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Abstract

Let K be a simplicial complex with vertex set V = {v1, . . . , vn}. The
complex K is d-representable if there is a collection {C1, . . . , Cn} of con-
vex sets in Rd such that a subcollection {Ci1 , . . . , Cij} has a nonempty
intersection if and only if {vi1 , . . . , vij} is a face of K.

In 1967 Wegner proved that every simplicial complex of dimension d

is (2d + 1)-representable. He also suggested that his bound is the best
possible, i.e., that there are d-dimensional simplicial complexes which are
not 2d-representable. However, he was not able to prove his suggestion.

We prove that his suggestion was indeed right. Thus we add another
piece to the puzzle of intersection patterns of convex sets in Euclidean
space.

1 Introduction

Let C be a collection of sets. The nerve of C is a simplicial complex1 with vertex
set C and with faces of the form {C1, · · · , Ck} ⊆ C such that the intersection
C1 ∩ · · · ∩Ck is nonempty. We say that a simplicial complex is d-representable
if it is isomorphic to the nerve of a finite collection of convex sets in Rd. This
notion is designed to capture possible ‘intersection patterns’ of convex sets in
Rd. Study of intersection patterns of convex sets is active since a theorem by
Helly [Hel23].

Let us also mention that d-representable simplicial complexes are very closely
related to well studied intersection graphs of convex sets. An intersection graph
only records which pairs of convex sets have a nonempty intersection; however,
it does not take care of multiple intersections. Thus d-representable complexes
provide more detailed information about the intersection pattern.

∗I have obtained the main result of this note when I was working on my PhD thesis. Thus
the contents of this contribution also appears in modified version in my PhD thesis.

†Department of Applied Mathematics and Institute for Theoretical Computer Science (sup-
ported by project 1M0545 of The Ministry of Education of the Czech Republic), Faculty of
Mathematics and Physics, Charles University, Malostranské nám. 25, 118 00 Prague, Czech
Republic. Partially supported by project GAUK 421511. Email:tancer@kam.mff.cuni.cz.

1We assume that the reader is familiar with simplicial complexes; otherwise we refer him
to standard sources such as [Hat01, Mun84, Mat03].
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From another point of view, need of understanding intersection patterns
of convex sets appears, e.g., also in manifold learning. The task might be to
reconstruct the homotopy type of a manifold M given by sample points {pi}.
Sample points can be enlarged to convex sets {Ci}; and under certain conditions
M is homotopic to

⋃
Ci. On the other, via the nerve theorem,

⋃
Ci is homotopic

to the nerve of {Ci}. See, e.g., [AL10] for more details.
The reader is referred to [Eck85] or [Tan11] for more background on inter-

section patterns of convex sets.
One of the question arising in this area is how the dimension of a complex

affects d-representability. Wegner [Weg67] showed that a complex of dimension
d is always (2d + 1)-representable. (This result was also independently found
by Perel’man [Per85].) Wegner also suggested that the value 2d+ 1 is the best
possible, i.e., that there are d-dimensional simplicial complexes which are not
2d-representable. (The question about the best possible value is also reproduced
by Eckhoff [Eck85], and the author is not aware that this question would be
answered yet.)

Wegner proved that the barycentric subdivision2 of a nonplanar graph is
not 2-representable. He also suggested that the barycentric subdivision of a
d-dimensional complex that does not embed into R2d is not 2d-representable;
however, he was not able to prove his suggestion.

In this short note we prove that the value 2d+1 is indeed the best possible.
Let ∆n denotes the full simplex of dimension n and let K

(k) denotes the k-
skeleton of a simplicial complex K. We prove that the barycentric subdivision

of ∆
(d)
2d+2 and also the barycentric subdivision of many other complexes is not

d-representable; see the precise statement below.

Theorem 1.1. The barycentric subdivision of ∆
(d)
2d+2 is not d-representable.

More generally, if L is a d-dimensional simplicial complex with vanishing Van
Kampen obstruction, then the barycentric subdivision sdL is not d-representable.

Remark 1.2. Van Kampen obstruction is a certain cohomology obstruction for
embeddability d-dimensional simplicial complexes into R2d. We are not going
to define this obstruction precisely since we would need to many preliminaries.
The interested reader is referred either to [Mel09] for a survey or to [MTW11,
Appendix D] for an elementary exposition.

Let us just mention some properties of Van Kampen obstruction. If K is a
d-dimensional simplicial complex which embeds into R2d, then its Van Kampen
obstruction has to vanish. If d 6= 2, then also the converse is true, i.e., a d-
dimensional simplicial complex with vanishing Van Kampen obstruction embeds
into R2d. In case d = 2 there are, however, simplicial complexes with vanishing
Van Kampen obstruction which do not embed into R4; see [FKT94].

Regarding our proof method, let us first indicate Wegner’s approach for
case d = 1. Let G be a nonplanar graph (graph is a 1-dimensional simplicial
complex). Assuming that sdG was 2-representable, Wegner is able to construct

2In this case, every edge is subdivided into two edges and a new vertex in the center of the
edge is inserted.
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Figure 1: Barycentric subdivision of a complex. For example, the vertex b13
denotes the barycenter of the face 13 = {1, 3} (in geometric setting).

a piecewise linear embedding g of the geometric realization | sdG| into R2. This
contradicts the fact that G is nonplanar.

It seems hard to extend this construction in such a way that g would be
an embedding in higher dimensions. Our main observation is that it is not
necessary to require that g is an embedding in order to obtain a contradiction
with an embeddability-type result. We only construct such a g that disjoint
simplices have disjoint images, which is still in contradiction with vanishing Van
Kampen obstruction.

2 Barycentric subdivision

In order to set up notation, we recall the definition of a barycentric subdivision
of a simplicial complex.

From geometric point of view we put a new vertex into the barycenter of
every geometric face of a simplicial complex K. Then we form a new simplicial
complex whose vertices are the barycenters and whose faces are simplices formed
in between these barycenters.

It is perhaps more convenient to state the precise definition in abstract
setting. Given a simplicial complex K the barycentric subdivision of K is a
simplicial complex sdK whose set of vertices is the set K \ ∅ and whose faces
are collections {α1, . . . , αm} of faces of K such that

α1 ) α2 ) · · · ) αm 6= ∅.

The vertices of sdK play role of barycenters of faces of K \ ∅. The faces of sdK
are the simplices in between of these barycenters. See Figure 1.

The complexes K and sdK have the same geometric realization, i.e., |K| =
| sdK|.

3 Proof

For the proof we will need two auxiliary results.

Theorem 3.1 (Van Kampen - Flores theorem; see, e.g., [Mat03, Theorem

5.1.1]). Let K = ∆
(d)
2d+2. Then for any continuous map f : |K| → R2d there are

two disjoint d-dimensional simplices γ and δ of K such that their images f(|γ|)
and f(|δ|) intersect.
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Figure 2: Mapping sdK into K. The notation is simplified. For instance 12
stands for {1, 2}, p123 stands for p({1, 2, 3}), etc.

We remark that the conclusion of the theorem remains true if K is replaced
with any d-dimensional complex with non-zero Van Kampen obstruction (in
particular, K has a non-zero Van Kampen obstruction). The fact that Theo-
rem 3.1 extends to complexes with non-zero obstruction just follows from one
of possible definitions of Van Kampen obstruction (and is trivial for a reader
familiar with this topic); see, e.g., exposition in [FKT94].3 On the other hand,
Theorem 3.1 for our specific K can be proved on more elementary level using
Borsuk-Ulam theorem; and that is why we also emphasize this specific case.

Let α and β be faces of a simplicial complex K. We say that α and β are
remote if there is no edge ab ∈ K with a ∈ α, b ∈ β.

Lemma 3.2. Let K be a collection of convex sets in Rm and let K := N(K)
be the nerve of K. Then there is a linear map g : | sdK| → Rm such that
g(| sdα|) ∩ g(| sd β|) = ∅ for any remote α, β ∈ K.

Proof. First we specify g on the vertices of sdK then we extend it linearly to
the whole sdK. See Figure 2.

A vertex of sdK is a simplex of K, i.e., a subcollection K′ of K with a
nonempty intersection. Let us pick a point p(K′) inside ∩K′. We set g(K′) :=
p(K′) for K′ ∈ K. As we already mentioned, we extend g linearly to sdK.

If α = K′ ∈ K, then g(| sdα|) ⊆ ∪K′. Thus g(| sdα|) ∩ g(| sd β|) = ∅ for
remote α, β ∈ K.

Proof of Theorem 1.1. First we prove the specific case.

Let K = sd∆
(d)
2d+2. For contradiction we assume that K is 2d-representable.

Let K be the 2d-representation of it. (Without loss of generality K = N(K).)
According to Lemma 3.2 there is a map g : | sdK| → R2d such that g(| sdα|) ∩
g(| sd β|) = ∅ for any remote α, β ∈ K.

3There is a sign error in [FKT94] in the definition of Van Kampen obstruction observed
by Melikhov [Mel09]. However, it does not affect our conclusion.
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Since sdK = sd sd∆
(d)
2d+2, we have |∆

(d)
2d+2| = |K| = | sdK|, and thus we can

also apply g to simplices of ∆
(d)
2d+2.

Let γ and δ be disjoint simplices of ∆
(d)
2d+2. Let α be a simplex of sd γ and β a

simplex of sd δ. Then α and β are remote in K. Thus g(| sdα|) ∩ g(| sd β|) = ∅.
Consequently, g(|γ|) ∩ g(|δ|) = ∅ for any choice of γ and δ. However, this
contradicts the Van Kampen-Flores theorem.

More general part of the theorem is obtained along the same lines when a
generalized version of Theorem 3.1 is used.
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