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A NOTE ON THE COMPUTATION OF THE

FROBENIUS NUMBER OF A NUMERICAL

SEMIGROUP

JULIO JOSÉ MOYANO-FERNÁNDEZ

Abstract. In this article we present a formula for the compu-
tation of the Frobenius number and the conductor of a numerical
semigroup from the sockel of a quotient of certain semigroup ring.

1. Introduction and Review

For further details and as a general reference on numerical semigroups,
the reader should refer to the works of Rosales and Garćıa Sánchez [4],
and Ramı́rez Alfonśın [5].

Let k be a field. Let n1, . . . , nd be positive integer numbers with
gcd(n1, . . . , nd) = 1. Consider the numerical semigroup

H := Nn1 + . . .+ Nnd

minimally generated by n1, . . . , nd. It is well-known the existence of an
element c ∈ N0 minimal such that c + N0 ⊆ H . This number is called
the conductor of H . The number f := c− 1 is then the biggest integer
not belonging to H , and it is called the Frobenius number of H .

Let n be a nonzero element of H . The set

Ap(H, n) := {h ∈ H | h− n /∈ H}

is called the Apéry set of n in H . It is easily checked that (cf. [6])

f = max Ap(H, n)− n. (†)
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Let I 6= ∅ be a subset of Z satisfying I 6= Z and I +H ⊆ I. Such an I
is said to be a fractional H-ideal. The H-ideal M := {s ∈ H | s 6= 0}
is the (uniquely determined) maximal ideal of H . It will be important
in the sequel to consider also the H-ideal

M− := {z ∈ Z | z +M ⊆ H}.

Note that N0 ⊇ M− ⊇ H , and since f ∈ M− one has indeed M− ) H .
The cardinality of the set of elements in M− \ H will be denoted by
r(H). Note also that f = max{m | m ∈ M− \H}.

Let R := k[X1, . . . , Xd] (resp. k[t]) be the polynomial ring over k
graded by deg(Xi) = ni for every i ∈ {1, . . . , d} (resp. deg(t) = 1).
Let φ be the graded homomorphism of k-algebras φ : R → k[t] given
by Xi 7→ tn1 for every i ∈ {1, . . . , d}. The image of φ is the semigroup
ring associated with H , and it is denoted by k[H ]. The homogeneous
prime ideal p := ker φ is said to be the presentation ideal of k[H ].

Let us consider p′ := φ(p) the image in k[X1, . . . , Xd−1] by the epimor-
phism mapping Xd onto 0, and define the quotient ring

R′ := k[H ]/(tnd).

The following ring isomorphisms are easily checked:

R′ ∼= k[X1, . . . , Xd−1]/p
′ ∼= k[X1, . . . , Xd−1],

where X i denotes the class of Xi modulo p′ for every i ∈ {1, . . . , d−1}.
Furthermore, the ring R′ is ∗–local, i.e., it has a unique maximal graded
ideal mR′ .

2. The Main Result

Let us define the trivial submodule (or sockel) of R′ as the set of ele-
ments in R′ which are killed by the homogeneous maximal ideal mR′ of
R′, namely

Triv(R′) := {x ∈ R′ | x ·mR′ = (0)}.

It can be identified as the image of Hom(k, R′) via the map f → f(1).

Note that, for Λ := {λ ∈ N0 | λ + M ∈ N0nd} \ N0nd one has an
isomorphism between the trivial submodule Triv(R′) and the set

{

∑

λ∈Λ

αλt
λ | αλ ∈ k

}

.
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Furthermore, we have a bijection between Λ and M− \ H given by
mapping every λ ∈ Λ to λ−nd ∈ M− \H . This together with (⋆) leads
to the equality

r(H) = dimTriv(R′).

This means in particular that the trivial submodule Triv(R′) is a finite

dimensional vector space over the field k: Let us then choose a basis
B := {b1, . . . , br(H)} and take the element b ∈ B such that

deg(b) = max{deg(bi) | i = 1, 2, . . . , r(H)}.

Now it is easily checked that:

Lemma 2.1. deg(b) is independent of the choice of B.

A consequence of the previous reasonings is the following

Theorem 2.2. We have:

f = c− 1 = deg(b)− nd.

Corollary 2.3. We have:

max Ap(H, nd) = deg(b).

Proof. The result follows straightforward from the equation (†) at the
beginning of the paper. �

Example 2.4. Let us take the monomial curve C := (t6, t8, t9). The
corresponding semigroup is HC = N0 · 6 + N0 · 8 + N0 · 9. The pre-
sentation ideal associated with C is p = (X3

1 − X2
3 , X

3
2 − X1X

2
3 ), so

R′ = k[X1, X2]/p
′ ∼= k[x1, x2] with p′ = (X3

1 , X
3
2 ) and xi = Xi mod p′

for i = 1, 2. Then we have Triv(R′) = k · x2
1x

2
2. In this case is

f = deg(x2
1x

2
2) − 9 = 12 + 16 − 9 = 19, as one can easily check di-

rectly from HC .

Example 2.5. Let us take now C := (t7, t8, t9, t11). The corresponding
semigroup is HC = N0 · 7 + N0 · 8 + N0 · 9 + N · 11. The presentation
ideal associated with C in this case is

p = (x4
1 −X2X3X4, X

2
2 −X1X3, X

2
3 −X1X4, X

2
4 −X2

1X2),

so R′ = k[X1, X2, X3]/p
′ ∼= k[x1, x2, x3] with

p
′ = (X4

1 , X
2
2 −X1X3, X

2
3 ,−X2

1X2)

and xi = Xi mod p′ for i = 1, 2, 3. Then the corresponding sockel is
Triv(R′) = k ·x3

1+k ·x3
2+k ·x1x2x3. In this case the Frobenius number

is f = max{21, 24} − 11 = 13 and the conductor c = f + 1 = 14.
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