lim
←−
n

Bn, A′ = A/B.

The quotients A′
n arise also as ideal class groups of the ring of p-integers

O(K)[1/p], [7], §4. We let En = (O(Kn))
× be the global units of Kn

and E ′
n = (O(Kn)[1/p])

× be the p-units.
We denote as usual the galois group Γ = Gal (K∞/K) and Λ =

Zp[Γ] ∼= Zp[[τ ]] ∼= Zp[[T ]], where τ ∈ Γ is a topological generator and
T = τ − 1. With this, the module A is a finitely generated Λ-torsion
module. We let

ωn = (T + 1)p
n−1

− 1 ∈ Λ, νn+1,n = ωn+1/ωn ∈ Λ.

The groups A,A′, B are natural multiplicative groups endowed with
an action of Λ. We therefore write this action multiplicatively, so
aT = τ(a)/a, etc. It may be useful at places to skip for simplicity
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of notation to additive written groups, and this shall be indicated in
the text; moreover, generic, abstract Λ-modules will be always written
additively, for the same reasons.
If M is a Noetherian Λ-torsion module and f ∈ Zp[T ] is a distin-

guished polynomial, we define the f -part and the f -torsion of M by

M(f) = {x ∈M : ∃n > 0 : fnx = 0},(2)

M [f ] = {x ∈M : fx = 0} ⊂M(f).

Since M is finitely generated, there is a minimal n such that fnM(f) =
0, and we denote this by ordf(M), the f -order. Moreover, there is an
exact sequence of pseudoisomorphisms

0→ M [f ]→M(f)→ M(f)→M(f)/(fM(f))→ 0,(3)

in which the middle arrow is induced by the map x 7→ fx. We define
herewith, in analogy to the p-rank of finite abelian p-groups, the f -rank
of M as the common number of elements of a minimal set of generators
of M [f ] and M/(fM(f)), as Λ-modules.
Leopoldt emitted in 1962 the hypothesis that p-adic regulator of the

units E(K) should be non-vanishing. His initial conjecture referred to
abelian fields K but it was soon accepted that one should expect that
the same happens in general for arbitrary number fields K. The state-
ment for abelian fields could be proved in 1967 by Brumer [2], using
a p-adic variant of Baker’s fundamental result on linear forms in log-
arithms and an earlier argument of Ax [1]. The argument of Ax had
been formulated several years before Baker’s achievement and it re-
duced the conjecture of Leopoldt to the exact p-adic variant of Baker’s
theorem on linear forms. Greenberg showed in 1973 [5] how to define
the p-adic regulator R(E ′(K)) of the p-units, and could prove, using
the same argument of Ax and the Baker-Brumer result on linear forms
in p-adic logarithms, that the regulator R(E ′(K)) does not vanish for
abelian extension K/Q. Several years later, in 1981, Federer and Gross
[4] considered the question of the vanishing of the R(E ′(K)) for ar-
bitrary CM extensions K/Q. Unlike Greenberg, they cannot yield a
proof for this assumption; in exchange, they prove that R(E ′(K)) 6= 0
is equivalent to B− = A−(T ). This yields a useful translation of the
Diophantine statement about the regulator into a class field theoretical
statement about the vanishing of (A′)−(T ). Quite at the same time as
Greenberg, and just around the Curtain, L. Kuz’min had formulated in
a lengthy paper [9] on Iwasawa theory the Hypothesis H, which contains
the statement |A′(T )| < ∞ for all number fields K. The connection
to regulators is not considered in Kuz’min’s paper, but we have here
an adequate generalization of Gross’s conjecture to arbitrary number
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fields K. In the case of CM fields, the Hypothesis H contains also a
statement |(A+)′(T )| <∞. This is a consequence of Leopoldt’s conjec-
ture, but not equivalent to it. In fact, we prove in [12] that Leopoldt’s
conjecture for CM fields is equivalent to |A+(T )| < ∞, requiring thus
also the finiteness of B+, which is not object of Hypothesis H. Recently,
some authors – e.g. [10] – refer to the (generalized) Gross conjecture,
meaning the general class field theoretic assumption that A′(T ) = 0
for all number fields. This we denote by Gross-Kuz’min conjecture
and restrict here to the initial formulation of Gross, which claims that
(A′)−(T ) for CM fields.
The conjecture of Leopoldt also has a simple class field theoretical

equivalent, which was proved by Iwasawa already in 1973, in his seminal
paper [7]: for CM fields K, this amounts to the fact that the maximal
p-abelian p-ramified extension Ω(K+) is a finite extension of K+

∞.
We shall stress here the dual Diophantine and class field theoretical

aspects of the conjectures of Gross-Kuz’min and Leopoldt by using the
common term of regulator conjectures of classical Iwasawa theory. In
1986, L.J.Federer undertook the task of generalizing the classical re-
sults of Iwasawa theory – which can be considered as results on then
asymptotic behavior of An, A

′
n, to generalized class groups. She thus

considers the structure of the galois groups of the maximal abelian p-
extensions Ln/Kn which are ray-class field to some fixed ray, and in
addition split the primes contained in a separate fixed set of places of
K. The paper is algebraic in nature with little reference to the field
theoretic background, but it confirms the general nature of Iwasawa
theory. In this flavor, one may ask in what way the regulator conjec-
tures of classical Iwasawa theory generalize of Federer’s ray class fields,
and whether these generalization also afford equivalent formulations,
in Diophantine and in class field theoretical forms. It is likely that one
may encounter a proper embedding of Jaulent’s conjecture – which is
a purely Diophantine generalization of the Leopoldt conjecture, see [8]
– in a systematic context of class field theory.
The purpose of this breve remarks was to situate the questions and

methods that we shall deploy below in their broad context. One can
find in Seo’s recent paper [14] a good overview of further conjectures
related to the ones discussed above. In this paper we prove the initial
Gross conjecture:

Theorem 1. Let p be an odd prime and K a CM extension of Q. Let
K∞ = ∪nKn be the Zp-cyclotomic extension of K and let An, A

′
n be the

p-parts of the ideal class groups of the integers, resp. the p-integers of
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Kn; let A
′ = lim
←−n

A′
n. Then

(A′)−(T ) = {1}.

1.1. Additional notations. In this paper K is a galois CM extension
of Q with group ∆ = Gal (K/Q). We also assume that the primes
above p are totally ramified in K∞/K and the norms Nm,nAm → An

are surjective for all m > n ≥ 1. We let Hn ⊃ Kn be the maximal
p-abelian unramified extensions of Kn – the p-Hilbert class fields of Kn

– and Xn := Gal (Hn/Kn) ∼= An, via the Artin Symbol, which we shall
denote by ϕ. The composita withK∞ areHn = Hn·K∞. LetH = ∪nHn

be the maximal unramified p-extension of K∞ and X = Gal (H/K∞).
The isomorphisms ϕ : An → Xn are norm compatible and yield and
isomorphism in the projective limit, which we shall also denote by ϕ:

ϕ(A) = ϕ(lim
←−
n

An) = lim
←−
n

(ϕ(An)) = lim
←−
n

(Xn) = X.(4)

The maximal subextension of Hn which splits all the primes above p is
denoted by H′

n ⊂ Hn and we have

Gal (H′
n/Kn) ∼= A′

n Gal (Hn/H
′
n) = ϕ(Bn).

The injective limit is H′ ⊂ H, with Gal (H/H′) = ϕ(B). (e.g. [7], §3.
- 4.)
Let ℘ ⊂ K be a prime above p and D(℘) ⊂ ∆ denote its decom-

position group; we let C ⊂ ∆ be a set of coset representatives for
∆/D(℘) and 2s = |C|. If ℘+ ⊂ K+, the prime above ℘, is unsplit,
then B− = {1} and it follows from Lemma 1 below, that A−(T ) = {1},
so the Gross conjecture is trivially true. We assume therefore that
the primes of K+ above p are split in K/K+, so there are s pairs of
conjugate primes above p in K.
The local units of Kn are

Un = U(Kn) = O (Kn ⊗Q Qp) =
∏

ν∈C

U(Kn,ν℘).

where U(Kn,ν℘) are the units in the completion of Kn at the ramified

prime above ν℘. We write U
(1)
n =

∏

ν∈C U (1)(Kn,ν℘) and En ⊂ U
(1)
n

is the intersection of the p-adic completion of the diagonal embedding

En →֒ Un with U
(1)
n .

The maximal p-abelian p-ramified extension of Kn is denoted by
Ω(Kn) and Ω = ∪nΩ(Kn). By class field theory, we have ([13], Chapter
5, Theorem 4.1):

Gal (Ωn/Hn) ∼= U (1)
n /En.
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1.2. List of symbols. We give here a list of the notations introduced
below in connection with Iwasawa theory

p An odd rational prime,
ζpn Primitive pn−th roots of unity with ζppn = ζpn−1 for all n > 0.,
µpn {ζkpn, k ∈ N},
K A galois CM extension of Q,
K∞,Kn The cyclotomic Zp - extension of K, and intermediate fields,
∆ Gal (K/Q),
A(K) = p-part of the ideal class group of the field K,
Γ Gal (K∞/K) = Zpτ, τ a topological generator of Γ,
 = The image of complex conjugation in Gal (K∞/Q),
T = τ − 1,
∗ Iwasawa’s involution on Λ induced by T ∗ = (p− T )/(T + 1),
s = The number of primes above p in K+,
C = Coset representatives, for ∆/D(℘),
A′

n = A′(Kn) The p - part of the ideal class group of the p - integers of Kn,
A′ = lim

←−
A′

n,
B = 〈{b = (bn)n∈N ∈ A : bn = [℘n], ℘n ⊃ (p)}〉Zp

,
B The (cyclotomic) Zp-extension of Q,
H The maximal p - abelian unramified extension of K∞,
H′ ⊂ H∞ The maximal subextension that splits the primes above p,
Ω(K) = The maximal p-abelian p-ramified extension of K,
H1 = H1 ·K∞,
Φ = Ω−(K) ∩H,
M℘ ⊂ Ω−(K), The maximal subextension in which all the primes

above p, except for (℘, ℘), are totally split,
U℘ ⊂M℘, The unique unramified Zp-subextension of M℘,
ϕ = The Artin symbol, see also (4) ,
En = O(Kn)

×,
E ′

n = (O(Kn)[1/p])
×,

Un = U(Kn) = O (Kn ⊗Q Qp) =
∏

ν∈C U(Kn,ν℘),

U
(1)
n =

∏

ν∈C U (1)(Kn,ν℘)

En =
(

∩NEn · U
pN

n

)

∩ U
(1)
n .

1.3. Plan of the paper. The core of the proof relays on the following:

Proposition 1. Let Ω(K) be the maximal p-abelian p-ramified exten-
sion of K, let K∞/K be the Zp-cyclotomic extension and H/K∞ its
maximal p-abelian unramified extension. Then

Gal ((Ω(K) ∩H−)/K∞) ∼ B−.(5)
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The Gross conjecture follows from (5) by a sequence of elementary
auxiliary arguments, which shall be exposed in the introduction of
Chapter 2. We then consider the example of the case when K is an
imaginary quadratic extension. This is also a special case of Green-
berg’s theorem, but our proof uses class field theory and can therefore
be generalized to the non commutative case. After having introduced
in this way the central observation for our approach, we give in Chap-
ter three the proof of Proposition 1 by means of class field theory and
the global Artin symbol for the group Gal (Ω−(K)/H−(K)).

2. Reduction to Proposition 1

We begin by proving that the main result follows from Proposition
1. First, notice that if (A′)−(T ) = {1} holds for galois CM extension
of Q, then it holds a fortiori for arbitrary CM fields L/Q. Indeed, let
L be a arbitrary and K = L[θ] be the normal closure. We consider the
cyclotomic Zp-extensions of both L and K and define A′(K), A′(L) in
the obvious way. Assuming that the Gross conjecture does not hold
for L, then ((A′(L))−(T ) is infinite. Since Ker (ι : A(L) → A(K)) is
finite and the ideal lift map commutes with the action of Λ, it follows
that ((A′(K))−(T ) must also be infinite, in contradiction with the as-
sumption. Therefore it suffices to prove the conjecture for galois CM
extensions.

2.1. Auxiliary results. The following simple result implies that, if
a ∈ A−(T ) represents the class a′ ∈ (A′)−(T ), then a = a′ · b for some
non trivial b ∈ B−.

Lemma 1. Let K be a CM galois extension of Q and suppose that
(A′)−(T ) 6= {1}. Then ordT (A

−(T )) > 1 and

T − rk(A−) = T − rk(B−).

Proof. Assuming that (A′)−(T ) 6= {1}, there is some a = (an)n∈N ∈ A−

with non trivial image a′ ∈ (A′)−[T ]. We show that ordT (a) = 2. Let
Qn ∈ an be a prime, let n be sufficiently large and ord(an) = pn+z. Let

(α0) = Qpn+z

and α = α0/α0; since a′ ∈ (A′)−[T ] it also follows that
aTn ∈ B− and thus QT = Rn with bn := [Rn] ∈ Bn. If bn 6= 1, then
ordT (a) = 1 + ordT (a

′) = 2, and we are done.
We thus assume that bn = 1 and derive a contradiction. In this case

R1−
n = (ρn) is a p-unit and (αT ) = (ρp

n+z

n ), so

αT = δρp
n+z

n , δ ∈ µpn.

Taking the norm N = NKn/K we obtain 1 = N(δ)N(ρn)
pn+z

. The unit
N(δ) ∈ E(K)1− = µ(K) =< ζpk > – we must allow here, in general,



THE GROSS CONJECTURE 7

that K∩B = Bk, for some maximal k > 0. It follows that ρ1 := N(ρn)

verifies ρp
n+z

1 = δ1, and since δ1 6∈ E(K)p
k+1

, it follows that ρp
k

1 = ±1

and by Hilbert 90 we deduce that ρp
k

n = ±xT , x ∈ K×
n . In terms of

ideals, we have then

Q(1−)Tpn+z

= (αT ) = (xTpn+z−k

), hence
(

Q(1−)pk/(x)
)Tpn+z−k

= (1) ⇒ (Q(1−)pk/(x))T = (1).

But Q is by definition not a ramified prime, so the above implies that
an has order bounded by pk, which is impossible since an ∈ A−

n , and
thus ord(an) is unbounded. This contradiction confirms the claim
ordT (A

−(T )) > 1 and implies that A−[T ] = B−. From (3) and the
definition of the T -rank, we conclude that B− and A−(T ) have the
same T -rank. �

As mentioned in the introduction, if the primes above p are not split
in K/K+, then B− = {1} the the lemma implies that T−rk(A−(T )) =
T−rk(B−) = 0. If the primes above p are split in K/K+, we shall prove
in Chapter 3 that T−rk(B−) = s.

2.2. Field tailoring. Since we follow an explicite field-theoretic ap-
proach, and since the galois correspondence is order reversing for lat-
tices of subfields, it will be useful to provide an auxiliary construction,
in which the interesting groups (A′)−(T ), A−(T ) appear as direct ga-
lois groups of some adequate subextensions of H−. This is done in the
following:

Lemma 2. Let the notations be like above and let F (T ) be the minimal
annihilator polynomial of pmA, where pm is an annihilator of the Zp-
torsion of A. Let f |F be an irreducible divisor of F ; then there is a
positive constant M > 0 and a subgroup C ⊂ A with the following
property. Let K∞ = HpMGal(H/K∞) and Hf = HC . Then

Gal (Hf/H) ∼ A(f) and ∃a(i) ∈ A(f), i = 1, 2, . . . , s with:

Gal (Hf/H) =

s
⊕

i=1

Λϕ(a(i)),(6)

where the Artin map ϕ : A→ Gal (H/K∞) acts by restriction on Hf .

Proof. Let pm be the exponent of the Zp-torsion submodule A◦ ⊂ A
and let F (T ) ∈ Zp[T ] be the minimal annihilator polynomial of pmA,
while F = {f1(T ), f2(T ), . . . , ft(T )} ⊂ Zp[T ] are the irreducible dis-
tinguished polynomials dividing F (T ). By the theory of elementary
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Λ-modules [7], there is an elementary Λ-module

E =
⊕

Λ/(geii ), such that E ∼ A.

The primes gi above are either p or one of the polynomials fi, the
exponents are positive and a prime may occur repeatedly in the sum.
The above pseudoisomorphism is, in additive notation, explicitly

0→ K1 → A→ E→ K2 → 0,

with finite p-abelian kernel and cokernel. We may choose M ≥ m such
that pM annihilates K1 and K2. Then A := pMA is a Zp-free finitely
generated Λ-torsion module and in view of the above we have

A =

t
⊕

i=1

A(fi).

Let f ∈ F be a fixed distinguished polynomial. The f -part A(f) is a
finitely generated Λ-module, so there is a minimal set

{c(1), c(2), . . . , c(r(f))} ⊂ A \ A(p,T ) such that A(f) ∼ pM
r(f)
⊕

j=1

Λc(j).

By taking M sufficiently large, we may argue like before and assume
that the implicit kernels and cokernels in the above pseudoisomorphism
are trivial. We obtain a representation of A as a direct sum of cyclic
Λ-modules, which are all annihilated by some power of an irreducible
distinguished polynomial.
With this choice of M we let K = HpMϕ(A) = Hϕ(A). By definition,

Gal (H/K) ∼= ϕ(A) is a direct sum of cyclic, Zp-torsion free Λ-modules.

Let now C =
⊕

g∈F\{f} ϕ(A(g)) ⊂ Gal (H/K) and Hf = HC . By

construction, we have Gal (Hf/(K ∩ Hf )) ∼= A(f) and the group is a
direct sum of finitely many cyclic Λ-modules annihilated by powers of
f . This completes the proof of the lemma. �

The complex conjugation induces canonical decompositions of the
class groups and also of the extensions, so H = H+ ·H−, the first factor
being fixed by ϕ(A−) and the second by ϕ(A+). We can thus apply the
above Lemma to the subfield H− and the corresponding galois group
ϕ(A−). As a consequence, we have

Corollary 1. Let K and M be defined like in the previous lemma and
assume that (5) holds. Then there is a subfield H−

T ⊂ H− such that

Gal (H−
T /(H

−
T ∩K)) = pMϕ(A−(T ))
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is a direct sum of cyclic Λ-modules and

Gal ((Ω(K) ∩H−
T )/(K ∩H−

T ))
∼= B−.(7)

Proof. The module A = pMA defined in the proof of the previous
lemma allows a decomposition A = A− ⊕ A+ and the extension HT

may be chosen like in the lemma. Let then H−
T = HT ∩ H−; it follows

from the definition that Gal (H−
T /(H

−
T ∩K)) = A−(T ) = pMϕ(A−(T )),

which confirms the first claim. For (7), we may assume that pM is
sufficiently large to annihilate the cokernel in the pseudoisomorphism
(5). The relation (7) then follows from (5) and the definition of H−

T

and K. �

2.3. The main reduction. We are now able to prove that Proposition
1 implies Theorem 1. This follows from the equivalence of the following
statements:

Lemma 3. Let K be a CM extension of Q and Φ = Ω(K) ∩H−. The
following statements are equivalent:

A. A−(T ) = B−.
B. Gal (Φ/K∞) ∼ B−.
C. [Φ ∩H′ : K∞] <∞.

Proof. We shall prove that B ⇒ A ⇒ C ⇒ B. Assume that (5)
holds (which is the same as point B). By definition of A,A′ and H,H′,
we have K∞ ⊂ (H′)− ⊂ H− and Gal (H−/(H′)−) ∼= B−. Let now
Φ = Ω(K)∩H−; the Proposition 1 implies that [Φ∩ (H′)− : K∞] <∞.
The galois correspondence yields an exact sequence

0→ Gal (Φ/(K∩H−
T ))→ Gal (H−

T /(K∩H
−
T ))→ Gal (H−

T /Φ)→ 0;

from the equality of T -ranks

T−rk(B−) = T−rk( Gal (H−/Φ)) = T−rk(A−(T )/(TA−(T ))),(8)

we see that for every Zp-extensionK∞ ⊂ L ⊂ Φ, the group Gal (L/K∞)
contains the nontrivial decomposition group of some prime above p.
Moreover, if a ∈ A−(T ) is such that ϕ(a) generates by restriction
Gal (Φ/(Φ ∩ K)), then the image a ∈ A−(T )/(TA−(T )) is non triv-
ial. From (8) and (7) we deduce that Gal (Φ/(Φ ∩ K)) is generated
by Zpϕ(b) for some b ∈ B− and thus 1 6= b ∈ A−(T )/(TA−(T )), so
b 6∈ TA−(T ). the rank equality (8) indicates that this holds for all
b ∈ B−, and consequently ordT (A

−(T )) = 1 and A−(T ) = B−, which
is point A, so B ⇒ A.
The implication A ⇒ C is simple: let L ⊂ Φ be any Zp-extension.

Since (A′)−(T ) = {1} by assumption and Gal (Φ/K∞)T = {1}, it
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follows that all the primes above p cannot be split in L, since otherwise,
there must exist an a ∈ A′(T ) with ϕ(a)|L 6= 1, which contradicts the
premise (A′)−(T ) = {1}, and thus A ⇒ C. Moreover, if [Φ ∩ H′ :
K∞] < ∞, then Gal (Φ/K∞) ∼ Gal (Φ/(KP ∩ H′)) ⊆ ϕ(B−). By
comparing ranks, we conclude that Gal (Φ/K∞) ∼ B− and thus C
implies B, which completes the proof. �

In view of this reduction, it will suffice to prove any of the statements
A, B or C in order to confirm the Gross conjecture. We next do this
for the case of an imaginary quadratic extension of Q, thus providing
a simple illustration of one of a the core ideas of the proof in the next
chapter.

2.4. The case of imaginary quadratic extensions. Let K/Q be
an imaginary quadratic extension of Q in which p is split. Then

U (1)(K) = (Z
(1)
p )2 and Ω = K∞ · H1 · Ω

− is the product of two Zp-
cyclotomic extensions of H1; we have Gal (Ω/H1) = ϕ(U (1)(K)). One
may take the second Zp-extension in Ω also as being the anticyclotomic
extension. In analyzing a similar example, Greenberg makes in [6]
the following simple observation: since Qp has only two Zp-extensions
and K∞ contains the cyclotomic ramified one, it remains that, locally
Ω−/(K∞ · H1) is either trivial or an unramified Zp-extension. In both
cases, Ω− ⊂ H is a global, totally unramified Zp-extension of K∞ ·H1.
The remark settles the question of ramification, but does not address
the question of concern, namely splitting. However, in this case we
know more, from Greenberg’s proof of the non-vanishing of the p-adic
regulator for the p-units in an abelian extension of Q. Using the result
of Federer and Gross, this is equivalent to the fact that (A′)−(T ) = {1}
in the present case. Therefore in this example, Ω− cannot possibly split
the primes above p.
We give a proof of this fact by means of class field theory, a proof

which can therefore be extended to arbitrary CM extensions K/Q.

Lemma 4. For imaginary quadratic K/Q we have A−(T ) = B−.

Proof. We have seen above that Ω(K)/H1 must be an unramified Zp-
extension. Since we assumed that p is split in K, there are two primes
℘, ℘ ⊂ K above p. Let P ∈ Ω be a prime above ℘, let ̃ ∈ Gal (Ω/H1)
be a lift of complex conjugation. Since ΩP/K℘ is a product of Zp-
extensions of Qp, and since Qp does not have two independent ramified
Zp-extensions, it follows that the inertia group I(P) ∼= Zp is cyclic.
The prime ℘ is totally ramified in K∞/K, so it also follows that τ |K∞

is a topological generator of Γ. We may in this way fix a lift of Γ
to Γ̃ ⊂ Gal (Ω/K). Then τ  =  · τ ·  generates I(P̃) ∼= Zp and



THE GROSS CONJECTURE 11

since τ |K∞
= τ |K∞

, it follows that x := τ  · τ−1 ∈ Gal (Ω/K) fixes
K∞. Moreover, x cannot have finite order: indeed, if xq = 1, then
Iq(℘) = Iq(℘) and the fixed field Ω(K)I

q(℘) is an infinite extension of K
in which the only ramified primes ℘, ℘ have finite inertia. This would
imply the existence of an infinite unramified extension of K, which is
absurd.
We conclude that the primes above ℘ are not totally split in Ω1/(H1 ·

K∞): otherwise, the primes above ℘ are also totally split and x must
have finite order. In the present case T−rk(B−) = 1. It follows
that Proposition 1 holds for K and by Lemma 3, this is equivalent
to A−(T ) = B−, which completes the proof. �

3. The general case

We let Ω1 = Ω(K), so Ω1/K is the maximal p-abelian p-ramified
extension of K. It contains in particular K∞ and Zp-rk(Ω1/H1) =
r2 + 1 + D(K), where D(K) is the Leopoldt defect. Since K is CM,
complex multiplication acts naturally on Gal (Ω1/K∞) and induces a
decomposition

Gal (Ω1/K∞) = Gal (Ω1/K∞)+ ⊕ Gal (Ω1/K∞)−;

this allows us to define

Ω−
1 = Ω

Gal(Ω1/K∞)+

1(9)

Ω+
1 = Ω

Gal(Ω1/K∞)−

1 ,

two extensions of K∞.

3.1. The contribution of class field theory. We shall prove below
that [Φ ∩ H′ : K∞] < ∞. Since this is one of the three equivalent
formulations of the Gross conjecture, proved in Lemma 3, the Theorem
1 then follows. For the proof of the above fact, we use a decomposition
of Ω−

1 /H1 in a product of s subextensions with groups of equal Zp-rank,
and such that in each extension there is exactly one pair of complex
conjugate primes from K which are not completely split: it will turn
out by using the arguments in the proof of Lemma 4, that these primes
only split in finitely many factors in the given extension.
The extension Ω1/K is an infinite extension with H1 ⊂ Ω1 and

Zp-rk( Gal (Ω1/H1)) = D(K) + r2(K) + 1 (see. [13], p. 144). Here
r2(K) is the number of pairs of conjugate complex embedding and
the 1 stands for the extension K∞/K, while D(K) is the Leopoldt de-
fect, which is expected to vanish. We write X = Gal (Ω1/H1) and
X0 = Gal (Ω1/H1).
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Recall that K := K⊗QQp is a galois algebra and ∆ lifts by continuity
to a subgroup of Gal (K/Qp). In particular ∆ and  act on U1 and we
have a canonic splitting U1 = U+

1 ⊕ U−
1 . Since we assumed that the

primes above p in K+ split in K/K+, if u ∈ U1 has ι℘(u) = x, ι℘(u) = y,
then u verifies

ι℘(u) = y, ι℘(u) = x.

Moreover, u ∈ U−
1 iff u = v1−, v ∈ U ; we also have then NK/Qp

(u) = 1.
Thus, if ι℘(v) = v1 and ι℘(v) = v2, then

ι℘(u) = v1/v2, ι℘(u) = v2/v1 = 1/ι℘(u).(10)

One can analyze U+
1 in a similar way. The group Gal (H1/H1) = X /X0

is an invariant factor of X = ϕ(U
(1)
1 /E1) under the action of ∆ by

conjugation on X . Let

A(∆) =

{

x ∈ Zp[∆] : x =
∑

σ∈∆

xσσ,with
∑

σ

xσ = 0

}

be the augmentation ideal of Zp[∆]. Then A annihilates X /X0 and

U (1)(Qp). By choosing Γ̃ := ϕ−1(U (1)(Qp)) ⊂ Gal (Ω1/H1) be obtain

a natural lift of Gal (H1/H1). Having assumed that the norms are
surjective in K∞/K we also have H1∩K∞ = K and thus Gal (H1/K) =
Γ × Gal (H1/K). The group Γ̃ is a lift of Γ, since it restricts to a

subgroup of Γ and U (1)(Qp) ⊂ U
(1)
1 is not contained in any strictly

larger cyclic subgroup of U
(1)
1 . We fix furthermore a lift ̃ ⊂ X of .

Let us write for simplicity U = (U
(1)
1 )−. The Artin map is galois

covariant, so

Gal (Ω−
1 /H1) ∼= U/E

−
∼ U.(11)

There exists for each pair of conjugate primes ℘, ℘ ⊂ K above p a
subalgebra

V℘ = {u ∈ U (1) : ι℘(u) = 1/ι℘(u); ιν℘ = 1, ∀ν ∈ C \ {1, }},(12)

U =
∏

ν∈C+

V℘,

where the second relation follows from (10) and the definition of U .
Since ν acts by conjugation on V℘ we deduce from the above that

Zp-rk(U) = s · Zp-rk(V℘) = Zp-rk(X0) = r2 = s · |D(℘)|,
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and thus Zp-rk(Vν℘) = |D(℘)| for all ν ∈ C+. There exist extensions
Mν℘ ⊂ Ω−, which are fixed by

Fν℘ = ϕ





∏

ν′∈C+;ν′ 6=ν

Vν′℘



 ⊂ ϕ(U)

and verify

Gal (Mν℘/(H1 ∩Mν℘)) = ϕ(Vν℘)|Mν℘
.

By construction, all the primes above p except for ℘, ℘, are totally
split in M℘/H1, while there are only finitely many primes above ℘ and

℘ in M℘. We have indeed Gal (M℘/H1) ∼= V℘, since the local Artin
symbol vanishes for all conjugate primes, while the Zp-ranks of local
and global extensions coincide. Therefore (℘, ℘) can only split in H1/K.
The extension Ω−(K)H1 decomposes in

Ω−
1 =

∏

ν∈C+

Mν℘.(13)

Suppose that L ⊂ M℘ ∩ Φ is an unramified Zp-extension of H1 and
let P ⊂ L, p′ ⊂ K∞ be primes above ℘. Then LP ⊇ K∞,℘′ ⊃ K℘ is a
tower of local, abelian extensions. The extension K∞,℘′ = K℘[µp∞ ] is
the cyclotomic ramified extension of K℘. Since LP/K∞,℘′ is unramified,
it is either the trivial extension, or the Zp-unramified of extension of

K℘. Letting Q
(ab)
p be the compositum of the two Zp-extensions of Qp,

we see that LP ⊂ K℘ · Q
(ab)
p . The group U℘ ∼ Zp[D(℘)] (e.g. [13], p.

141) and thus

Zp-rk(ϕ(V℘)) = |D(℘)| = Zp-rk(Zp[D(℘)]) = Zp-rk(U℘).

In particular, there is exactly one Zp-subextension L ⊂ M℘ which is
fixed under the action of D(℘) by conjugation, and herewith verifies

LP ⊂ K℘ · Q
(ab)
p . Since Qp has only one unramified Zp-extension, it

follows that there exists exactly one unramified Zp-subextension H1 ⊂
L ⊂ M℘, which is also a Zp-extension of K∞. The prime ℘′ may split

in H1/K∞ and also in some finite subfield of L. We denote this unique
unramified subextension by

U℘ = M℘ ∩Φ.

From Ω−(K) =
∏

ν Mν℘ and Mν℘ ∩Φ = Uν℘, we deduce

H1 ·Φ = H1 ·
∏

ν∈C+

Uν℘.(14)
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Since H1 ⊂ Φ by definition, and not all cyclic subextensions in H1/K∞

need be Zp-extendable, the factor H1 appearing in the above identity

cannot be removed. Whether or not the inclusion U℘ ∩H1 ⊇ K∞ is an
equality, is a question related to floating elements: i.e. a = (an)n∈N ∈ A
with a1 = 1. The intersection is trivial iff Gal (U℘/K∞) = Zpϕ(b) for
some b ∈ B− and b is floating. This question is interesting in itself, but
will not be of further relevance for our present purpose. We have thus
proved:

Lemma 5. Let K be a galois CM extension and assume that the primes
℘+ ⊂ K+ split in K/K+. For each prime ℘ ⊂ K there is a canonic (up
to finite subextensions) Zp-extension U℘ ⊂ Ω−(K) ∩H in which all the
primes above p are split, except possibly for (℘, ℘). In particular, Ω−

contains exactly s = |C|/2 unramified Zp-extensions of K∞.

3.2. Proof of Theorem 1. We shall now use the same arguments like
in the proof of Lemma 4 and show that for all ν ∈ C+ the extensions
Uν℘ do not split the primes (ν℘, ν℘). Since for each ν, different primes
are inert in Uν℘ and the compositum of all these extensions is Φ, this
implies that [Φ ∩H′ : K∞] <∞. We are thus left to prove:

Lemma 6. Let ℘ ⊂ K be any prime above p and let U℘,Φ be defined
like above. Then ℘, ℘ are not totally split in U℘.

Proof. Let ℘ be fixed and U = U℘. Since Ω/H1 is abelian, the extension
U/H1 is also galois and abelian.
Let P ⊂ U be a fixed prime above ℘ and ̃ ∈ Gal (U/H1) be a lift

of complex conjugation. Let I(P), I(P̃) ⊂ Gal (U/H1) be the inertia
groups of the two conjugate primes. Like in Lemma 4, Gal (U/H1) ∼=
Z2
p and UP/K℘ is a product of at most two Zp-extensions of Qp. It fol-

lows that the inertia groups are isomorphic to Zp and distinct: other-
wise, their common fixed field in U would be an unramified Zp-extension
of H1, which is absurd.
For ν ∈ C\{1, }, the primes above ν℘ are totally split in U/K∞. Let

τ̃ ∈ Gal (U/H1) generate the inertia group I(P), so that a generator
of I(P̃) is τ̃ ̃ ∈ Gal (U/H1). The primes ℘, ℘ are totally ramified in
K∞/K so τ̃ , τ̃ ̃ restrict to the same topological generator of Γ, while
τ̃ 1−̃ ∈ Gal (U/K∞) has infinite order, – as a consequence of I(P) ∩
I(P) being finite. It follows that the prime ℘′ ⊂ H1 above ℘ and
below P cannot be totally split in U/H1, so [U ∩H′ : K∞] <∞. This
completes the proof of the lemma and, in view of the remarks preceding
it, the proof of Theorem 1. �

We have shown in Lemma 3 that [H′ ∩ Φ : K∞] < ∞ is equivalent
to the Gross conjecture, so the proof is complete.
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Remark 1. The above proof is intimately related to the case when K is
CM and K∞ is the Zp-cyclotomic extension of K. The methods can be
extended to non CM fields, with the use of some additional ingredients.
These have been sketched in [11] and will be exposed in depth in an
ulterior paper. Carroll and Kisilevsky1 have given in [3] examples of
Zp-extensions other than the cyclotomic, in which A′(T ) 6= {1}.

Acknowledgment: I thank Vicenţiu Paşol for helpful discussions
and comments during the writing of preliminary versions of this paper.
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