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A large time asymptotics for the solution of the Cauchy
problem for the Novikov-Veselov equation at negative energy
with non-singular scattering data

A.V. Kazeykina

Abstract. In the present paper we are concerned with the Novikov—Veselov equation at
negative energy, i.e. with the (24 1)-dimensional analog of the KdV equation integrable by the
method of inverse scattering for the two—dimensional Schrodinger equation at negative energy.
We show that the solution of the Cauchy problem for this equation with non—singular scattering
data behaves asymptotically as Cg}it in the uniform norm at large times t. We also present some
arguments which indicate that this asymptotics is optimal.

1 Introduction

In the present paper we consider the Novikov—Veselov equation

O = 4Re(403v + 0, (vw) — Ed,w),
Osw=-30,v, v=0v, EeR, FE<QO, (1.1)
v=uo(z,t), w=uw(zt), z=(r,r)cR? teR,

0 1/ 0 .0 1/ 0 .0
at—a, az—§<a—x1—la—x2>, az—§<a—x1+18—x2>

We will say that (v, w) is a rapidly decaying solution of (L.T]) if

where

ev,we C(R?2xR), w(,t)e C3R?), (1.2a)
q(t)

0 e
e (v, w) satisfies (L)). (1.2c)

Note that if v(z,t) = v(z1,t), w(z,t) = w(xy,t), then (LI) is reduced to the classic

KdV equation. In addition, (1) is integrable via the inverse scattering method for the two—
dimensional Schrodinger equation

o |du(z,t)] < |7] < 3, for some € >0, w(x,t) — 0, |z] — oo, (1.2b)

Ly =Ey, L=-A+4v(z), z=(x1,22), FE = Efiged- (1.3)

In this connection, it was shown (see [M], [NVI], [NV2]) that for the Schréodinger operator L
from (3] there exist appropriate operators A, B (Manakov L—A-B triple) such that (L.T]) is
equivalent to
NL—F) _ [L - E,A]l+ B(L-E),
ot
where [, ] is the commutator.
Note that both Kadomtsev—Petviashvili equations can be obtained from (LI]) by considering
an appropriate limit F — +o0o (see [ZS], [G]).
We will consider the Cauchy problem for equation (ILI)) with the initial data

v(z,0) =vo(x), w(z,0)=wo(x). (1.4)

LCMAP, Ecole Polytechnique, Palaiseau, 91128, France; email: kazeykina@cmap.polytechnique.fr


http://arxiv.org/abs/1107.1150v1

We will assume that the function vg(z) satisfies the following conditions

® Uy = T, (1.5a)

e & =), where & is the set of zeros of the Fredholm determinant (2.7)) (1.5b)
for equation (26]) with v(z) = vg(z),

e 1y € S(R?), where S denotes the Schwartz class. (1.5¢)

As for the function wg(z), which plays an auxiliary role, we will assume that it is a continuous
function decaying at infinity and determined by dzwo(z) = —30,v¢(z) from (LI]).

Condition (LL5D)) is equivalent to non-singularity of scattering data for vg(x). Conditions
(L3H) define the class of initial values for which the direct and inverse scattering equations
29)—-(2.11)), with time dynamics given by (2.15]), are everywhere solvable and the corresponding
solution v of (ILT)) belongs to C*°(R? R). We will call such solution (v(z,t),w(z,t)), constructed
from (vg(z),wp(x)) via the inverse scattering method, an “inverse scattering solution” of (L.TJ).

The main result of this paper consists in the following: we show that for the “inverse
scattering solution” v(z,t) of (LIl), (L4]), where E < 0 and v(x,0) = vg(x) satisfies (LH), the
following estimate holds

const(vo) In(3 + [¢])
SRR

lv(z,t)] < t € R, uniformly on x € R% (1.6)
We show that this estimate is optimal in the sense that for some lines = wt, w € S', the exact
asymptotics of v(z,t) along these lines is % as |t| = oo (where the constant is nonzero at
least in the linearized case). Note that de facto the “inverse scattering solution” is the rapidly
decaying solution in the sense of (L2]).

This work is a continuation of the studies on the large time asymptotic behavior of the
solution of the Cauchy problem for the Novikov—Veselov equation started in [KN1] for the case
of positive energy E. It was shown in [KNI] that if the initial data (vo(z), wo(z)) satisfy the
following conditions:

e (vg(z), wo(z)) are sufficiently regular and decaying at |x| — oo,

o vg(x) is transparent for (IL3) at E = Epjzeq > 0, ie. its scattering amplitude f is
identically zero at fixed energy,

e the additional “scattering data” b for vg(x) is non-singular,
then the corresponding solution of (Il),([I4]) can be estimated as

const - In(3 + |¢])

., t e R uniformly on = € R?.
1+ [t]

o(z, 1)] <

This estimate implies, in particular, that there are no localized soliton—type traveling waves
in the asymptotics of (L)) with the“transparent” at F = FEyjzeq > 0 Cauchy data from the
aforementioned class, in contrast with the large time asymptotics for solutions of the KdV
equation with reflectionless initial data.

It was shown in [N2] that all soliton—type (traveling wave) solutions of (LI) with E > 0
must have a zero scattering amplitude at fixed energy; in addition it was proved in [N2] that for
the equation (LI)) with £ > 0 no exponentially localized soliton—type solutions exist (even if
the scattering data are allowed to have singularities). However, in [G] a family of algebraically
localized solitons (traveling waves) was constructed de facto (see also [KN2]). We note that for



the case E' < 0, though the absence of exponentially-localized solitons has been proved (see
IKN3]), the existence of bounded algebraically localized solitons is still an open question.

Note that studies on the large time asymptotics for solutions of the Cauchy problem for the
Kadomtsev—Petviashvili equations were fulfilled in [MST], [HNS], [K].

The proofs provided in the present paper are based on the scheme developed in [KN1], the
stationary phase method (see [E]) and an analysis of some cubic algebraic equation depending
on a complex parameter.

This work was fulfilled in the framework of research carried out under the supervision of

R.G. Novikov.

2 Inverse “scattering” transform for the two—dimensional Schro-
dinger equation at a fixed negative energy

In this section we give a brief description of the inverse “scattering” transform for the two-
dimensional Schrodinger equation (L3]) at a fixed negative energy E (see [GN], [N1], [G]).
First of all, we note that by scaling transform we can reduce the scattering problem with an
arbitrary fixed negative energy to the case when E = —1. Therefore, in our further reasoning
we will assume that £ = —1.
Let us consider potentials v(x) for the problem (L3)) satisfying the following conditions

q 2
. Ju(e)] < W7 z € R7, (2.1)

for some fixed ¢ and £ > 0. Then it is known that for A € C\(0 U &), where

1

v =

£ is the set of zeros of the modified Fredholm determinant A

for equation (2.4]), (22)
there exists a unique continuous solution ¥ (z, ) of (IL3]) with the following asymptotics
P(z,\) =e —5(Aztz/3) w(z, A),  u(z,A)=1+0(1), |z — oc. (2.3)
Here the notation z = x1 + iz is used.
The function u(z, A) satisfies the following integral equation
pe ) =1+ [ [ gz = CN0Ou(e NdRecding (2.4)

¢eC

9(2,\) <2ﬂ> / / e;szr/Z 2;;:((/»;))) dReCdImd, (2.5)

where z € C, A € C\0.
In terms of m(z,\) = (1 + |2])~3+9)/2 (2, \) equation (24) takes the form

_ —(2+e)/2 —(2+e)/2 v(¢)
m(z,\) = (1 +|z]) @+ +//<1 +[2)) "B 2g(z — ¢, N e e ™ ¢ NdReddim,
¢eC
(2.6)
where z € C, A € C\0. In addition, A(-,-,\) € L*(C x C), |TrA2%()\)| < oo, where A(z,(,\)
is the Schwartz kernel of the integral operator A(\) of the integral equation (2.6]). Thus, the
modified Fredholm determinant for (2.6]) can be defined by means of the formula:

InA(\) = Tr(In( — A(N)) + A(N)) (2.7)



(see |[GK] for more precise sense of such definition).
Taking the subsequent members in the asymptotic expansion (2.3)) for ¢ (z,\), we obtain
(see [NTIJ):

¥(z,\) = exp <—% ()\2 + ;)) {1 —2msgn(1 — A\) x

ixa(\) 1//1 (1 < Ab(A) 1
(== S _0 = 2.
) (z—vz “Xp< 2 ((A A) ° (A A) )) ioe—z) TR o ®Y
|z| = 00, A € C\(£UO0).
The functions a(A), b(A\) from (28] are called the “scattering” data for the problem (L.3]),

&I) with £ = —1.
The function u(z, A), defined by (2:4]), satisfies the following properties:

w(z,A) is a continuous function of A on C\(0U &); (2.9)
% =r(z,\)u(z, A), (2.10a)
1 1\ _ - 1
r(z,\) = r(\)exp (5 <<)\ - X) zZ— ()\ - X) z>> , (2.10b)
) = ”Sgn(l{ ANy (2.10¢)
for A e C\(0UE);
uw—1, as A = oo, A —= 0. (2.11)

The function b(\) possesses the following symmetries:

1 1

b <—§> =b(\), b <§> =b(\), AeC\0. (2.12)

In addition, the following theorem is valid:

Theorem 2.1 (see [GN], [N1J, [G]).

(i) Let v satisfy (I7). Then the scattering data b(\) for the potential v(z) satisfy properties
(Z712) and b € S(D_), where D_ = {\ € C: |\ > 1}, D_ = D_UdD_ and S denotes

the Schwartz class.

(ii) Let b be a function on C, such that b € S(D_) and the symmetry properties (2.12) hold.
Then the equations of inverse scattering (2.16)-(218) are uniquely solvable and the cor-
responding potential v(z) satisfies the following properties: v € C*°(C), v =1, |v(z)] = 0
when |z| — oo.

Let us denote by T the unit circle on the complex plane:

T={\eC: |\ =1} (2.13)



Then, in addition, it is known that under the assumptions of item (i) of Theorem [Z1] the
function b is continuous on C and its derivative d\b(A) is bounded on C, though discontinuous,

in general, on 7.
Finally, if (v(z,t),w(z,t)) is a solution of equation (LI with £ = —1 in the sense of (L2,
then the dynamics of the “scattering” data is described by the following equations (see [GN])

a(\t) = a(A,0), (2.14)

b(\,t) = exp { <A3 + % -3 - %) t} b(\,0). (2.15)

The reconstruction of the potential v(z,t) from these “scattering” data is based on the

following scheme.

1. Function p(z, A, t) is constructed as the solution of the following integral equation

1 _ 1
peat) =1 = [ [ r(e g G = ST (2.16)
s C C— A
2. Expanding p(z, \,t) as A — oo,
M—l(zat) 1
t)y=14+—"-—+=- — 2.1
w(z, A t) + 3 +O<W ) (2.17)
we define v(z,t) as
v(z,t) = —=20,pu—1(2,1t). (2.18)
3. It can be shown that
Ly = EY

where
L =—-40,0; +v(z,t), wv(zt)=v(z1t), E=-1
P(z,\t) = 67%()‘2+z/>‘)u(z,)\,t), reC, zeC, teR.

3 Estimate for the linearized case

Consider
I:2) = [ [ £(6)exp(S(¢. 2 1)) dRegatmg,
© ¢ (3.1)
J(t, z) = 3// E_f(C) exp(S(¢, z,t))dReldIm(,
C

where z € C, t € R, f(¢) € L}(C), S is defined by

S(A,z,t):%<<)\—%>z— <)\—§> z) +t<)\3+%—)\3—%>. (3.2)

We will also assume that f(() satisfies the following conditions

feC™(Dy), feC™(D-), (3.32)
O (A7) as [A| = oo,

for all m,n > 0, (3.3b)
O (|A]>*°) as |\ =0,

ROYf(N) = {



where

Dy={AeC:0< ]\ <1}, D_={\eC:|\>1}, (3.4)

and Dy = Dy UT, D_ = D_UT with T defined by 2I3).
Note that if v(z,t) = I(t, z), w(z,t) = J(t, z), where

(IC12 + [¢|2) £(¢) € LY(CT) as a function of ¢,

and, in addition,

FO = f(—¢) andfor F(©) = —|c|'f (1)

¢
then v, w satisfy the linearized Novikov—Veselov equation (L)) with F = —1. Besides, if
w1 — ¢l
f(Q) = Wb(o, (3.5)

where b(C) is the scattering data for the initial functions (vg(z),w(z)) of the Cauchy problem
(CI), (T4), then the integrals I(t, z), J(t, z) of (B]]) represent the approximation of the solution
(v(z,t),w(z,t)) under the assumption that || v ||< 1.

The goal of this section is to give, in particular, a uniform estimate of the large—time behavior
of the integral I(t, z) of (B.1)).

For this purpose we introduce parameter u = % and write the integral I in the following
form
I(t,u) = //f(() exp(tS(u, ¢))dReldImd, (3.6)
C
where

o3 (P99 (eoig) e

We will start by studying the properties of the stationary points of the function S(u, () with
respect to (. These points satisfy the equation

3
¢

The degenerate stationary points obey additionally the equation

Sg:E e

e = 0. (3.8)

po_

12
«=mtitE

G0 (3.9)

We denote ¢ = ¢2 and - 5
u
Qu,§) = 5—2—§+3f—§—2-

For each &, a root of the function Q(u,¢), there are two corresponding stationary points of

S(“a C)a ¢= i\/g

The function Sé (u, ) can be represented in the following form

3
Se(u,¢) = F(C2 — G u)(¢* = G @))(¢* — G (w). (3.10)
We will also use hereafter the following notations:

U={u=—62e"%+e*%): pc0,2n)}



and
U= {u=re": ) = Arg(—6(2e7% + %)), 0 < r < [6(2e" +e729)|, ¢ € [0,27)},
the domain limited by the curve U.

Lemma 3.1 (see [KNIJ).

27mik

1. Ifu=-18e"3 , k=0,1,2, then

Colu) = C1(u) = (o(u) = 5 (3.11)

and S(u, () has two degenerate stationary points, corresponding to a third-order root of
2mik

the function Q(u,§), & =€ 3 .

2nik

2. IfuelU (ie u=—6(2e"%+e2%)) andu# —18¢"3 , k=0,1,2, then
Co(u) = Cr(u) = e /2 (o(u) = ', (3.12)

Thus S(u, () has two degenerate stationary points, corresponding to a second-order root of
the function Q(u,§), & = e, and two non-degenerate stationary points corresponding
to a first-order root, & = %%,

3. If u € intU = U\9OU, then

Gi(u) = e for some real p;, and (i(u) # Gi(u) for i#j. (3.13)

In this case the stationary points of S(u, () are non-degenerate and correspond to the roots
of the function Q(u,§) with absolute values equal to 1.

4. If u e C\U, then
Cou) = (1 +w)e ™2 Gu) =%, Gu)=1+w) e /2 (3.14)

for certain real values @ and w > 0.

In this case the stationary points of the function S(u,() are non-degenerate, and cor-
respond to the roots of the function Q(u,&) that can be expressed as §& = (1 + 7)e™*#,
G=e G=0+7)"e™ (1+7)=(1+w)

Formula (B.I0) and Lemma [B1] give a complete description of the stationary points of the
function S(u, ().
In order to estimate the large-time behavior of the integral having the form

I(t,u,\) = //f((,)\) exp(tS(u, ¢))dReCdIm( (3.15)
C

(where S(u, () is an imaginary—valued function) uniformly on u, A € C, in the present and the
following sections we will use the following general scheme.

1. Consider D, the union of disks with a radius of € and centers in singular points of function
f(¢, A) and stationary points of S(u, () with respect to (.



2. Represent I(t,u,\) as the sum of integrals over D. and C\D,:

I(t,u, N) = Lint + Ieqr,  where
Tt = / f(¢,A) exp(tS(u,¢))dRe(dIm(,

(3.16)
loat = / F(C. X) exp(tS (1, ¢))dReCdImnC.
C\D«
3. Find an estimate of the form
[Iing| =0 (%), as e—=0 (a=1)
uniformly on u, A, t.
4. Integrate I.,; by parts using Stokes formula
1 f(C’ >‘) exp(tS(u, C)) ~
Iex = T35 dC_
¢ 2ztaD St(u,¢)
A) exp(tS(u,
1 / (f(6:X) = (&, ) exp(t5 (. C)) / RS Xp () Recdmme+
T\D.
F(CA) exp(tS(u, €))SEe(u, C)
Im(=—-U1 + I+ 13— 1 1
/ S/ u C)) dReCd mC t( 1+ 12+ 13 4)7 (3 7)
(C\DE

where f1(¢,\) = %L)néf(g(l F9),A), (€T and T is defined by (2.13)).

5. For each I; find an estimate of the form

1
|I¢|:O<—6>, as e — 0.
£

where k(a + ) = 1, which yields the overall estimate

1t =0 [ ———— ), as [t = .
(1+ [t =5

Using this scheme we obtain, in particular, the following result

6. Set !
. Set € = ——~,
(14 [£])*

Lemma 3.2. Let a function f satisfy assumptions (3.3) and, additionally,
flr=0, T={XeC:|\=1} (3.18)
Then the integral 1(t,u) of (3.6) can be estimated

const(f)In(3 + [t])
(L +[el)>r

[1(t,u)| < for teR (3.19)

uniformly on u € C.

Note that condition (3.18]) is satisfied if f has the special form (B.5]). A detailed proof of
Lemma [3:2] is given in Section [6l



4 Estimate for the non—linearized case

In this section we prove estimate (L@ for the solution v(x,t) of the Cauchy problem for the
Novikov—Veselov equation at negative energy with the initial data v(z,0) satisfying properties
([T3H).
We proceed from the formulas (2.17]), (2.I8]) for the potential v(z,¢) and the integral equation
2I0) for u(z, A, t).
We write (2.10) as
iz A0 = 1+ (Azagn) (2, 0,0, (4.1)

where

(A-eP)N) = 05 ) explit u, V) = —+ [ [ LRSS g

7'(' ¢ —
C
and S(u, () is defined by B.1), u = ;
Equation (@) can be also written in the form
plz, M) =1+ A,;-1+ (Az,t,u)(z, A1), (4.2)

According to the theory of the generalized analytic functions (see [V]), equations (1), (4.2)
have a unique bounded solution for all z,¢. This solution can be written as

e M t) = (1= A2) 7M1+ Ay 1), (4.3)
Equation (43]) implies the following formal asymptotic expansion
plz ) =T+ A2, + AL + .. )1+ Ay 1) (4.4)

We also introduce functions v(z, A\, t) = 9,u(z, A\, t) and n(z, A\, t) = Ozpu(z, A, t). In terms of
these functions the potential v(z,t) is obtained by the formula

v(z,t) = —2v_1(z,1), (4.5)

where v_1(z,t) is defined by expanding v(z, A, t) as |\| — oo:
_ t 1
v(z, A\ t) = %Z’) +o <W> , A = o0
The pair of function v(z, A, t), n(z, A, t) satisfy the following system of differential equations:

W - ag?”(z’ )" t)lu’(z’ )‘a t) + T(Za )" t)n(zﬁ )‘? t)’
In(z; A t) (4.6)
o\

Equations ([4.6]) can also be written in the integral form

{ V(2 A1) = (Baai) (2, A1) + (Ao gm) (2, A, 1),
n(z, A\, t) = (Bept) (2, A\, 1) + (AL 0) (2, A, 1),

= 0,r(z, \, t)u(z, \, 1) + r(z, \, vz, A t).

(4.7)

where operator B, ; is defined

(8o = 05 r e AT =~ [[ ZEEM D pecame. 1)
C



Thus for the function v(z, A, t) we obtain equation
v=(Buy+ Ay Bep)n+ AZ v

or the following formal asymptotic expansion

v=(T+A2,+ AL +. . )(Bay+ Aoy Bo ) (T + A2, + AL+ )(1+ Ay - 1)).

We will write this formula in the form v =B, ;- 1+ A, B, -1+ R, +()\).

Lemma 4.1. Let f(A, z,t) be an arbitrary testing function such that

Al < —2L— VAEC,zeCteR

< T )

(1+ Itl)
with some positive constant cy independent of X, z, t and some § > 0. Then:

1. The following estimates hold for B, ;- f:

(B.i - f)(N) = 51(§’t) +o <|i|> for X — oo,

where

B1(z,t) / 9.r(z, ¢, )f(C,z t)dRe(dIm(,

and A
Pilep) n(3+[t)

1) < ;
|/81(Za )| (1+|t|)3/4+6

in addition,

Ba(er) In(3 + |¢))

|(B. - f)(N)] < (11 [1)/2ee for \e T,
where T is defined by (213), and
(Bua- NN < 2w,

T+ [d) /75
2. The following estimates hold for A, - B,;- f:

(Azt - Bat - f)(A) = al(j7t) +o (%) for X — oo,

where

(2,t) = _—//dReCdImCr ,(,t //a il fn,z, t)dRendImn,

and .
i (cy)

< .

in addition,

ao(cy)
(A Bea- NI < e A€ C

10

(4.9)

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)

(4.15)



3. The following estimates for A7, - f hold:

(An, . ) = 2= <i> for A — o0,

’ A Al
where )
(e = = [ [ 1l (AT PQaReCatnG
C
" Grfep)"
Yilcy
n Zat < n— 9 416
Pnlest)] € o S (4.16)
where [s]| denotes the smallest integer following s. In addition,
az, - oy < =229Vt gy e (4.17)
| (1+ [ty 513
4. The following estimate holds for R, ;:
q(z,t) 1
R.:(\) = 3 +o B for A — oo, (4.18)
and ()
q\cy
) < ———<—F. 4.19
|Q(Z? )| (1+ |t|)9/10 ( )

A detailed proof of Lemma F.1]is given in Section
From formulas (43]), (£.9) and Lemma [41] follows immediately the following theorem.

Theorem 4.1. Let v(x,t) be the “inverse scattering solution” of the Cauchy problem for the

Novikov—Veselov equation (1) with E = —1 and the initial data v(xz,0) = vo(z) satisfying

(L23). Then

const(vg) In(3 + [t])
(L[>

reR:teR.

[o(z, )] <

5 Optimality of estimates (I.6]) and (3.19)

In this section we show that estimates (L6) and (3.I9]) are optimal in the sense that there
exists such a line z = 4t that along this line I(z,t) from ([BI9) and v(z,t) from (6] behave

asymptotically exactly as O (W) when [t| — oo.

5.1 Optimality of the estimate for the linearized case

Let us consider the integral

I(t,u) = //f(() exp(tS(u,))dRe(dImc, (5.1)
C
where 1 gl
f(Q)= Wb(o’ (5-2)

11



with b(() satisfying (83)), and S(u, () is defined by B.7), for v = & = —18. As shown in Lemma
B for this value of parameter u the phase S(u,() = S(¢) has two degenerated stationary points
¢ = £1 of the third order.

To calculate the exact asymptotic behavior of I(¢,4) we will use the classic stationary
method as described in [E]. First of all, we note that f({) is continuous, but not continuously
differentiable on C. Thus we will consider separately the integrals

t) = / / f(¢Q)exp(tS(¢))dReCdIm¢, I_(t) = / / f(¢) exp(tS(¢))dReldIm(,
D+ D_

where D, and D_ are defined in (B.4)).
Let us introduce the partition of unity 11(¢) + ©o(¢) + ¥—1(¢) = 1, such that 0 < ¥

||| //\

P; € C®°(C), ¥+1(¢) = 1 in some neighborhood of { = =+1, respectively, and ¥11(¢) 0
everywhere outside some neighborhood of ¢ = %1 respectively. Then it is known (see [F]) th
1

//f )1 (C) exp(tS(Q) dReCdImG—//f ¢) exp(tS(¢))dRe(dIm¢+O <|t|> =

=If®)+I;(t)+0 (%) as [t| — oc.

First we will estimate 17 (¢). We note that for the phase S(¢) the following representation
is valid

S(¢) = P(¢) — P(0),
where P(() is a holomorphic function defined by

P(():—9C—§+C?’+F+16

in addition, P(¢) = S¢(¢) = & (¢ —1)*(C+1)°.

Note that P(¢) can be written in the form P(¢) = p(¢)(¢ — 1)*, where p(¢) = % and
%irri p(¢) # 0. For the function p(¢) the expression (p(¢))Y/* can be uniquely defined in some
—
neighborhood of ¢ = 1. Further, we define the transformation { — #:

n=(p(O)* (¢ -1).
Since we have that

L =V6#£0, (5.3)

the inverse transformation ¢ = ¢(n) is defined in some small neighborhood of n = 0. In terms
of the new variable i the phase can be represented

S() =n* ="

Now if we denote x = Ren, y = Imn, the integral Ii(t) becomes

If(t / e+ iy (z +iy) exp(Bitay(z* — y*)|Oyp(x + iy)Pdrdy,
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where f = fog, ¥ = 1o and Ay = {(z,y) € R%: 2 < 0}, i.e. A, is the half-plane
containing the image of D, N B.(1) under the transformation = + iy = ¢~ (¢).
The integral Ii(t) can be written in the form

—+00
Ii(t) = / de exp(3ite) / Fla + iy)i (x +iy)|Oye(a + iy) Pdws,
- {S(@y)=ctnAy

where S(x,7y) = zy(22—y?) and dwg is the Gelfand-Leray differential form, defined as dSAdws =
dx A dy and in the particular case under study equal to
— (2% = 3zy®)dx + (32%y — y°)dy

(22 + y2)3 :

dws =

As ¢y (z +iy) is equal to zero outside some Br(0), a disk of radius R centered in the origin,
then there exists such ¢, > 0 that the set {S(z,y) = ¢} lies outside Br(0) for any ¢ < —c
¢ > c4. Thus the integral Ii(t) can be written

*

Cx

I+( )= / dcexp(3ite) / f T —i—zy)wl(x + 1Y) |0y (x —i—zy)\ dwg.
—Cx {S(z,y)=c}NAy

Performing the change of variables

z My, oy My fore>0,
= (—e)*z, ye (—o)Y*y  fore<0

yields
0
dcexp (3ztc p(3ite)
Ijr_(t) _/ 1/2 / 1/2 —(0)7
0

where

Fi(c) = / Fle,x,y)dws, F_(c)= / F(—c,z,y)dws, (5.4)

{S(zy)=13n{c!/*(z,y)eA1} {S(@y)=—13n{(—c)/*(z,y)eAs}
and

Fle,a,y) = f(/ (@ +iy)dr (M (@ + iy)) [0y (@ + iy)) .

For any fixed positive ¢ the integrals in (5.4]) converge because the set {S(x,y) = 1} is separated
from zero and, consequently, the denominator does not vanish, and because v is a function
with a bounded support and thus the domains of integration in (5.4]) are, in fact, bounded.
Besides, since A is a conic set, the functions F; (¢) and F_(c) can be expressed as follows

Fy(e /f ¢z, y)dws, F_(c)= /f(—c,w,y)dWS,
{S(zy)=11NA4 {S(z,y)=—1}NAL

. 1121 some neighborhood U of ¢!/ 4(x + iy) = 0 containing the support of Y1 the function
f(c'/*(x 4 iy)) can be represented as

F(M @ +iy)) = F(1) + 6740 fp. (1)(z +iy) + ¢ fp. (1)(x — iy)le"* + g(/* (x + iy)),

13



where O; fp, (1) = lim O¢f, O¢fp, (1) = lim O¢f and, in addition, g is a function that can be
CeDy ¢eDy

¢—1 ¢—1
estimated

lg(cH (@ +iy))| < Kl (@ + iy, Mz +iy) € U (5.5)

with some constants a > 0, K > 0. Using (5.2]), we note that f(1) = 0, 9 fp, (1) = 9¢fp, (1) &

fp, (1) and thus
(M@ + i) = 674 f, (Va4 g((z +iy),  M(x +iy) € Uy,
Taking into account (B.3]) we obtain
Fle.x,y) =vfp, Do + §(/* (@ +iy)), Mz +iy) € Uy, (5.6)

where v = 673/% and § is a function satisfying an estimate similar to (5.5)).
It follows then that the functions Fy(c) behave asymptotically as

Fi(c) = fyfb+(1)J§+(ic)1/4 + R(c), when ¢ — 0,

JX+ = / rdwg, J£+ = / rdwg
{S(@y)=1}nAy {S(@y)=-1}nAy
and R(c) denotes the remainder.
The integrals J§+ converge because the set {S(z,y) = 1} represents a combination of
curves which do not pass through zero and converge either to the lines |y| = |z| or to the
coordinate axes with velocities |y| = # and |z| = # correspondingly.

where

The remainder R(c) behaves asymptotically as o (cl/ 4) because we can estimate

RO < K0 [ iy ds|.
{S(z,y)=£1}NA4

and the integral converges due to the properties of the set {S(z,y) = 1} explained above.
Thus I (¢) behaves asymptotically as (see [E, Chapter III, §1])

N 3 n 13 _ 13 1 1
IT(t) = Wﬁh(l)r (Z) [JA+ €xp <?> + JA+ exp <—?>} B/a +o 374 )

where I' is the Gamma function.
Performing the same procedure for I} (¢) and I_(t) and taking into account that f7,, (1) =

—fb_(l), fb+(_1) = _fb_(_l)a IZJr = —IZ_, I£+ = —1, , we obtain

C 1
I(t) = W—FO(W) y
where

C= %r G) <Jg+ exp <%> +J5, exp <—%)) <f,’3+(1) - f,’:,+(—1)> . (5.7)

Thus we have shown that the linear approximation of the solution v(z,t) of (L.II), when
z = —18t, behaves asymptotically as ti”% when t — oo. ' 4

Since Jir are some negative constants, the expression JX+ exp ( %) + J£+ exp (—%) does
not vanish. On the other hand, from [ZI2) and (52) it follows that fp (1) — fp, (1) =
—mReb(1). Thus, in the general case the constant C' from (5.7)) is nonzero. We have proved the
optimality of the estimate (I.6]) in the linear approximation.

14



5.2 Optimality of the estimate for the non-linear case

Now we show that the solution v(z,t) of (I.I) behaves asymptotically as 77 along the line
z = —18t. Let us show that the integral ([AI3)) with f =1 and z = —18¢ behaves as Ct%r}it.
We can represent aq(—18¢,¢) in the form (5.1) with f(-) = r(-)p(-, ), where

) tz,_
/D/ =7 2, ’ 18 IRendRe¢

We proceed following the scheme of estimate for I(¢) until formula (5.5]). Then we represent

D (& + i) Oy (@ + i) P = —= + kWA (@ + iy) + B4 + i),

V6

where k is some coefficient and h(c!/*(x +1y)) satisfies an estimate of type (55). Consequently,
for F(c,z,y) we can write

Flere,y) = FQ)6 ke (atig)) 46~ 40 f, (1) (a-+ig)+e ., (1) (i) +3(cH (a-+ig),
where §(c'/4(z + iy)) satisfies an estimate of type (&.5). This allows us to obtain in the end

n Lo(fo(£1), fz(£1
lﬂﬂi”)<r+ibf>+-ﬂk(t;fﬂ ))+0<£E>,t—+m, (5.8)

Oél(—18t, t) =

where [;(f(£1)) is a linear combination of the limit values of f as ¢ tends to 1 and —1 from
inside and outside of the unit circle, and l2(f¢(£1), f¢(+1)) is a linear combination of the limit
values of f¢ and fz as ¢ tends to 1 and —1 from inside and outside of the unit circle.

In a way similar to which (5.8)) was obtained it can be shown that

const 1

Substituting this into (5.8]) yields that a;(—18¢,¢) ~ Cg}it as t — 00.
Finally, from (£9]) and Lemma [Tl it follows that when z = —18t,

__const 1
U(Z7t)_t?’T+0 W , t—o0.

Restrictions in time prevent us from showing accurately that f can be chosen in such a way
that the constant in this estimate is nonzero.

6 Proofs of Lemma 3.2l and Lemma [4.7]

Proof of Lemma[3.2 The proof follows the scheme described in Section [ and is carried out
separately for four cases depending on the values of the parameter u. In all the reasonings that
follow we denote by D, the union of disks with the radius € centered in the stationary points
of S(u, () and we denote by T the unit circle on the complex plane:

T={\eC:|\=1} (6.1)

in addition, const will denote an independent constant and const(f) will denote a constant
depending only on function f.
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Casel. ueU
In this case all the stationary points belong to T' and due to assumptions (B.3]) and (BI8])
of Lemma [3.2] we can estimate

|£(¢)] < const(f)e for ¢ € D.. (6.2)
Now we estimate the integral I;,,; (as in (3.16])) as follows

| Lint| = //f(() exp(tS(u, ¢))dReldIm(| < const(f) 6// dReC¢dIm¢ < const(f)e?
D- D

The estimate for I, (as in ([3.I6])) is proved as follows.
We note that the function Sé(u, () can be estimated as

e
|S¢(u, Q)| = const—4 for ( € C\D,,, and
< 63
e .
|S¢(u, Q)| = constm4 for( € 0D,, &< p<ep.
Similarly, we can estimate
S¢(u, §) ¢
A
m < COIlSte—61 fOI’C € (C\.Dgo, and
(6.4)
Sé’c(u, ) < const <I* for(e0D,, e<p<e
Tl e a1 ) X P X €0
GACR)E o ’
Thus we obtain the following estimate for I from (B.17)
L (9l const(f)

3 — 3
<3 ] < const 55 [ 1611dC] < const(H) 5 (1 +)! <

!S’( 9]
0D,

Due to assumption (B.I8]) of Lemma [B.2] the integral I5 from (B.I7)) is equivalent to zero.
When estimating I3 and Iy from (BI7) we fix some independent ¢y > 0 and integrate
separately over D, \D. and C\Dy,:

Il < // 1€ exp ( NG)) dReCdlm <+//

Dey\D< C\D¢,

e

ﬁem u,()

dRe(dIm( <

t
< const(f /ﬁd,o—i—const/ FACS )I¢t|dRe¢dIm¢ < %(f),

\DE()
f(¢ exp C))Sgg( €
Hal < ﬂ' w0

Dey\D-

C\Dx,

dReCdIm¢ +

eXp u, ¢))S¢e (u, C)
,C))2

dReCdIm( <

< const(f /p—d,o—i—const/ |£(O)]|¢3|dRe¢dIm < %t(f).

C\Dx,
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Setting finally ¢ = W yields

const(f)

I(t,u) < ———2
N (T

uniformly on u € U.

Case 2. u € C\U and w from (3.14)) satisfies wy < 175 <1 —w; for some fixed independent
positive constants wy and wy (i.e. the roots (y, (2 from ([B.14) are separated from 7', defined by
(61, and the root (s, is separated from the origin)

In this case the we can estimate

constp

‘Sé(u, C)’ 2 W for C € 8Dp7
Ste(u,¢) const|¢|*

SiwQp| S 2 e

Using these estimates and proceeding as in case 1, we obtain
1
|Lins| < const(f)e?, |I| < const(f), I, =0, |I3]<const(f), |I4] < const(f)ln=.
€

Setting ¢ = we obtain that

1
T+t
In(3 + [t])

I(t,u) < const(f) T

uniformly for the considered values of the parameter u.
Case 3. v € C\U and 13 < wp (i.e. the roots (p and (3 from (B.14) lie in some neighborhood

of T from (&.1])

Lemma 6.1. For any t > ty with some fized tg > 0 and any w > 0 one of the following
conditions holds

2 .
(a)0<w<W,

() w> s

. 1 2 -2 1 =1
(C) dn: (1+‘t|)7n+1/(2+2~m+1) <w< (1+|t‘)Wn/(2+2vn+1) ’ where T+l = 37n + 3 71 = 3-

Proof. We note that

Tl 1
242,41 4
T
24+ 241 2+ 2%
1

71 <2

242y, 8

n — o0;

Thus the intervals from the cases (a), (b), (¢) Vn € N cover the whole range 0 < w < +00. [

We will prove the result separately for three different cases depending on the value of pa-
rameter w
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(a)

_ 2
O<W<2€—W

In this case estimates (6.2)), (63]), (64) hold and so the reasoning of the case 1 can be

carried out to obtain that
const(f)

(1+[t])3/4

uniformly for the considered values of the parameter u satisfying

I(t,u) <

0 2 6.5
<W<W. ()

13 _ 1
© e T T
In this case we estimate |I;,¢| < const(f)e2.

Further, we note that the derivative of the phase is estimated as

const ew?

¢l

Thus for I; we obtain |I;| < const(f)#.

|S¢(u, Q)| = for ¢ € OD.. (6.6)

In order to estimate the integral Is we use the following estimate of the derivative Sé for
¢ € 0D, when € < p < €¢:

3 (6.7)

S (u, Q)] > <BLRE if p < a,
| >

It allows to derive |I3] < Const(f)#.

Finally, we proceed to the study of the integral Iy. We use the following estimates

Sg((u7 C)
(5¢(u, 0))?

const|¢|*

p2w?

and
{ |£(¢)] < const(f)w, if p < w,
|£(¢)] < const(f) p, if p> w.

After integration we obtain the estimate |I4| < const(f )62%

Setting finally € = we obtain

1
(D7

const(f)

I(tu) < ———2
B0 S

uniformly for the considered values of the parameter u satisfying
(6.9)

1
RGNS
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(c) e+l < w < 2e7, where € =
Yo — 1)
We proceed similarly to the case (b). Evidently, I;,,; can be estimated |I;,¢| < const(f)e?t7n.
Employing the estimate (B.6) we obtain |I;| < const(f)=E—

27n+1

1 2 1 1
(1+|t\)1/(—2+2771+1) and Tn+1 = 37n + 3,71 = 3 (note that

Using (6.7) in order to estimate I3 we obtain |I3] < const(f)ﬂn%.
Finally, to estimate I, we use (6.8]) and

SI/
¢
S, Q)| S

e’ In(1/e)
27n+1

const|¢|*
p3w ’

t 4
ol <,
p>w

to obtain |I4| < const(f)

Settlng g = W yleldS

(1+2])
const(f)In(3 + [t]))

I(t,u)| <

uniformly for the considered values of the parameter u satisfying

1 2
(1 4 |t])vn+1/(2+27m41) Sw< (14 [¢])7n/CH2vm+1)”

(6.10)

Finally, from Lemma [6.1]it follows that we have proved the required estimate uniformly on
the values of parameter « E (C\U such that - < wy.

Case 4. u € C\U and 1< > 1 —wy (i.e. the roots (2, —(y lie in the wi—neighborhood of the
origin)

This case is treated similarly to the previous one. We denote & = HLW Then we use
estimates B
IF (O] < e(f)lw + pl,
const p? constpw
|1S¢(u, ¢)| = TIE |S¢(u, Q)] = IR
Ste(u,€) const|¢|* Ste(u, €) const|¢|*
(S¢(u, €))? p° (8¢ (u, ))? PP
which hold for ¢ € D,, to obtain the necessary estimates. O

Proof of Lemma[{.d. 1. The proof of inequality (£I0) repeats the proof of Lemma The
proof of inequality (4.I1]) also follows the scheme of the proof of Lemma In this case
we take D, to be the union of disks of the radius € with centers in the stationary points
of S(u,() and in the point A.

For the case when X\ € T, where T is defined by (6.I)), an estimate weaker than (4.IT])
can be obtained via a simplified reasoning. Indeed, I;:, as in ([B.I6]), can be estimated

[line] < O <(1+|t‘) > Using estimates (6.3]), (6:4) and

I =Xl = pfor (€0D, (6.11)

we obtain that [I..¢| < O <W> Setting & = W we get the estimate (£.12]).
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2. In order to obtain estimates (LI4]), [AI5]) we proceed according to the scheme outlined
in Section [Bl In this case the integral Iy does not annul. On the other hand, when the
variable of integration belongs to T', the estimate ([A.I1]) on the integrand of I, is stronger
than the estimate (£12]) for the general case. Thus we obtain for aq(z,t)

g2 1 1
int| <O ———< |, M|<O|—a— |, LI<O(——7—],
" L+ i)+ (Lt +a (L4 |eh+ae?

1 1
|Is| < O <7> , L <O ——— .
(L+t)e (14 [¢])7+1 2

7z yields the required estimate. The estimate (£.I5) is obtained simi-

. _ 1
Setting ¢ = D

larly.
3. We will give the scheme of the proof for estimate ([4.16). The estimate (417)) is obtained
similarly.

We will prove ([£I6) by induction. Suppose that (£I6]) holds for all n = 1,2,..., N

Then following the scheme of Section [l and taking into account that O\(AZ, - f)(A) =
(AZ;I - f)(A\), we obtain for n = N + 1:

5 1
Iin < O — ) I < O — )
. <<1 + mWHT”) . ((1 + rtr>6+%f7%3>
1 1
I g O n— 9 I < O n— i
| <<1+ |t|>5+%(711e4) . <<1+ |t|>5+é(721e3>

1
L <O Trn—1 :
= <<1+ |t|>5+5(71e3>

W we obtain the required estimate.

Setting ¢ =
4. We represent R, ;(\) as the sum of the following members

RN =B(A+A*+ A%+ .. ) 1+ AB(A+ A2+ A*+..) - 1+
FA+A+ A+ )ABI+A+ A%+ ..) - 1=RL,(\)+R2,(\)+ R, (N).
The convergence of the series at sufficiently large times follows from the estimate (4.17)).

Now let
¢i(2,1)

. 1
R, ,(A\) = 3 +o <W> , as A — 00.
From (LI0) and (I7) it follows that |q1(z,t)] < %. From (414 and (£I7) we
obtain that |g2(z,t)| < (1+|z\2)(+/4)“/5' Finally, from ([@I5]), ([@I6]) and (I7) it follows that

lgs(z,t)] < mﬁ%. This yields the required estimate. O
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