UNIQUE PATH PARTITIONS: CHARACTERIZATION AND CONGRUENCES

CHRISTINE BESSENRODT, JØRN B. OLSSON, AND JAMES A. SELLERS

Abstract

We give a complete classification of the unique path partitions and study congruence properties of the function which enumerates such partitions.

1. Introduction

The famous Murnaghan-Nakayama formula gives a combinatorial rule for computing the value of the irreducible character of the symmetric groups S_{n} labelled by the partition λ on the conjugacy class labelled by a partition μ (see [2]). This value is the weighted sum over the μ-paths in λ, as defined below, where the weight is a sign corresponding to the sum of the leg lengths of the rim hooks removed along the path.

If $\mu=\left(a_{1}, a_{2}, \ldots, a_{k}\right)$, with $a_{1} \geq a_{2} \geq \ldots \geq a_{k}>0$, and λ are partitions of n, then a μ-path in λ is a sequence of partitions, $\lambda=\lambda_{0}, \lambda_{1}, \ldots, \lambda_{k}=(0)$, where for $i=1, \ldots, k$ the partition λ_{i} is obtained by removing an a_{i}-hook from λ_{i-1}. Then we call μ a up-partition for λ if the number of μ-paths in λ is at most 1 . We call μ a up-partition if it is a $u p$-partition for all partitions of n.

Thus, a up-partition μ labels a conjugacy class where all non-zero irreducible character values are 1 or -1 , i.e., they are sign partitions as defined in [3]. By [6, 7.17.4], the sign partitions μ are exactly those for which the expansion of the corresponding power sum symmetric function into Schur functions is multiplicity-free.

Note that not every sign partition is a up-partition as cancellation may occur. For example, the partition $(3,2,1)$ is a sign partition, but not a $u p$-partition, since there are two $(3,2,1)$-paths in the partition $(3,2,1)$.

In this paper, we accomplish three goals. First, we provide an explicit classification of the unique path partitions (for short up-partitions) in terms

[^0]of partitions we call strongly decreasing. We then discuss numerous connections between up-partitions and certain types of binary partitions. Such connections are truly beneficial; they led us to the development of a generating function for, and a recurrence satisfied by $u(n)$, the number of $u p$-partitions of the positive integer n. Thanks to this link between up-partitions and restricted binary partitions, we were encouraged to consider the arithmetic properties of $u(n)$. (Such a motivation is natural based on the literature that already exists on congruence properties satisfied by binary partitions. Indeed, Churchhouse [1] initiated the study of congruence properties satisfied by the unrestricted binary partition function in the late 1960's. This work was further extended by Rødseth and Sellers [4].) We close this paper by proving a number of congruence relations satisfied by $u(n)$ modulo powers of 2 .

2. The Classification of up-Partitions

We now collect the facts necessary for classifying the up-partitions in an elegant fashion. As usual, we gather equal parts together and write i^{m} for m parts equal to i in a partition.

Lemma 2.1. (1) If $\mu=\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ is a up-partition with $a_{k}=2$, then $\mu^{\prime}=\left(a_{1}, a_{2}, \ldots, a_{k-1}, 1^{2}\right)$ is also a up-partition.
(2) If $\mu=\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ is a up-partition with $k \geq 2$, then $\mu_{2}=\left(a_{2}, \ldots, a_{k}\right)$ is also a up-partition.

Proof. (1) follows immediately from the definition.
(2) If a partition λ_{2} of $n-a_{1}$ has two or more μ_{2}-paths then any partition of n obtained be adding an a_{1}-hook to λ_{2} has two or more μ-paths.

Lemma 2.2. Let $\mu=\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ be a partition of n and $a>n$. Then μ is a up-partition if and only if $\mu^{\prime}=\left(a, a_{1}, \ldots, a_{k}\right)$ is a up-partition.

Proof. By Lemma 2.1(2) we only need to show that if μ is a $u p$-partition then also μ^{\prime} is a $u p$-partition. Let λ^{\prime} be a partition of $a+n$. Since $a>n$, λ^{\prime} cannot contain two or more a-hooks. If λ^{\prime} contains an a-hook, we let λ be the partition obtained by removing it. Since by assumption μ is a up-partition for λ, we get that μ^{\prime} is a up-partition for λ^{\prime}.

We call an extension of a partition of n by a part $a>n$ as in Lemma 2.2 strongly decreasing, or for short, an sd-extension. A partition μ obtained from a partition ρ by several $s d$-extensions is then called an $s d$-extension of ρ; if $\rho=(0), \mu$ is called an $s d$-partition. Stated explicitly, a partition $\mu=\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ is an $s d$-partition if and only if $a_{i}>a_{i+1}+\ldots+a_{k}$ for all $i=1, \ldots, k-1$.

We have the following classification result for $u p$-partitions:
Theorem 2.3. A partition μ is a up-partition if and only if one of the following holds:
(i) μ is an sd-partition.
(ii) μ is an sd-extension of $\left(1^{2}\right)$.

Proof. In the proof we use the well-known connection between first column hook lengths and hook removal as described in [2, Section 2.7].

As (0) and (1^{2}) are up-partitions, Lemma 2.2 shows that their $s d$-extensions are up-partitions. Suppose that n is minimal such that there exists a partition $\mu=\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ of n, which is a up-partition but not an $s d$-extension of (0) or $\left(1^{2}\right)$. Obviously $k \geq 2$.

Assume $a_{2}=1$, i.e., $\mu=\left(n-k+1,1^{k-1}\right)$. If $k>3$, then μ is not a $u p$-partition since $\left(1^{k-1}\right)$ is not. For $k=3$, only $\left(2,1^{2}\right)$ and $\left(1^{3}\right)$ are not $s d$-extensions of $\left(1^{2}\right)$, but these are not $u p$-partitions. For $k=2, \mu$ is an $s d$-partition or $\left(1^{2}\right)$.

Thus we may now assume that $a_{2}>1$. We put $\mu_{i}=\left(a_{i}, \ldots, a_{k}\right)$ and $n_{i}=\left|\mu_{i}\right|$ for $i=2, \ldots, k$. Also $n_{k+1}:=0$.

Now suppose that $a_{1}=a_{2}$. If $k=2$ then μ is not a up-partition for $\lambda=\left(a_{1}, a_{1}\right)$. If $k>2$ then μ is not a up-partition for $\lambda=\left(n-a_{1}, 1^{a_{1}}\right)$.

Thus we may now assume $a_{1}>a_{2}>1$. By Lemma 2.1, $\mu_{2}=\left(a_{2}, \ldots, a_{k}\right)$ is a $u p$-partition, and thus, by minimality, it is an $s d$-extension of (0) or $\left(1^{2}\right)$. Then μ cannot be an $s d$-extension of μ_{2}, and hence $a_{1} \leq n_{2}$.

Now $a_{1}>a_{2}>n_{3}$ and hence $d:=a_{1}-n_{3}-1>0$. Note that $n_{2}=n_{3}+a_{2}>$ $n_{3}+1$, and thus $\lambda=\left(n_{2}, n_{3}+1,1^{d}\right)$ is a partition of $n_{2}+n_{3}+1+d=a_{1}+n_{2}=$ n. The set of first column hook lengths for λ is $\left\{a_{1}+a_{2}, a_{1}, d, d-1, \ldots, 1\right\}$, as is easily calculated. As $d \leq n_{2}-n_{3}-1=a_{2}-1, \lambda$ has two a_{1}-hooks. After removing the a_{1}-hook in the second row we get the partition $\lambda^{\prime}=\left(n_{2}\right)$. After removing the a_{1}-hook in the first row we get $\left\{a_{1}, a_{2}, d, d-1, \ldots, 1\right\}$ as a set of a first column hook lengths for a partition $\lambda^{\prime \prime}$. Now $\lambda^{\prime \prime}$ has an a_{2}-hook in the second row. Removing it we obtain the partition $\left(n_{3}\right)$. This shows that μ is not a up-partition for λ, giving a contradiction.

3. On up-Partitions and restricted binary partitions

For each $n \in \mathbb{N}$, we denote the number of $u p$-partitions of n by $u(n)$. For $t \in \mathbb{N}$, we say an $s d_{t}$-partition is an $s d$-extension of the partition (t). The following lemma is obvious.

Lemma 3.1. Let μ be a partition of t. There is a bijection between sdextensions of μ and sdt-partitions obtained by replacing all the parts of μ by one part t.

We denote the number of $s d$-partitions of n by $s(n)$ and the number of $s d_{t}$-partitions of n by $s_{t}(n)$ so that $s(n)=\sum_{t \geq 1} s_{t}(n)$. Combining Theorem 2.3 with Lemma 3.1 we get the following:

Corollary 3.2. For each $n \geq 1$,

$$
u(n)=s(n)+s_{2}(n) .
$$

Next, we focus our attention on $s(n)$.
Proposition 3.3. For each $n \geq 2$,

$$
s(n)=2 s_{1}(n)+s_{2}(n) .
$$

Proof. Let $\lambda=\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ be an $s d_{t}$-partition, i.e., $a_{k}=t$. If we map λ onto ($a_{1}, a_{2}, \ldots, a_{k}-1,1$) we get a bijection between the set of all $s d_{t^{-}}$ partitions of n with $t \geq 3$ and the set of all $s d_{1}$-partitions of n. Thus $s_{1}(t)=\sum_{t \geq 3} s_{t}(n)$. The result follows, since $s(n)=\sum_{t \geq 1} s_{t}(n)$.

Combining Corollary 3.2 and Proposition 3.3, we have the following:
Theorem 3.4. For each $n \geq 2, u(n)$ is even. In fact,

$$
\frac{u(n)}{2}=s_{1}(n)+s_{2}(n) .
$$

Thanks to their definition, it is clear that $s d$-partitions are closely related to non-squashing partitions and binary partitions as described in [5]. A partition $\lambda=\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ is called non-squashing if $a_{i} \geq a_{i+1}+\ldots+a_{k}$ for $1 \leq i \leq k-1$ and binary if all parts a_{i} are powers of 2 . The difference between $s d$ - and non-squashing partitions is whether or not the inequalities between a_{i} and $a_{i+1}+\ldots+a_{k}$ are strict. A binary partition is called restricted (for short, an $r b$-partition) if it satisfies the following condition: Whenever 2^{i} is a part and $i \geq 1$ then 2^{i-1} is also a part. For $t \in \mathbb{N}$, an $r b_{t}$-partition is an $r b$-partition where the largest part occurs with multiplicity t.

With this in mind, we can naturally connect the $s d_{t}$-partitions and the $r b_{t}$-partitions.

Theorem 3.5. Let $n, t \in \mathbb{N}$. There is a bijection between the set of $s d_{t}$ partitions of n and the set of $r b_{t}$-partitions of n.

Proof. Clearly, an $s d$-partition $\lambda=\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ of n is uniquely determined by the positive integers $d_{i} \in \mathbb{N}, i=1, \ldots, k$ defined by $d_{i}=a_{i}-$ $\left(a_{i+1}+\ldots+a_{k}\right)$ for $i=1, \ldots, k-1$ and $d_{k}=a_{k}$. An easy calculation shows that with this notation $n=d_{1}+d_{2} 2+\ldots+d_{k} 2^{k-1}$. Thus if we map λ onto the binary partition where 2^{j} occurs with multiplicity $d_{j+1}, j=0,1, \ldots, k-1$, we get the desired bijection.

Remark 3.6. Theorem 3.5 shows that $s(n)$ equals the number $r b$-partitions of n. Let $S(q):=\sum_{n \geq 1} s(n) q^{n}$ be the generating function for $s(n)$. It is easy write down the generating function for the number of $r b$-partitions which implies that

$$
S(q)=\sum_{i \geq 1} q^{2^{i}-1} \prod_{j=0}^{i-1} \frac{1}{q^{2^{j}}-1} .
$$

Moreover, the generating function $S_{t}(q)$ for the number of $r b_{t}$-partitions is given by

$$
S_{t}(q)=\sum_{i \geq 1} q^{2^{2^{i}-1}+(t-1) 2^{2^{i-1}}} \prod_{j=0}^{i-2} \frac{1}{q^{2^{j}}-1} .
$$

Hence, by Theorem [3.4 the generating function $U(q)$ for the number of up-partitions is then

$$
U(q)=2\left(S_{1}(q)+S_{2}(q)\right) .
$$

We now exploit this connection between $r b$-partitions and $s d$-partitions to prove a number of facts about $s(n)$ and related functions.

Proposition 3.7. For each $r \geq 1, s(2 r)=s(2 r-1)$.
Proof. An $r b$-partition λ of $2 r$ must contain a part 1. Removing such a part gives an $r b$-partition λ^{\prime} of $2 r-1$. (A binary partition of an odd number contains 1 as a part, so that λ^{\prime} is still $r b$.) This map is then in fact a bijection.

With Proposition 3.7 in mind, we define $s^{*}(r):=s(2 r)=s(2 r-1)$ for $r \in \mathbb{N}$.

Proposition 3.8. We have $s^{*}(1)=1$ and, for $r \geq 2, s^{*}(r)=s^{*}(r-1)+$ $s^{*}\left(\left\lfloor\frac{r}{2}\right\rfloor\right)$.

Proof. Clearly $s^{*}(1)=s(1)=1$. We prove the proposition by showing that $s^{*}(2 r)=s^{*}(2 r-1)+s^{*}(r)$, and $s^{*}(2 r+1)=s^{*}(2 r)+s^{*}(r)$.

By definition $s^{*}(2 r)=s(4 r-1)$. Let λ be an $r b$-partition of $4 r-1$. Since it is $r b$ it has a part equal to 1 . Remove such a part to get a partition λ^{\prime} of $4 r-2$. If λ^{\prime} has a part equal to 1 , it is an $r b$-partition and we put $\lambda^{\prime \prime}=\lambda^{\prime}$. Otherwise all parts of λ^{\prime} are even and we may divide them all by 2 to get an $r b$-partition $\lambda^{\prime \prime}$ of $2 r$. The process of going from λ to $\lambda^{\prime \prime}$ may obviously be reversed. Thus $s^{*}(2 r)=s(4 r-1)=s(4 r-2)+s(2 r)=s^{*}(2 r-1)+s^{*}(r)$, proving the first identity. The second is proved in a similar way using the fact that $s^{*}(2 r+1)=s(4 r+1)$.

Remark 3.9. Proposition 3.8 proves that the sequence $s^{*}(n)$ is listed in $[7]$ as A033485 and thus that the sequence $s(n)$ is listed as A040039. In particular, the comment by John McKay which appears in A40039 in 77 is confirmed.

We proceed to consider the numbers $s_{t}(r)$ of $r b_{t}$-partitions.
Proposition 3.10. Let $t \in \mathbb{N}$. We have $s_{t}(1)=s_{t}(2)=\ldots=s_{t}(t-1)=0$ $s_{t}(t)=1, s_{t}(t+1)=\ldots=s_{t}(2 t)=0$, and $s_{t}(2 t+1)=1$. Also, $s_{t}(2 r)=$ $s_{t}(2 r-1)$ whenever $t \neq 2 r, 2 r-1$.

Proof. The statements about $s_{t}(j)$ for $j \leq 2 t+1$ are trivial. The final statement is proved in analogy with Proposition 3.7. Using the notation of that proof we have the following: If we assume that λ is $r b_{t}$ then also λ^{\prime} is $r b_{t}$ with the exception of the case where $\lambda=\left(1^{t}\right)$. Also, if λ^{\prime} is $r b_{t}$ then λ is $r b_{t}$ with the exception of the case where $\lambda^{\prime}=\left(1^{t}\right)$. Thus we have $s_{t}(2 r)=s_{t}(2 r-1)$ except when $t \in\{2 r, 2 r-1\}$.

Corollary 3.11. We have $u(1)=1, u(2)=2$, and for $r \geq 2, u(2 r)=$ $u(2 r-1)$.

In similar fashion to the above, we define $s_{t}^{*}(r):=s_{t}(2 r)=s_{t}(2 r-1)$ for $r \neq\left\lfloor\frac{t+1}{2}\right\rfloor$. Thus, in particular, $s_{t}^{*}(r)=0$ for $1 \leq r \leq t, r \neq\left\lfloor\frac{t+1}{2}\right\rfloor$ and $s_{t}^{*}(t+1)=1$. We also define $s_{t}^{*}\left(\left\lfloor\frac{t+1}{2}\right\rfloor\right)$ to be 0 or 1 according to whether t is even or odd. A proof as in Proposition 3.8 shows the following:

Proposition 3.12. For all $r \geq t+2, s_{t}^{*}(r)=s_{t}^{*}(r-1)+s_{t}^{*}\left(\left\lfloor\frac{r}{2}\right\rfloor\right)$.
Lastly, we define $w(n)=\frac{u(2 n)}{2}$. Theorem 3.4 and Proposition 3.12 yield the following:

Proposition 3.13. For each $n \geq 1, w(n)=s_{1}^{*}(n)+s_{2}^{*}(n)$. Moreover, for $n \geq 3, w(n)=w(n-1)+w\left(\left\lfloor\left(\frac{n}{2}\right)\right\rfloor\right)$, and $w(1)=w(2)=1$.

Remark 3.14. Proposition 3.13 shows that the sequence of numbers $w(n)$ is listed in [7] as A075535. The simple recurrence relation is used in the next section to prove congruence results for the numbers $w(n)$ and thus for the numbers $u(n)$ of unique path partitions.

Remark 3.15. We may consider also $w_{2}(n):=s_{3}^{*}(n)+s_{4}^{*}(n)$. Then we have $w_{2}(1)=0, w_{2}(2)=1, w_{2}(3)=0, w_{2}(4)=1$ and for $n \geq 5 w_{2}(n)=$ $w_{2}(n-1)+w_{2}\left(\left\lfloor\frac{n}{2}\right\rfloor\right)$.

Similar recurrence relations are more generally valid for $w_{r}(n):=s_{2 r-1}^{*}(n)+$ $s_{2 r}^{*}(n)$ which starts by $w_{r}(1)=\ldots=w_{r}(r-1)=0, w_{r}(r)=1, w_{r}(r+1)=$ $\ldots=w_{r}(2 r-1)=0, w_{r}(2 r)=1$. This is an infinite family of sequences which may satisfy congruence relations similar to those satisfied by $w_{1}(n)=w(n)$.

In the next section we discuss congruences for $w(n)$ and in part also for the $w_{i}(n)$'s.

4. Congruences for the number of up-Partitions

In this section we investigate arithmetical properties of $u(n)$, the number of $u p$-partitions of n. Since $w(n)=\frac{u(2 n)}{2}$, any result on the w-sequences may be translated into a result on the u-sequence. In particular, studying congruences of the u-sequence modulo $2 m$ is equivalent to studying the w sequence modulo m, we will concentrate on the latter sequence.

At the start, we consider a more general situation that also covers the more general sequences defined in Remark 3.15, however, in the remaining part of this section we restrict our attention to the numbers $w(n)$.

Proposition 4.1. Let $(a(n))_{n \in \mathbb{N}}$ be a sequence with $a(c)$, $a(2 c)$ odd for some $c \in \mathbb{N}$, $a(m)$ even when $c<m<2 c$, and $a(n)=a(n-1)+a\left(\left\lfloor\frac{n}{2}\right\rfloor\right)$ for $n \geq 2 c$. Then for $n \geq c, a(n)$ is odd exactly when n is of the form $2^{d} c$.

Proof. Certainly the assertion is true for $n=c$ and $n=2 c$. Assume the result holds up to some number $n=2^{r} c, r \geq 1$. Then

$$
a(n+1)=a(n)+a\left(\left\lfloor\frac{n}{2}\right\rfloor\right)=a\left(2^{r} c\right)+a\left(2^{r-1} c\right) \equiv 0 \quad \bmod 2 .
$$

For any k with $2 \leq k \leq 2^{r} c-1$, we then get by induction on k that

$$
a(n+k)=a(n+k-1)+a\left(\left\lfloor\frac{n+k}{2}\right\rfloor\right) \equiv 0 \quad \bmod 2
$$

since $2^{r-1} c<\left\lfloor\frac{n+k}{2}\right\rfloor<2^{r} c$. For $k=2^{r} c$ we then obtain

$$
a\left(2^{r+1} c\right)=a\left(2^{r+1} c-1\right)+a\left(2^{r} c\right) \equiv 1 \quad \bmod 2 .
$$

Hence the assertion is proved.
Corollary 4.2. Let $(a(n))_{n \in \mathbb{N}}$ be as in Proposition 4.1. Let m be an odd number such that $2^{b} c+1<m \leq 2^{b+1} c-1$ for some b. Then $a(m) \equiv a(m-2)$ $\bmod 4$. In particular, $a(m) \equiv a\left(2^{b} c+1\right) \bmod 4$.

Proof. Since m is odd, we have

$$
a(m)=a(m-1)+a\left(\left\lfloor\frac{m}{2}\right\rfloor\right)=a(m-2)+2 a\left(\left\lfloor\frac{m}{2}\right\rfloor\right) .
$$

As $m-1$ is not of the form $2^{d} c,\left\lfloor\frac{m}{2}\right\rfloor>2^{b-1} c$ is not either. Hence, $a\left(\left\lfloor\frac{m}{2}\right\rfloor\right)$ is even, and then the claim follows.

Since $w(1)=w(2)=1$, the following is immediate, and it gives corresponding congruences modulo 4 and 8 for $u(n)$:

Corollary 4.3. For $n \geq 1, w(n)$ is even exactly when n is not a 2-power.
For any odd number m such that $2^{b}+1 \leq m \leq 2^{b+1}-1, w(m) \equiv w\left(2^{b}+1\right)$ $\bmod 4$.

Note that the first part of Corollary 4.3 implies infinitely many Ramanujanlike congruences modulo 4 satisfied by $u(n)$. To further understand the congruences of $u(n) \bmod 8$, we first focus on the 2-powers. Set $v(k)=w\left(2^{k}\right)$ for $k \in \mathbb{N}_{0}$.

Proposition 4.4. For each $k \geq 2$,

$$
v(k) \equiv 2 v(k-1)+v(k-2) \quad \bmod 4
$$

Proof. Using Corollary 4.3, we have the following congruences mod 4:

$$
\begin{aligned}
v(k) & =w\left(2^{k}\right)=w\left(2^{k-1}\right)+w\left(2^{k}-1\right) \equiv w\left(2^{k-1}\right)+w\left(2^{k-1}+1\right) \\
& \equiv 2 w\left(2^{k-1}\right)+w\left(2^{k-2}\right)=2 v(k-1)+v(k-2) .
\end{aligned}
$$

Proposition 4.5. For each $k \geq 1$,

$$
v(k)=w\left(2^{k}\right) \equiv\left\{\begin{array}{cll}
k & \bmod 8 & \text { if } k \text { is odd } \\
k-1 & \bmod 8 & \text { if } k \text { is even }
\end{array} .\right.
$$

Equivalently,

$$
v(k) \equiv 2\left\lfloor\frac{k+1}{2}\right\rfloor-1 \quad \bmod 8 .
$$

Proof. ¿From the recursion formula we have

$$
\begin{aligned}
w\left(2^{k}\right) & =w\left(2^{k-1}\right)+w\left(2^{k}-1\right)=w\left(2^{k-1}\right)+w\left(2^{k-1}-1\right)+w\left(2^{k}-2\right) \\
& =w\left(2^{k-1}\right)+2 w\left(2^{k-1}-1\right)+w\left(2^{k}-3\right) \\
& \vdots \\
& =w\left(2^{k-1}\right)+2 w\left(2^{k-1}-1\right)+\ldots+2 w\left(2^{k-2}+1\right)+w\left(2^{k-1}+1\right) \\
& =2 w\left(2^{k-1}\right)+2 w\left(2^{k-1}-1\right)+\ldots+2 w\left(2^{k-2}+1\right)+w\left(2^{k-2}\right)
\end{aligned}
$$

and we now investigate sums of the form $\sum_{i=2^{d}+1}^{2^{d+1}} w(i)$, for $d \geq 1$. We want to show by induction that they are always congruent to $5 \bmod 8$; for $d=1$, $w(3)+w(4)=2+3=5$, so the claim holds. Now we have for any $d \geq 2$
(using induction and the corollary):

$$
\begin{aligned}
\sum_{i=2^{d}+1}^{2^{d+1}} w(i) & =\sum_{i=2^{d-1}+1}^{2^{d}} w(2 i)+\sum_{i=2^{d-1}+1}^{2^{d}} w(2 i-1) \\
& =\sum_{i=2^{d-1}+1}^{2^{d}} w(i)+2 \sum_{i=2^{d-1}+1}^{2^{d}} w(2 i-1) \\
& \equiv 5+2^{d} w\left(2^{d}+1\right) \bmod 8 \\
& \equiv 5 \bmod 8
\end{aligned}
$$

We can now continue to compute $w\left(2^{k}\right) \bmod 8$ for $k \geq 2$:

$$
\begin{aligned}
w\left(2^{k}\right) & =2 \sum_{i=2^{k-2}+1}^{2^{k-1}} w(i)+w\left(2^{k-2}\right) \\
& \equiv 2+w\left(2^{k-2}\right) \bmod 8
\end{aligned}
$$

Starting with $w\left(2^{0}\right)=1=w\left(2^{1}\right)$, the assertion now follows easily.

We now obtain full information on the congruences modulo 8 for the u-sequence via the following result on the w-sequence modulo 4 .

Theorem 4.6. Let $n \in \mathbb{N}$, n not a 2-power. Write $n=\sum_{i=0}^{k} 2^{n_{i}}$ with $n_{0}<$ $n_{1}<\ldots<n_{k}$. Then we have

$$
w(n) \equiv\left\{\begin{array}{lll}
0 & \bmod 4 & \text { if } n_{0} \equiv 3 \bmod 4 \\
& & \text { or } n_{0} \equiv 0 \bmod 4 \text { and } n_{k} \text { is even } \\
& & \text { or } n_{0} \equiv 2 \bmod 4 \text { and } n_{k} \text { is odd } \\
2 & \bmod 4 & \text { if } n_{0} \equiv 1 \bmod 4 \\
& & \text { or } n_{0} \equiv 0 \bmod 4 \text { and } n_{k} \text { is odd } \\
& & \text { or } n_{0} \equiv 2 \bmod 4 \text { and } n_{k} \text { is even }
\end{array}\right.
$$

Proof. Assume that $n_{0} \geq 1$; then $m=n-1$ is an odd number such that $2^{n_{k}}+1 \leq m=n-1 \leq 2^{n_{k}+1}-1$; hence, using Corollary 4.3, $w(n-1) \equiv$ $w\left(2^{n_{k}}+1\right)=w\left(2^{n_{k}}\right)+w\left(2^{n_{k}-1}\right) \bmod 4$. Then
$w(n)=w(n-1)+w\left(\sum_{i=0}^{k} 2^{n_{i}-1}\right) \equiv w\left(2^{n_{k}}\right)+w\left(2^{n_{k}-1}\right)+w\left(\sum_{i=0}^{k} 2^{n_{i}-1}\right) \quad \bmod 4$.

If $n_{0}>1$, we can repeat the argument to obtain (using Corollary 4.3 again)

$$
\begin{aligned}
w(n) & =w(n-1)+w\left(\sum_{i=0}^{k} 2^{n_{i}-1}\right) \\
& \equiv v\left(n_{k}\right)+2 v\left(n_{k}-1\right)+v\left(n_{k}-2\right)+w\left(\sum_{i=0}^{k} 2^{n_{i}-2}\right) \bmod 4 \\
& \equiv 2 v\left(n_{k}\right)+w\left(\sum_{i=0}^{k} 2^{n_{i}-2}\right) \equiv 2+w\left(\sum_{i=0}^{k} 2^{n_{i}-2}\right) \bmod 4
\end{aligned}
$$

We now use this reduction to discuss the different cases for n_{0}.
If $n_{0}=4 j-1$ for some $j \in \mathbb{N}$, then we can use the 2 -step reduction above $2 j-1$ times, then the 1 -step reduction, and we obtain (using Corollary 4.3 again)

$$
\begin{aligned}
w(n) & \equiv 2+w\left(2+\sum_{i=1}^{k} 2^{n_{i}-n_{0}+1}\right) \bmod 4 \\
& \equiv 2+w\left(2^{n_{k}-n_{0}+1}\right)+w\left(2^{n_{k}-n_{0}}\right)+w\left(1+\sum_{i=1}^{k} 2^{n_{i}-n_{0}}\right) \\
& \equiv 2+w\left(2^{n_{k}-n_{0}+1}\right)+w\left(2^{n_{k}-n_{0}}\right)+w\left(1+2^{n_{k}-n_{0}}\right) \\
& \equiv 2+w\left(2^{n_{k}-n_{0}+1}\right)+2 w\left(2^{n_{k}-n_{0}}\right)+w\left(2^{n_{k}-n_{0}-1}\right) \\
& \equiv 2+2 v\left(n_{k}-n_{0}+1\right) \equiv 0 \quad \bmod 4
\end{aligned}
$$

In the case $n_{0}=4 j+1$ for some $j \in \mathbb{N}$, we are just doing one less 2 -step reduction, hence in this case it follows that $w(n) \equiv 2 \bmod 4$.

When $n_{0}=4 j$ for some $j \in \mathbb{N}$, we do again $2 j-12$-step reductions and obtain

$$
\begin{aligned}
w(n) & \equiv 2+w\left(2^{2}+\sum_{i=1}^{k} 2^{n_{i}-n_{0}+2}\right) \bmod 4 \\
& \equiv 2+w\left(3+\sum_{i=1}^{k} 2^{n_{i}-n_{0}+2}\right)+w\left(2+\sum_{i=1}^{k} 2^{n_{i}-n_{0}+1}\right) \\
& \equiv 2+w\left(2^{n_{k}-n_{0}+2}+1\right)+2 \\
& \equiv w\left(2^{n_{k}-n_{0}+2}\right)+w\left(2^{n_{k}-n_{0}+1}\right) \\
& \equiv v\left(n_{k}+2\right)+v\left(n_{k}+1\right) \bmod 4
\end{aligned}
$$

With the previous result on the v-sequence, the assertion then follows.
When $n_{0}=0$, we are in the case of an odd n, where then (by Corollary 4.3)

$$
w(n)=w\left(1+2^{n_{k}}\right)=w\left(2^{n_{k}}\right)+w\left(2^{n_{k}-1}\right)
$$

and the result is the same as above for $n_{0}=4 j$.

When $n_{0}=4 j-2$ for some $j \in \mathbb{N}$, the result is complementary to the one above, by a shift of 2 , as stated in the assertion.

We close by noting that there may also be very special behavior of the w-sequence modulo 8. (Indeed, the data strongly suggest this.) Obviously, this would then imply congruences modulo 16 for the numbers $u(n)$.

References

[1] R. F. Churchhouse, Congruence properties of the binary partition function, Proc. Camb. Phil. Soc. 66 (1969), 371-376
[2] G. James, A. Kerber, The representation theory of the symmetric group. Encyclopedia of Mathematics and its Applications, 16, Addison-Wesley, Reading, Mass., 1981
[3] J.B. Olsson, Sign conjugacy classes in symmetric groups, J. Algebra 322 (2009), 2793-2800
[4] Ø. Rødseth, J. A. Sellers, Binary partitions revisited, J. Comb. Thy. Ser. A 98 (2002), 33-45
[5] N.J.A. Sloane, J. A. Sellers, On non-squashing partitions, Discr. Math. 294 (2005), 259-274.
[6] R. P. Stanley, Enumerative Combinatorics, vol. 2, Cambridge University Press, New York/Cambridge, 1999
[7] The On-Line Encyclopedia of Integer Sequences, published electronically at http://oeis.org, 2011

Institut für Algebra, Zahlentheorie und Diskrete Mathematik, Leibniz Universität Hannover, Welfengarten 1, D-30167 Hannover, Germany

E-mail address: bessen@math.uni-hannover.de
Department of Mathematical Sciences, University of Copenhagen, UniverSitetsparken 5,DK-2100 Copenhagen \varnothing, Denmark

E-mail address: olsson@math.ku.dk
Department of Mathematics, Penn State University, 104 McAllister Building, University Park, PA 16802, USA

E-mail address: sellersj@math.psu.edu

[^0]: Date: July 6, 2011.
 1991 Mathematics Subject Classification. 05A17, 11P83, 20C30.
 Key words and phrases. binary partitions, unique path partitions, rim hooks, symmetric group, character values, congruences.

