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Large matchings in uniform hypergraphs and the conjectures of

Erdős and Samuels

Noga Alon ∗ Peter Frankl † Hao Huang ‡ Vojtech Rödl § Andrzej Ruciński ¶

Benny Sudakov‖

Abstract

In this paper we study conditions which guarantee the existence of perfect matchings and per-

fect fractional matchings in uniform hypergraphs. We reduce this problem to an old conjecture

by Erdős on estimating the maximum number of edges in a hypergraph when the (fractional)

matching number is given, which we are able to solve in some special cases using probabilistic

techniques. Based on these results, we obtain some general theorems on the minimum d-degree

ensuring the existence of perfect (fractional) matchings. In particular, we asymptotically deter-

mine the minimum vertex degree which guarantees a perfect matching in 4-uniform and 5-uniform

hypergraphs. We also discuss an application to a problem of finding an optimal data allocation

in a distributed storage system.

1 Introduction

A k-uniform hypergraph or a k-graph for short, is a pair H = (V,E), where V := V (H) is a finite

set of vertices and E := E(H) ⊆
(V
k

)

is a family of k-element subsets of V called edges. Whenever

convenient we will identify H with E(H). A matching in H is a set of disjoint edges of H. The

number of edges in a matching is called the size of the matching. The size of the largest matching

in a k-graph H is denoted by ν(H). A matching is perfect if its size equals |V |/k.

A fractional matching in a k-graph H = (V,E) is a function w : E → [0, 1] such that for each

v ∈ V we have
∑

e∋v w(e) ≤ 1. Then
∑

e∈E w(e) is the size of w. The size of the largest fractional
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matching in a k-graph H is denoted by ν∗(H). If ν∗(H) = n/k, or equivalently, for all v ∈ V we

have
∑

e∋v w(e) = 1, then we call w perfect.

The determination of ν∗(H) is a linear programming problem. Its dual problem is to find a minimum

fractional vertex cover τ∗(H) =
∑

v∈V w(v) over all functions w : V → [0, 1] such that for each e ∈ E

we have
∑

v∈e w(v) ≥ 1. Let τ(H) be the minimum number of vertices in a vertex cover of H. Then,

for every k-graph H, by the Duality Theorem,

ν(H) ≤ ν∗(H) = τ∗(H) ≤ τ(H). (1)

Given a k-graph H and a set S ∈
(V
d

)

, 0 ≤ d ≤ k − 1, we denote by degH (S) the number of edges

in H which contain S. Let δd := δd(H) be the minimum d-degree of H, which is the minimum

degH(S) over all S ∈
(V
d

)

. Note that δ0(H) = |E(H)|. In this paper we study the relation between

the minimum d-degree δd(H) and the matching numbers ν(H) and ν∗(H).

Definition 1.1 Let integers d, k, s, and n satisfy 0 ≤ d ≤ k − 1, and 0 ≤ s ≤ n/k. We denote by

ms
d(k, n) the minimum m so that for an n-vertex k-graph H, δd(H) ≥ m implies that ν(H) ≥ s.

Equivalently,

ms
d(k, n) − 1 = max{δd(H) : |V (H)| = n and ν(H) ≤ s− 1}.

Furthermore, letting s be a real number satisfying 0 ≤ s ≤ n/k, define f s
d(k, n) as the minimum m

so that δd(H) ≥ m implies that ν∗(H) ≥ s. Equivalently,

f s
d(k, n) − 1 = max{δd(H) : |V (H)| = n and ν∗(H) < s}.

Observe that trivially, for ⌈s⌉ ≤ n/k,

f s
d(k, n) ≤ m

⌈s⌉
d (k, n). (2)

We are mostly interested in the case s = n/k (i.e. when matchings are perfect) in which we

suppress the superscript in the notation m
n/k
d (k, n) and f

n/k
d (k, n). Thus, writing md(k, n), we

implicitly require that n is divisible by k.

Problems of this type have a long history going back to Dirac [4] who in 1952 proved that minimum

degree n/2 implies the existence of a Hamiltonian cycle in graphs. Therefore, for d ≥ 1, we refer

to the extremal parameters md(k, n) and fd(k, n) as to Dirac-type thresholds. When k = 2, an easy

argument shows that m1(2, n) = n/2. For k ≥ 3, an exact formula for mk−1(k, n) was obtained in

[25]. For a fixed k ≥ 3 and n → ∞ it yields the asymptotics mk−1(k, n) = n
2 +O(1). As far as perfect

fractional matchings are concerned, it was proved in [23] that fk−1(k, n) = ⌈n/k⌉ for k ≥ 2, which

is a lot less than mk−1(k, n) when k ≥ 3. For more results on Dirac-type thresholds for matchings

and Hamilton cycles see [22].

In this paper, we focus on the asymptotic behavior of md(k, n) and fd(k, n) for general, but fixed

k and d, when n → ∞. For a lower bound on md(k, n) consider first a k-graph H0 = H0(k, n)
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(constructed in [25]) with vertex set split almost evenly, that is, V (H0) = A ∪ B,
∣

∣|A| − |B|
∣

∣ ≤ 2,

and with the edge set consisting of all k-element subsets of V (H0) intersecting A in an odd number

of vertices. We choose the size of A so that |A| and n
k have different parity. Clearly, there is no

perfect matching in H0 and for every 0 ≤ d ≤ k − 1 we have δd(H0) ∼
1
2

(n−d
k−d

)

.

Another lower bound on md(k, n) is given by the following well known construction. For integers

n, k, and s, let H1(s) be a k-graph on n vertices consisting of all k-element subsets intersecting a

given set of size s− 1, that is H1(s) = K
(k)
n −K

(k)
n−s+1. Observe that ν(H1(s)) = s− 1, while

δd(H1(n/k)) =

(

n− d

k − d

)

−

(

n− d− n/k + 1

k − d

)

∼

{

1 −

(

k − 1

k

)k−d
}

(

n− d

k − d

)

.

Assume that n is divisible by k. Putting s = n
k and using the k-graphs H0 and H1(n/k), we obtain

a lower bound

md(k, n) ≥ max
{

δd(H0), δd(H1(
n
k ))
}

+ 1 ∼ max

{

1

2
, 1 −

(

k − 1

k

)k−d
}

(

n− d

k − d

)

. (3)

On the other hand, H1(⌈n/k⌉) alone yields a lower bound also on fd(k, n). Indeed, for a real s > 0

we have

ν∗(H1(⌈s⌉)) = τ∗(H1(⌈s⌉)) ≤ τ(H1(⌈s⌉)) = ⌈s⌉ − 1 < s,

and so

fd(k, n) ≥ δd(H1(⌈nk ⌉)) + 1 ∼

{

1 −

(

k − 1

k

)k−d
}

(

n− d

k − d

)

. (4)

It is easy to check that for d ≥ k/2 the maximum in the coefficient in (3) equals 1
2 . Pikhurko

[21] proved, complementing the case d = k − 1, that indeed we have md(k, n) ∼ 1
2

(n−d
k−d

)

also for

k/2 ≤ d ≤ k − 2, k ≥ 4.

For d < k/2 the problem seems to be harder and we discuss below the cases d ≥ 1 and d = 0

separately. The first result for the range 1 ≤ d < k/2, k ≥ 3, was obtained already in 1981 by

Daykin and Häggkvist in [3] who proved that m1(k, n) ≤
(

k−1
k + o(1)

) (n−1
k−1

)

. This was generalized

to md(k, n) ≤
(

k−d
k + o(1)

) (n−d
k−d

)

for all 1 ≤ d < k/2 in [10], and, using the ideas from [10], slightly

improved in [19] to md(k, n) ≤
{

k−d
k − 1

kk−d + o(1)
} (n−d

k−d

)

. For k = 4, d = 1 the latter coefficient is
47
64 . In [19], the constant was further lowered to 42

64 , still away from the lower bound of 37
64 .

It has been conjectured in [15] and again in [10] that the lower bound (3) is achieved at least

asymptotically.

Conjecture 1.1 For all 1 ≤ d ≤ k − 1,

md(k, n) ∼ max

{

1

2
, 1 −

(

k − 1

k

)k−d
}

(

n− d

k − d

)

.
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Hàn, Person, and Schacht in [10] proved Conjecture 1.1 in the case d = 1, k = 3 by showing that

m1(3, n) is asymptotically equal to 5
9

(n−1
2

)

. Kühn, Osthus, and Treglown [16] and, independently,

Khan [13], proved the exact result m1(3, n) = δ1(H1(n/3)) + 1. Recently Khan [14] announced that

he verified the exact result m1(4, n) = δ1(H1(n/4)) + 1, while the asymptotic version, m1(4, n) ∼
37
64

(n−1
3

)

follows also from a more general result by Lo and Markström [18].

These exact results, together with (2) and (4), yield that f1(3, n) = m1(3, n) and f1(4, n) = m1(4, n).

Remembering that, on the other hand, fk−1(k, n) is much smaller than mk−1(k, n), one can raise

the question about a general relation between md(k, n) and its fractional counterpart fd(k, n). In

this paper we answer this question by showing that md(k, n) and fd(k, n) are asymptotically equal

whenever fd(k, n) ∼ c∗
(n−d
k−d

)

for some constant c∗ > 1
2 , and otherwise md(k, n) ∼ 1

2

(n−d
k−d

)

.

Theorem 1.1 For every 1 ≤ d ≤ k − 1 if there exists c∗ > 0 such that fd(k, n) ∼ c∗
(n−d
k−d

)

then

md(k, n) ∼ max
{

c∗, 12
}

(

n− d

k − d

)

. (5)

This result reduces the task of asymptotically calculating md(k, n) to a presumably simpler task of

calculating fd(k, n). It seems that, similarly to the integral case, the lower bound in (4) determines

asymptotically the actual value of the parameter fd(k, n).

Conjecture 1.2 For all 1 ≤ d ≤ k − 1,

fd(k, n) ∼

{

1 −

(

k − 1

k

)k−d
}

(

n− d

k − d

)

.

Our next result confirms Conjecture 1.2 asymptotically for all k and d such that 1 ≤ k−d ≤ 4. Note

that the above mentioned result from [23] shows that Conjecture 1.2 is true for d = k − 1 exactly,

that is, fk−1(k, n) = δk−1

(

H1

(

⌈nk ⌉
))

+ 1. We include this case into the statement of Theorem 1.2

for completeness.

Theorem 1.2 For every k ≥ 3 and k − 4 ≤ d ≤ k − 1, we have

fd(k, n) ∼

{

1 −

(

k − 1

k

)k−d
}

(

n− d

k − d

)

.

Theorems 1.2 and 1.1 together imply immediately the validity of Conjecture 1.1 in a couple of new

instances (as discussed earlier, the first of them has been recently also proved in [14] and [18]).

Corollary 1.1 We have

m1(4, n) ∼ 37
64

(

n−1
3

)

, m2(5, n) ∼ 1
2

(

n−2
3

)

, m1(5, n) ∼ 369
625

(

n−1
4

)

m2(6, n) ∼ 671
1296

(n−2
4

)

, m3(7, n) ∼ 1
2

(n−3
4

)

.
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We prove Theorem 1.2 utilizing the following connection between the parameters f s
d(k, n) and f s

0 (k−

d, n− d).

Proposition 1.1 For all k ≥ 3, 1 ≤ d ≤ k − 1, and n ≥ k,

fd(k, n) ≤ f
n/k
0 (k − d, n − d).

In view of Proposition 1.1, in order to prove Theorem 1.2 we need to estimate f s
0 (k− d, n− d) with

s = n
k . This is trivial for d = k − 1 and so, from now on, we will be assuming that d ≤ k − 2. The

integral version of this problem has almost as long history as the Dirac-type problem (d ≥ 1).

Erdős and Gallai [6] determined ms
0(k, n) for graphs (k = 2). In 1965, Erdős [5] conjectured the

following hypergraph generalization of their result.

Conjecture 1.3 For all k ≥ 2 and 1 ≤ s ≤ n
k :

ms
0(k, n) = max

{(

ks− 1

k

)

,

(

n

k

)

−

(

n− s + 1

k

)}

+ 1.

The lower bound comes from considering again the extremal k-graph H1(s) along with the k-uniform

clique K
(k)
ks−1 (complemented by n− ks+ 1 isolated vertices) which, clearly, has no matching of size

s. For more on Erdős’ conjecture we refer the reader to the survey paper [7] and a recent paper [9],

where the conjecture is proved for k = 3 and n ≥ 4s. In its full generality, the conjecture is still

wide open.

We now formulate the fractional version of Erdős’ Conjecture. For future references, we switch from

k and n to l and m. Again, the lower bound is yielded by H1(⌈s⌉) and the complete l-graph on

⌈ls⌉ − 1 vertices, K
(l)
⌈ls⌉−1.

Conjecture 1.4 For all integers l ≥ 2 and a real s such that 0 ≤ s ≤ m/l, we have

f s
0 (l,m) = max

{(

⌈ls⌉ − 1

l

)

,

(

m

l

)

−

(

m− ⌈s⌉ + 1

l

)}

+ 1.

As a consequence of the Erdős-Gallai theorem from [6], Conjecture 1.4 is asymptotically true for

l = 2. In the next section we establish a result which confirms Conjecture 1.4 asymptotically in

the two smallest new instances, but limited to the range 0 ≤ s ≤ m
l+1 . In this range the case l = 3

follows also from the above mentioned result in [9]. It is easy to check that for s ≤ m
l+1 + O(1), the

maximum in Conjecture 1.4 is achieved by the second term.

Theorem 1.3 For l ∈ {3, 4}, for all d ≥ 1, and s = m+d
l+d

f s
0 (l,m) ∼

{

1 −

(

1 −
1

l + d

)l
}

(

m

l

)

where the asymptotics holds for m → ∞ with d fixed.
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Theorem 1.3 together with Proposition 1.1 implies Theorem 1.2, which, in turn, together with

Theorem 1.1 yields Corollary 1.1. To prove Conjecture 1.1 in full generality, one would need to

prove Theorem 1.3 for all l.

The rest of this paper is organized as follows. In the next section, we prove Theorem 1.3 using as

a main tool a probabilistic inequality of Samuels. A proof of Proposition 1.1, and consequently of

Theorem 1.2, appears in Section 3. Section 4 contains a proof of Theorem 1.1. Finally, in Section

5, we discuss an application of the fractional version of the Erdös problem in distributed storage

allocation. The last section contains concluding remarks and open problems.

2 Fractional matchings and probability of small deviations

In this section we prove Theorem 1.3 using a probabilistic approach from [1] based on a special case

of an old probabilistic conjecture of Samuels [26]. In fact, we prove a little bit more – see Corollary

2.1 and Remark 2.1 below.

For l reals µ1, . . . , µl satisfying 0 ≤ µ1 ≤ µ2 ≤ · · · ≤ µl and
∑l

i=1 µi < 1, let

P (µ1, µ2, . . . , µl) = inf P(X1 + . . . + Xl < 1),

where the infimum is taken over all possible collections of l independent nonnegative random vari-

ables X1, . . . ,Xl, with expectations µ1, . . . , µl, respectively. Define

Qt(µ1, . . . , µl) =

l
∏

i=t+1

(

1 −
µi

1 −
∑t

j=1 µj

)

for each 0 ≤ t < l.

Note that Qt(µ1, . . . , µl) is exactly P(X1 + . . .+Xl < 1) when Xi is identically µi for all i ≤ t, while

Xi attains the values 0 and 1 −
∑

i≤t µi (with its expectation being µi) for all i ≥ t + 1.

The following conjecture was raised by Samuels in [26].

Conjecture 2.1 ([26]) For all admissible values of µ1, . . . , µl,

P (µ1, µ2, . . . , µl) = min
t=0,...,l−1

Qt(µ1, µ2, . . . , µl).

Note that for l = 1 this is Markov’s inequality. Samuels proved his conjecture for l ≤ 4 in [26, 27].

Lemma 2.1 ([26, 27]) The assertion of Conjecture 2.1 holds for all l ≤ 4.

We next show that for µ1 = µ2 = · · · = µl = x, where 0 < x ≤ 1
l+1 , the minimum in Conjecture 2.1

is attained by Q0(µ1, . . . , µl).
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Proposition 2.1 For every integer l ≥ 2 and every real number x satisfying 0 < x ≤ 1
l+1 , if

µ1 = µ2 = . . . = µl = x then

min
t=0,...,l−1

Qt(µ1, µ2, . . . , µl) = Q0(µ1, µ2, . . . , µl) = (1 − x)l.

Proof: By definition

Qt(µ1, µ2, . . . , µl) =
(

1 −
x

1 − tx

)l−t
=
(1 − (t + 1)x

1 − tx

)l−t
.

We thus have to prove that for 0 < x ≤ 1
l+1 and 1 ≤ t ≤ l − 1,

(1 − x)l ≤
(1 − (t + 1)x

1 − tx

)l−t

or equivalently that
( 1

1 − x

)l
≥
( 1 − tx

1 − (t + 1)x

)l−t
.

By the geometric-arithmetic means inequality applied to a set of l numbers, t of which are equal to

1 and the remaining l − t equal to the quantity 1−tx
1−(t+1)x , we conclude that

( 1 − tx

1 − (t + 1)x

)l−t
· 1t ≤

[1

l
·
((1 − tx)(l − t)

1 − (t + 1)x
+ t
)]l

.

Thus, it suffices to show that
(1 − tx)(l − t)

1 − (t + 1)x
+ t ≤

l

1 − x
.

This is equivalent to

(1 − x)[(1 − tx)(l − t) + t− t(t + 1)x] ≤ l[1 − (t + 1)x],

which is equivalent to

(1 − x)[l − t(l + 1)x] ≤ l − l(t + 1)x,

or

l − t(l + 1)x− lx + t(l + 1)x2 ≤ l − l(t + 1)x.

After dividing by x, we see that this is equivalent to x ≤ 1
l+1 , which holds by assumption, completing

the proof.

Note that when s = xm and x ≤ 1
l+1 , the maximum in Conjecture 1.4 is achieved by the second

term. We now prove the following, in most part hypothetical, result, which shows how to deduce

Conjecture 1.4 in this range from Conjecture 2.1.

Theorem 2.1 For any l ≥ 3 and 0 < x ≤ 1
l+1 , if Conjecture 2.1 holds for l and µ1 = µ2 = . . . =

µl = x then

fxm
0 (l,m) ∼

{

1 − (1 − x)l
}

(

m

l

)

.
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Combining Theorem 2.1 with Lemma 2.1, we obtain the following corollary which implies Theorem

1.3. (For d = 1, observe that f s
0 (l,m) ∼ f s

0 (l,m + 1).)

Corollary 2.1 For l = 3, x ≤ 1/4 and for l = 4, x ≤ 1/5, the maximum number of edges in an

l-uniform hypergraph H on m vertices with fractional matching number less than xm is

fxm
0 (l,m) ∼

{

1 − (1 − x)l
}

(

m

l

)

.

Proof of Theorem 2.1: Let H be an l-uniform hypergraph on a vertex set V , |V | = m, and

suppose that ν∗(H) < xm. By duality, we also have τ∗(H) < xm, and hence there exists a weight

function w : V → [0, 1] such that
∑

v∈V w(v) < xm and, for every edge e of H,
∑

v∈e w(v) ≥ 1. By

increasing the weights w(v) if needed, we may assume that

m
∑

v∈V

w(v) = xm.

Let v1, . . . , vl be a sequence of random vertices of H, chosen independently and uniformly at random

from V . For each i = 1, . . . , l we define a random variable Xi = w(vi). Note that X1,X2, . . . ,Xl are

independent, identically distributed random variables, where every Xi attains each of the m values

w(v) with probability 1/m. (The values of w for different vertices can be equal, but this is of no

importance for us.)

By definition, the expectation µi of each Xi is

µi =
∑

v∈V

1

m
· w(v) =

xm

m
= x.

Now we can estimate the number of edges of H as follows. Since for each edge of H we have
∑

v∈e w(v) ≥ 1, the number N of all l-element subsets S of V with
∑

v∈S w(v) < 1 is a lower bound

on the number of non-edges of H. Let N1 and N2 be the numbers of all l-element sequences of

vertices of V and all l-element sequences of distinct vertices of V , respectively, with the sums of

weights strictly smaller than 1. Note that N1 −N2 is at most the number of l-element sequences in

which at least one vertex appears twice, thus it is bounded by
( l
2

)

ml−1 = O(ml−1). As the number

of all l-element subsets of V is
(m
l

)

= (1 + o(1))ml/l! and N = N2/l!, we have

P

(

l
∑

i=1

w(vi) < 1

)

=
N1

ml
≤

N2 + O(ml−1)
(

m
l

)

l!
= (1 + o(1))

N
(

m
l

) .

If Conjecture 2.1 holds for a given l then, by Lemma 2.1 and Proposition 2.1,

P

(

l
∑

i=1

w(vi) < 1

)

= P

(

l
∑

i=1

Xi < 1

)

≥ (1 − x)l,

and, consequently,

N ≥ (1 + o(1))(1 − x)l
(

m

l

)

.

It follows that the number of edges of H is at most (1 + o(1))
{

1 − (1 − x)l
} (m

l

)

, as needed.
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Remark 2.1 Note that the above proof works as long as the conclusion of Proposition 2.1 holds.

One can check using Mathematica that Proposition 2.1 holds for l = 3 and all 0 < x ≤ 0.277, as

well as for l = 4 and all 0 < x ≤ 0.217. Therefore, Corollary 2.1 extends to these broader ranges of

x. For bigger values of x, e.g., for x = 0.3 when l = 3, this is not the case anymore, and the above

method does not suffice to determine the asymptotic behavior of fxm
0 (l,m). In fact, using Samuels

conjecture in the higher range of x, one gets a bound on fxm
0 (l,m) which is larger than that in

Conjecture 1.4. However, in view of Proposition 1.1, for our main application the case x ≤ 1
l+1 is

just what we need.

3 Thresholds for perfect fractional matchings

In this section we present a proof of Proposition 1.1 and then deduce quickly Theorem 1.2.

Proof of Proposition 1.1: The outline of the proof goes as follows. We will assume that there is

no fractional perfect matching in a k-graph H on n vertices and then show that the neighborhood

graph H(L) in H of a particular set L of size d satisfies ν∗(H(L)) < n/k. This will imply that

δd(H) ≤ |H(L)| < f
n/k
0 (k−d, n−d). In contrapositive, we will prove that if δd(H) ≥ f

n/k
0 (k−d, n−d)

then H has a fractional perfect matching, from which it follows, by definition, that fd(k, n) ≤

f
n/k
0 (k − d, n− d).

Let an n-vertex k-graph H satisfy ν∗(H) < n/k, that is, have no fractional perfect matching. As

τ∗(H) = ν∗(H), there is a function w : V → [0, 1] such that
∑

v∈V w(v) < n/k and, for every e ∈ H,

we have
∑

v∈e w(v) ≥ 1. We can replace H with the k-graph whose edge set consists of every k-tuple

of vertices on which w totals to at least one.

Formally, for every weight function w : V → [0, 1] define

Hw :=

{

e ∈

(

V

k

)

:
∑

v∈e

w(v) ≥ 1

}

.

For a given weight function w, suppose L is the set of d vertices with the smallest weights. Without

loss of generality, we may assume that the d lowest values of w(x) are all equal to each other,

since otherwise we could replace them by their average. (Obviously, this modification would not

change
∑

v∈V w(v) nor the set L.) Note that the minimum d-degree δd(Hw) = minS⊂(Vd) degH(S)

is achieved when S = L. Let H(L) be the neighborhood of L in Hw, that is a (k − d)-graph on the

vertex set V \ L and with the edge set
{

S ∈

(

V − L

k − d

)

: S ∪ L ∈ E(Hw)

}

.

Then |H(L)| = δd(Hw) and it remains to prove that τ∗(H(L)) < n/k.

Let w0 = minv∈V w(v) and observe that w0 < 1/k. If w0 > 0, apply the linear map

w′ =
w −w0

1 − kw0
.
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Then, still
∑

v∈V w′(v) < n/k and Hw = Hw′ . Moreover, for every v ∈ L, we have w′(v) = 0. It

follows that the function w′ restricted to the set V \ L is a fractional vertex cover of H(L) and so

ν∗(H(L)) = τ∗(H(L)) < n/k, which completes the proof of Proposition 1.1.

Proof of Theorem 1.2: As explained earlier, f
n/k
0 (k−d, n−d) = n/k holds trivially for d = k−1

and together with Proposition 1.1 implies the theorem in this case. For d = k − 2, we apply

Proposition 1.1 together with the case l = 2 of the fractional Erdős Conjecture 1.4 (as mentioned

earlier, it follows asymptotically from [6]). For d = k− 3 and d = k− 4, we use Proposition 1.1 and

Corollary 1.3 proved in the previous section.

Remark 3.1 Consider a restricted version of Samuels’ problem to minimize P(X1 + · · · + Xl < 1)

under the additional assumption that all random variables are identically distributed. Our proofs

indicate that under this regime, for a given l ≥ 5 and µ1 = · · · = ml = x ≤ 1
l+1 , if

P(X1 + · · · + Xl < 1) ≥ (1 + o(1))(1 − x)l

then Theorem 1.2 would hold for all k ≥ l + 1 and d = k − l.

4 Constructing integer matchings from fractional ones

In this section, we will prove Theorem 1.1. An indispensable tool in our proof is the Strong Absorbing

Lemma 4.1 from [10] (see Lemma 10 therein). This lemma provides a sufficient condition on degrees

and co-degrees of a hypergraph ensuring the existence of a small and powerful matching which, by

“absorbing” vertices, creates a perfect matching from any nearly perfect matching.

Lemma 4.1 For all γ > 0 and integers k > d > 0 there is an n0 such that for all n > n0 the

following holds: suppose that H is a k-graph on n vertices with δd(H) ≥ (1/2 + 2γ)
(n−d
k−d

)

, then there

exists a matching M := Mabs in H such that

(i) |M | < γkn/k, and

(ii) for every set W ⊂ V \ V (M) of size at most |W | ≤ γ2kn and divisible by k there exists a

matching in H covering exactly the vertices of V (M) ∪W .

Equipped with this lemma we can practically reduce our task to finding an almost perfect matching

in a suitable subhypergraph of H. Here is an outline of our proof of Theorem 1.1. Assume that

there exists a constant 0 < c∗ < 1 such that fd(k, n) ∼ c∗
(n−d
k−d

)

. For any α > 0 consider a k-graph

H on n vertices, where n is sufficiently large, with

δd(H) ≥ (c + α)

(

n− d

k − d

)

,

where c = max{1
2 , c

∗}. Our goal is to show that H contains a perfect matching.

Set γ = α/2 and ε = γ2k. The proof consists of three steps.
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1. Find an absorbing matching Mabs satisfying properties (i) and (ii) of Lemma 4.1. Set H ′ =

H \ V (Mabs) and note that when n is sufficiently large,

δd(H ′) ≥ δd(H) −

((

n− d

k − d

)

−

(

n− d− εn

k − d

))

≥ (c + α/2)

(

n− d

k − d

)

= (c + γ)

(

n− d

k − d

)

.

2. Find a matching Malm in H ′ such that |V (Malm)| ≥ (1 − ε)|V (H ′)|, and thus, |V (Malm ∪

Mabs)| ≥ (1 − ε)n.

3. Extend Malm ∪Mabs to a perfect matching of H by using the absorbing property (ii) of Mabs

with respect to W = V (H ′) \ V (Malm).

Now come the details of the proof. The Strong Absorbing Lemma provides an absorbing matching

Mabs, so Steps 1 and 3 are clear. Hence to complete the proof of Theorem 1.1 it remains to explain

Step 2. One possible approach to find an almost perfect matching in H ′ is via the weak hypergraph

regularity lemma. Our proof, however, is based on Theorem 1.1 in [8]. Recall that the codegree of a

pair of vertices in a hypergraph is the number of edges containing this pair. An immediate corollary

of that theorem asserts the existence of an almost perfect matching in any nearly regular k-graph

in which all codegrees are much smaller than the vertex degrees. (See Remark after Theorem 1.1 in

[8] or Chapter 4.7 of [2]). Here we formulate this corollary as the following lemma in which ∆2(H)

denotes the maximum codegree in H.

Lemma 4.2 For every integer k ≥ 2 and a real ε > 0, there exists τ = τ(k, ε), d0 = d0(k, ε) such

that for every n ≥ D ≥ d0 the following holds.

Every k-uniform hypergraph on a set V of n vertices which satisfies the following conditions:

1. (1 − τ)D < degH(v) < (1 + τ)D for all v ∈ V , and

2. ∆2(H) < τD

contains a matching Malm covering all but at most εn vertices.

Hence, Step 2 above reduces to finding a spanning subhypergraph H ′′ of H ′ satisfying the assump-

tions of Lemma 4.2 with ε = γ2k and other parameters τ,D, a to be suitably chosen. Indeed,

the following claim is all we need to complete the proof of Theorem 1.1. For convenience, we set

n := |V (H ′)|. Recall that c = max{1
2 , c

∗} where c∗ comes from the threshold which guarantees the

existence of fractional perfect matchings.

Claim 4.1 For sufficiently large n, any k-graph H ′ on n vertices satisfying δd(H ′) ≥ (c + γ)
(

n−d
k−d

)

contains a spanning subhypergraph H ′′, such that for all v ∈ V (H ′′) we have degH′′(v) ∼ n0.2 while

∆2(H
′′) ≤ n0.1.
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Consequently for every k ≥ 2, ε > 0, the subhypergraph H ′′ satisfies the assumptions of Lemma 4.2

with D = n0.2, and any τ > 0. We obtained the following result as an immediate corollary, which

asserts the validity of Step 2 and completes our proof of Theorem 1.1.

Corollary 4.1 H ′ contains an almost perfect matching covering at least (1 − ε)|V (H ′)| vertices.

In the proof of Claim 4.1, the following well-known concentration results (see, for example [2],

Appendix A, and Theorem 2.8, inequality (2.9) and (2.11) in [12]) will be used several times. We

denote by Bi(n, p) a binomial random variable with parameters n and p.

Lemma 4.3 (Chernoff Inequality for small deviation) If X =
∑n

i=1 Xi, each random variable Xi

has Bernoulli distribution with expectation pi, and α ≤ 3/2, then

P(|X − EX| ≥ αEX) ≤ 2e−
α2

3
EX (6)

In particular, when X ∼ Bi(n, p) and λ < 3
2np, then

P(|X − np| ≥ λ) ≤ e−Ω(λ2/(np)) (7)

Lemma 4.4 (Chernoff Inequality for large deviation) If X =
∑n

i=1 Xi, each random variable Xi

has Bernoulli distribution with expectation pi, and x ≥ 7 EX, then

P(X ≥ x) ≤ e−x (8)

Proof of Claim 4.1: The desired subhypergraph H ′′ is obtained via two rounds of randomization.

As a preparation toward the first round, R is obtained by choosing every vertex randomly and

independently with probability p = |V ′|−0.9 = n−0.9. Then |R| is a binomial random variable with

expectation n0.1. By inequality (7), |R| ∼ n0.1 with probability 1 − e−Ω(n0.1).

Fix a subset D ⊆ V ′ of size d and let DEGD be the number of edges f ∈ H ′ such that D ⊂ f and

f \ D ⊆ R, which is the number of edges e in the link graph H[D] with all of its vertices in the

random set R. Therefore DEGD =
∑

e∈H[D]Xe, where Xe = 1 if e is in R and 0 otherwise. We

have

E(DEGD) = degH′(D) × (n−0.9)k−d ≥ (c + α/2)

(

n− d

k − d

)

n−0.9(k−d)

≥ (c + α/3)

(

|R| − d

k − d

)

= Ω(n0.1(k−d))

For two distinct intersecting edges ei, ej with |ei ∩ ej | = l for 1 ≤ l ≤ k− d− 1, the probability that

both of them are in R is

P(Xei = Xej = 1) = p2(k−d)−l

12



For fixed l, there are at most
(

n−d
k−d

)

choices for ei in the link graph H[D],
(

k−d
l

)

ways to choose the

intersection L = ei ∩ ej of size l, and
((n−d)−(k−d)

k−d−l

)

options for ej\L. Therefore,

∆ =
∑

ei∩ej 6=∅

P(Xei = Xej = 1) ≤
k−d−1
∑

l=1

p2(k−d)−l

(

n− d

k − d

)(

k − d

l

)(

n− k

k − d− l

)

≤
k−d−l
∑

l=1

p2(k−d)−lO(n2(k−d)−l) = O(n0.1(2(k−d)−1))

By Janson’s inequality (see Theorem 8.7.2 in [2]),

P(DEGD ≤ (1 − α/12)E(DEGD)) ≤ e−Ω((EX)2/∆) ∼ e−Ω(n0.1)

Therefore by the union bound, with probability 1− nde−Ω(n0.1), for all subsets D ⊆ V ′ of size d, we

have

DEGD > (1 − α/12)E(DEGD)) ≥ (c + α/4)

(

|R| − d

k − d

)

.

Take n1.1 independent copies of R and denote them by Ri, 1 ≤ i ≤ n1.1, and the corresponding

random variables by DEG
(i)
D , where D ⊆ V ′, |D| = d, and i = 1, . . . , n1.1. Since |Ri| ∼ n0.1 with

probability 1−e−Ω(n0.1) for each i, the union bound ensures that |Ri| ∼ n0.1 for every i = 1, · · · , n1.1

with probability 1 − o(1). Now for a subset of vertices S ⊆ V ′, define the random variable

YS = |{i : S ⊆ Ri}|.

Note that the random variables YS have binomial distributions Bi(n1.1, n−0.9|S|) with expectations

n1.1−0.9|S|. In particular, for every vertex v ∈ V ′, Y{v} ∼ Bi(n1.1, n−0.9) and EY{v} = n0.2. Hence,

by inequality (7), taking λ = n0.15,

P(|Y{v} − n0.2| > n0.15) ≤ e−Ω((n0.15)2/n0.2) = e−Ω(n0.1)

Therefore a.a.s |Y{v} − n0.2| ≤ n0.15 for every vertex v ∈ V ′.

Further, let

Z2 =
∣

∣

∣

{

{u, v} ∈

(

V ′

2

)

: Y{u,v} ≥ 3

}

∣

∣

∣
.

Then

EZ2 < n2(n1.1)3(n−0.9)6 = n−0.1.

Therefore by Markov’s inequality,

P(Z2 = 0) = 1 − P(Z2 ≥ 1) ≥ 1 − EZ2 > 1 − n−0.1

This implies that a.a.s every pair of vertices {u, v} is contained in at most two subhypergraphs Ri.
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Finally, for k ≥ 3, let

Zk =
∣

∣

∣

{

S ∈

(

V ′

k

)

: YS ≥ 2

}

∣

∣

∣
.

Then,

EZk < nk(n1.1)2(n−0.9)2k = nk+2.2−1.8k ≤ n−0.2

Similarly,

P(Zk = 0) > 1 − n−0.2

The latter implies that a.a.s. the induced subhypergraphs H[Ri], i = 1, . . . , n1.1, are pairwise

edge-disjoint. Summarizing, we can choose the sets Ri, 1 ≤ i ≤ n1.1 in such a way that

(i) for every v ∈ V ′, Y{v} ∼ n0.2,

(ii) every pair {u, v} ⊂ V ′ is contained in at most two sets Ri,

(iii) every edge e ∈ H is contained in at most one set Ri,

(iv) for all i = 1, . . . , n1.1, we have |Ri| ∼ n0.1, and

(v) for all i = 1, . . . , n1.1 and all D ⊆ V ′, |D| = d, we have DEG
(i)
D ≥ (c + α/4)

(|Ri|−d
k−d

)

.

Let us fix a sequence Ri, 1 ≤ i ≤ n1.1, satisfying (i)-(v) above.

Our assumption that fd(k, n) ∼ c∗
(n−d
k−d

)

holds for all sufficiently large values of n, in particular with

n replaced by |Ri| ∼ n0.1. Thus, we have

fd(k, |Ri|) ∼ c∗
(

|Ri| − d

k − d

)

,

and, by condition (v) above, we conclude that

δd(H[Ri]) ≥ (c + α/4)

(

|Ri| − d

k − d

)

> fd(k, |Ri|).

Consequently, by the definition of fd, there exists a fractional perfect matchings wi in every subhy-

pergraph H[Ri], i = 1, . . . , n1.1.

Now comes the second round of randomization. Let H∗ =
⋃

i H[Ri]. We select a generalized

binomial subhypergraph H ′′ of H∗ by independently choosing each edge e with probability wie(e),

where ie is the index i such that e ∈ H[Ri]. Recall that property (iii) ensures that every edge is

contained in at most one hypergraph Ri, which guarantees the uniqueness of ie. We are going to

verify our claim by showing degH′′(v) ∼ n0.2 for any vertex v, while ∆2(H ′′) ≤ n0.1.

Let Iv = {i : v ∈ Ri} and recall that |Iv| = Y{v} ∼ n0.2 by (i). For every v ∈ V ′ the set Ev of edges

e ∈ H∗ containing v can be partitioned into |Iv| parts Ei
v = {e ∈ Ev ∩H[Ri]}. Recall that wi is a

perfect matching, and thus
∑

e∈Ei
v
wi(e) = 1. For every v ∈ V ′ the random variable Dv = degH′′(v) is
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equal to
∑

i∈Iv

∑

e∈Ei
v
Xe, where Xe are independent random variables having Bernoulli distribution

with expectation wie(e). Therefore Dv is generalized binomial with expectation

EDv =
∑

e∈Ev

wie(e) =
∑

i∈Iv

(

∑

e∈Ei
v

wi(e)

)

=
∑

i∈Iv

1 ∼ n0.2.

Hence by Chernoff’s inequality (6),

P(|Dv − n0.2| ≥ αn0.2) ≤ 2e−
ε2

3
n0.2

Set α = n−0.05, then |Dv − n0.2| ≤ n0.15 with probability 1 −O(e−n0.1

). Taking a union bound over

all the n vertices, we conclude that a.a.s. for all v ∈ V ′ we have Dv ∼ n0.2.

Moreover, for all pairs u, v ∈ V ′ the random variable Du,v = degH′′(u, v) is also generalized binomial

with expectation

EDu,v =
∑

e∈Eu∩Ev

wie(e) =
∑

i∈Iu∩Iv

(

∑

e∈Ei
u∩E

i
v

wi(e)

)

≤ |Iu ∩ Iv| ≤ 2

by (ii). Hence, again by Chernoff’s inequality (8) for large deviations, when n is sufficiently large,

P(Du,v ≥ n0.1) ≤ e−n0.1

Once again taking the union bound ensures that a.a.s. for every pair of vertices u, v ∈ V ′, Du,v ≤

n0.1.

5 An applications in distributed storage allocation

The following model of distributed storage has been studied in information theory [17, 20, 28]. A

file is split into multiple chunks, replicated redundantly and stored in a distributed storage system

with n nodes. Suppose the amount of data to be stored in each node i is equal to xi, where the size

of the whole file is normalized to 1. In reality, because there is limited storage space or transmission

bandwidth, we require that the total amount of data stored does not exceed a given budget T , i.e.

x1+ · · ·+xn ≤ T . At the time of retrieval, we attempt to recover the whole file by accessing only the

data stored in a subset R of r nodes which is chosen uniformly at random. It is known that there

always exists a coding scheme such that we can recover the file whenever the total amount of data

accessed is at least 1. Our goal is to find an optimal allocation (x1, · · · , xn) in order to maximize

the probability of successful recovery. This problem can be reformulated as follows.

Question 5.1 For a nonnegative sequence (x1, · · · , xn), let

Φ(x1, · · · , xn) =
∣

∣

∣

{

S ⊆ [n], |S| = r such that
∑

i∈S

xi ≥ 1
}

∣

∣

∣
.
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Then the probability of successful recovery of the file equals

Φ(x1, · · · , xn)
(

n
r

) .

Given integers n ≥ r ≥ 1 and a real number T > 0, determine

F T (r, n) = max∑
xi=T, xi≥0 ∀i

Φ(x1, · · · , xn).

and find an allocation optimizing F T (r, n).

If the total budget T is at least n/r then, by setting all xi = T/n ≥ 1/r for all i, we can recover the

original file from any subset of size r. So, F T (r, n) =
(n
r

)

for T ≥ n/r. For T < n/r, let w(i) = xi be

a weight function from V = [n] to R. Then by the definition of the threshold r-uniform hypergraph

H1
w from Section 3, the edges of H1

w correspond to the r-subsets S such that
∑

i∈S xi ≥ 1. Thus, it

is easy to see that the fractional matching number of H1
w satisfies

ν∗(H1
w) = τ∗(H1

w) ≤
n
∑

i=1

w(i) =
n
∑

i=1

xi ≤ T

while

Φ(x1, · · · , xn) = |H1
w|.

Therefore, F T (r, n) is the maximum number of edges in an r-uniform hypergraph on n vertices with

fractional matching number at most T . As such F T (r, n) differs from fT
0 (r, n) only in that the latter

has the strict inequality ν∗(H) < T in its definition. But, of course, we have fT
0 (r, n) ≤ F T (r, n) ≤

fT+1
0 (r, n), and so F T (r, n) ∼ fT

0 (r, n) as n → ∞.

Hence, Question 5.1 is asymptotically equivalent to the fractional Erdős Conjecture 1.4. As men-

tioned in the introduction, it follows from the Erdős-Gallai theorem [6] that

F T (2, n) ∼ fT
0 (2, n) ∼ mT

0 (2, n) ∼ max

{(

2T

2

)

,

(

n

2

)

−

(

n− T

2

)}

.

An easy calculation shows that the above maximum equals the first term if 2
5n ≤ T ≤ 1

2n, and the

corresponding optimal graph is a clique of size 2T . This means that, asymptotically, an optimal

allocation is x1 = · · · = x2T = 1/2 and x2T+1 = · · · = xn = 0. On the other hand, if T < 2
5n, an

optimal allocation is x1 = · · · = xT = 1 and xT+1 = · · · = xn = 0.

For general r ≥ 3, if Conjecture 1.4 is true, then

F T (r, n) ∼ max

{(

rT

r

)

,

(

n

r

)

−

(

n− T

r

)}

.

The bounds are achieved when H is a clique or a complement of clique. A corresponding (asymp-

totically) optimal storage allocation is x1 = · · · = xrT = 1/r, xrT+1 = · · · = xn = 0 or x1 =

· · · = xT = 1, xT+1 = · · · = xn = 0, respectively. Corollary 2.1 and Remark 2.1 assert that
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for r = 3 and T < 0.277 n, as well as for r = 4 and T < 0.217 n, the latter is an opti-

mal allocation. Moreover, if Samuels’ conjecture 2.1 holds for all the remaining r ≥ 5, then

x1 = · · · = xT = 1, xT+1 = · · · = xn = 0 is always an asymptotic optimal allocation whenever

T < n/(r + 1). Erdős [5] proved Conjecture 1.3 for all T < n/(2r3). Recently, the authors of

[11] extended the range for which this conjecture holds to T = O(n/r2). Therefore, in this range,

F T (r, n) is achieved by the complement of a clique and an optimal allocation is also known to be

x1 = · · · = xT = 1, xT+1 = · · · = xn = 0.

6 Concluding Remarks

• We have studied sufficient conditions on the minimum d-degree which guarantee that a uniform

hypergraph has a perfect matching or perfect fractional matching. We proved that if fd(k, n) ∼

c∗
(

n
k

)

, then md(k, n) ∼ max{c∗, 1/2}
(

n
k

)

. Therefore in order to determine the asymptotic behavior

of the minimum d-degree ensuring existence of a perfect matching, we can instead study the

presumably easier question for fractional matchings. Using this approach we showed, in particular,

that m1(5, n) ∼
(

1 − 44

54

)

(n−1
4

)

.

• An intriguing problem which remains open is the conjecture by Erdős which states that the

maximum number of edges in a k-uniform hypergraph H on n vertices with matching number

smaller than s is exactly

max

{(

ks− 1

k

)

,

(

n

k

)

−

(

n− s + 1

k

)}

.

The fractional version of Erdős conjecture is also very interesting. In its asymptotic form it says

that if H is an l-uniform m-vertex hypergraph with fractional matching number ν∗(H) = xm,

where 0 ≤ x < 1/l, then

|H| ≤ (1 + o(1)) max
{

(lx)l, 1 − (1 − x)l
}

(

m

l

)

.

In Section 2 we showed that the fractional Erdős conjecture is related to a probabilistic conjecture

of Samuels. This conjecture, if proved, will provide a solution to the fractional version of Erdős

problem for the range x ≤ 1
l+1 . It will also lead to the asymptotics of md(k, n) and fd(k, n) for

arbitrary k ≥ d + 1 and d ≥ 1.

• As it turns out, matchings and fractional matchings also have some interesting applications in

information theory. In particular, the uniform model of distributed storage allocation considered

in [28] leads to a question which is asymptotically equivalent to the fractional version of Erdős’

problem. In [17], the set of accessed nodes, R, is given by taking each node randomly and

independently with probability p. It would be interesting to see if our techniques can be applied

to study this binomial model too.
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[25] V. Rödl, A. Ruciński, and E. Szemerédi, Perfect matchings in large uniform hypergraphs with

large minimum collective degree, J. Combin. Theory, Ser. A 116 (2009), 613–636.

[26] S. M. Samuels, On a Chebyshev-type inequality for sums of independent random variables,

Ann. Math. Statist. 37 (1966), 248–259.

[27] S. M. Samuels, More on a Chebyshev-type inequality for sums of independent random variables,

Purdue Stat. Dept. Mimeo. Series no. 155 (1968).

[28] M. Sardari, R. Restrepo, F. Fekri, and E. Soljanin, Memory allocation in distributed storage

networks, Proceedings of IEEE International Symposium on Information Theory (ISIT), (2010).

19


	1 Introduction
	2 Fractional matchings and probability of small deviations
	3 Thresholds for perfect fractional matchings
	4 Constructing integer matchings from fractional ones
	5 An applications in distributed storage allocation
	6 Concluding Remarks

