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A Simple Vector Proof of Feuerbach’s Theorem

Michael Scheer

Abstract

The celebrated theorem of Feuerbach states that the nine-point circle

of a nonequilateral triangle is tangent to both its incircle and its three

excircles. In this note, we give a simple proof of Feuerbach’s Theorem

using straightforward vector computations. All required preliminaries are

proven here for the sake of completeness.

1 Notation and Background

Let △ABC be a nonequilateral triangle. We denote its side-lengths by a, b, c,
its semiperimeter by s = 1

2
(a + b + c), and its area by K. Its classical centers

are the circumcenter O, the incenter I, the centroid G, and the orthocenter H
(Figure 1). The nine-point center N is the midpoint of OH and the center of
the nine-point circle, which passes through the side-midpoints A′, B′, C′ and
the feet of the three altitudes. The Euler Line Theorem states that G lies on
OH with OG : GH = 1 : 2. We write Ea, Eb, Ec for the excenters opposite
A,B,C, respectively; these are points where one internal angle bisector meets
two external angle bisectors. Like I, the points Ea, Eb, Ec are equidistant from
the lines AB, BC, and CA, and thus center three circles each of which is tangent
to those lines. These are the excircles, pictured in Figure 2. The classical radii
are the circumradius R (= |OA| = |OB| = |OC|), the inradius r, and the exradii
ra, rb, rc. The following area formulas are well known (see, e.g., [1] and [2]):

K =
abc

4R
= rs = ra(s− a) =

√

s(s− a)(s− b)(s− c).

Feuerbach’s Theorem states that the incircle is internally tangent to the nine-
point circle, while the excircles are externally tangent to it [3]. Two of the four
points of tangency can be seen in Figure 2.

2 Vector Formalism

We view the plane as R2 with its standard vector space structure. Given△ABC,
the vectors A− C and B − C are linearly independent. Thus for any point X ,
we may write X − C = α(A − C) + β(B − C) for unique α, β ∈ R. Defining
γ = 1− α− β, we find that

X = αA+ βB + γC, α+ β + γ = 1.
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This expression for X is unique. One says that X has barycentric coordinates
(α, β, γ) with respect to △ABC (see, e.g., [1]). The barycentric coordinates are
particularly simple when X lies on a side of △ABC:

Theorem 1. Let X lie on side BC of △ABC. Then, with respect to △ABC,
X has barycentric coordinates (0, |CX |/a, |BX |/a).

Proof. Since X lies on line BC between B and C, there is a unique scalar t such
that X − B = t(C −B) and 0 < t < 1. Taking norms and using t > 0, we find
|BX | = |t||BC| = ta, i.e., t = |BX |/a. Rearranging, X = 0A+ (1 − t)B + tC,
in which the coefficients sum to 1. Finally, 1− t = (a− |BX |)/a = |CX |/a.

Figure 1: The classical centers and the Euler division OG : GH = 1 : 2.
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The next theorem reduces the computation of a distance |XY | to the simpler
distances |AY |, |BY |, and |CY |, when X has known barycentric coordinates.

Theorem 2. Let X have barycentric coordinates (α, β, γ) with respect to△ABC.
Then for any point Y ,

|XY |
2
= α|AY |

2
+ β|BY |

2
+ γ|CY |

2
− (βγa2 + γαb2 + αβc2). (∗)

Proof. Using the common abbreviation V 2 = V ··· V , we compute first that

|XY |2 = (Y −X)2

= (Y − αA− βB − γC)
2

= {α(Y −A) + β(Y −B) + γ(Y − C)}
2

= α2|AY |2 + β2|BY |2 + γ2|CY |2

+ 2αβ (Y −A) ··· (Y −B) + 2αγ (Y −A) ··· (Y − C)

+ 2βγ (Y −B) ··· (Y − C).
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Figure 2: The excenter Ea and A-excircle; Feuerbach’s theorem.
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On the other hand, we may compute c2 as follows:

(B −A)
2
= {(Y −A)− (Y −B)}

2
= |AY |

2
+ |BY |

2
− 2 (Y −A) ··· (Y −B).

Thus 2αβ (Y − A) ··· (Y − B) = αβ|AY |2 + αβ|BY |2 − αβc2. Substituting this

and its analogues into the preceding calculation, the total coefficient of |AY |
2

becomes α2 + αβ + αγ = α(α + β + γ) = α, e.g. The result is formula (∗).

3 Distances from N to the Vertices

Lemma 1. The centroid G has barycentric coordinates (1
3
, 1

3
, 1

3
).

Proof. Let G′ be the point with barycentric coordinates (1
3
, 1

3
, 1

3
), and we will

prove G = G′. Let A′ and B′ be the midpoints of sides BC and AC respectively.
By Theorem 1, A′ = 1

2
B + 1

2
C. Now we calculate

1

3
A+ 2

3
A′ = 1

3
A+ 2

3
(1
2
B + 1

2
C) = 1

3
A+ 1

3
B + 1

3
C = G′

which implies that G′ is on segment AA′. Similarly, we find that G′ is on
segment BB′. However the intersection of lines AA′ and BB′ is G, and so
G = G′.

Lemma 2. (Euler Line Theorem) H −O = 3(G−O)

Proof. Let H ′ = O + 3(G−O) and we will prove H = H ′. By Lemma 1,

H ′ −O = 3(G−O) = A+B + C − 3O = (A− O) + (B −O) + (C −O).
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We use this to calculate

(H ′ −A) ··· (B − C) = {(H ′ −O)− (A−O)} ··· {(B −O)− (C −O)}

= {(B −O) + (C −O)} ··· {(B −O)− (C −O)}

= |BO|2 − |CO|2

= 0

Therefore H ′ is on the altitude from A to BC. Similarly, H ′ is on the altitude
from B to AC, but since H is defined to be the intersection of the altitudes, it
follows that H = H ′.

Lemma 3. (A−O) ··· (B −O) = R2 − 1

2
c2.

Proof. One has

c2 = (A−B)
2

= {(A−O)− (B −O)}2

= |OA|
2
+ |OB|

2
− 2 (A−O) ··· (B −O)

= 2R2 − 2 (A−O) ··· (B −O).

We now calculate |AN |, |BN |, |CN |, which are needed in Theorem 2.

Theorem 3. 4|AN |2 = R2 − a2 + b2 + c2.

Proof. Since N is the midpoint of OH , we have H−O = 2(N −O). Combining
this observation with Lemma 2, and using Lemma 3, we obtain

4|AN |
2
= {2(A−O) − 2(N −O)}

2

= {(A−O)− (B −O) − (C −O)}2

= |AO|
2
+ |BO|

2
+ |CO|

2

− 2 (A−O) ··· (B −O) − 2 (A−O) ··· (C −O)

+ 2 (B −O) ··· (C −O)

= 3R2 − 2(R2 − 1

2
c2)− 2(R2 − 1

2
b2) + 2(R2 − 1

2
a2)

= R2 − a2 + b2 + c2.

4 Proof of Feuerbach’s Theorem

Theorem 4. The incenter I has barycentric coordinates (a/2s, b/2s, c/2s).

Proof. Let I ′ be the point with barycentric coordinates (a/2s, b/2s, c/2s), and
we will prove I = I ′. Let F be the foot of the bisector of ∠A on side BC.
Applying the Law of Sines to △ABF and △ACF , and using sin(π−x) = sinx,
we find that

|BF |

c
=

sin(∠BAF )

sin(∠BFA)
=

sin(∠CAF )

sin(∠CFA)
=

|CF |

b
.
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The equations b|BF | = c|CF | and |BF |+ |CF | = a jointly imply that |BF | =
ac/(b + c). By Theorem 1, F = (1 − t)B + tC, where t = |BF |/a = c/(b + c).
Now,

b+c

2s
F + a

2s
A = b+c

2s
( b

b+c
B + c

b+c
C) + a

2s
A = a

2s
A+ b

2s
B + c

2s
C = I ′

which implies that I ′ is on the angle bisector of ∠A. Similarly, I ′ is on the angle
bisector of ∠B, but since I is the intersection of these two lines, this implies
I = I ′.

We are now in a position to prove Feuerbach’s Theorem.

Theorem 5 (Feuerbach, 1822). In a nonequilateral triangle, the nine-point
circle is internally tangent to the incircle and externally tangent to the three
excircles. (For historical details, see [3] and [4].)

Proof. Consider the incircle. From elementary geometry, two nonconcentric
circles are internally tangent if and only if the distance between their centers
is equal to the absolute difference of their radii. Therefore we must prove that
|IN | = | 1

2
R− r|. Here, 1

2
R is the radius of the nine-point circle, as the latter is

the circumcircle of the midpoint-triangle△A′B′C′. We setX = I and Y = N in
Theorem 2, with Theorems 3 and 4 supplying the distances |AN |, |BN |, |CN |,
and the barycentric coordinates of I. For brevity, we use cyclic sums, in which
the displayed term is transformed under the permutations (a, b, c), (b, c, a), and
(c, a, b), and the results are summed (thus, symmetric functions of a, b, c may
be factored through the summation sign, and

∑

�
a = a + b + c = 2s). The

following computation results:

|IN |2 =
∑

���

(

a

2s

)

R2 − a2 + b2 + c2

4
−
∑

���

(

b

2s
·
c

2s

)

a2

=
R2

8s

[

∑

���

a

]

+
1

8s

[

∑

���

(−a3 + ab2 + ac2)

]

−
abc

(2s)2

[

∑

���

a

]

=
R2

4
+

(−a+ b+ c)(a− b+ c)(a+ b− c) + 2abc

8s
−

abc

2s

=
R2

4
+

(2s− 2a)(2s− 2b)(2s− 2c)

8s
−

abc

4s

=
R2

4
+

(K2/s)

s
−

4RK

4s

=
(

1

2
R
)2

+ r2 −Rr

=
(

1

2
R− r

)2
.

The two penultimate steps use the area formulas of Section 1—in particular,
K = rs = abc/4R and K2 = s(s− a)(s− b)(s− c). A similar calculation applies
to the A-excircle, with two modifications: (i) Ea has barycentric coordinates

(

−a

2(s− a)
,

b

2(s− a)
,

c

2(s− a)

)

,
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and (ii) in lieu of K = rs, one uses K = ra(s−a). The result, |EaN | = 1

2
R+ra,

means that the nine-point circle and the A-excircle are externally tangent.
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