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A SYMPLECTIC PROOF OF A THEOREM OF FRANKS

BRIAN COLLIER, ELY KERMAN, BENJAMIN M. REINIGER, BOLOR TURMUNKH,
AND ANDREW ZIMMER

Abstract. A celebrated theorem in two-dimensional dynamics due to John
Franks, [F1, F2], asserts that every area preserving homeomorphism of the
sphere has either two or infinitely many periodic points. In this work we
reprove Franks’ theorem under the additional assumption that the map is
smooth. Our proof uses only tools from symplectic topology and thus differs
significantly from those in [F1, F2, FH, LC1]. A crucial role is played by the
results from [GK] concerning resonance relations for Hamiltonian diffeomor-
pisms.
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1. Introduction

Consider the unit sphere S2 ⊂ R3 equipped with the standard area form ω
inherited from R3. Let φα be the rotation of the sphere by 2πα radians about the
vertical axis. Each φα is an area preserving diffeomorphism and there are two simple
alternatives for the number of its periodic points: either α is irrational and φα has
exactly two periodic points, the poles; or α is rational in which case some iterate of
φα is the identity and hence φα has infinitely many periodic points. The following
remarkable theorem due to John Franks, [F1, F2], proves that these alternatives
for the number of periodic points of area preserving maps of S2 are universal.
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Theorem 1.1. ([F1, F2]) Every area preserving homeomorphism of S2 has either
two or infinitely many periodic points.

In the case of smooth maps this theorem was strengthened by Franks and Handel
in [FH] with the addition of new information on the growth rate of periodic points.
The smoothness condition in [FH] was then relaxed by Le Calvez in [LC1]. As stated
and proved, these results all belong to the world of two-dimensional dynamical
systems. In particular, all the previous proofs known to the present authors utilize
results such as Brouwer’s translation theorem which capture phenomena unique to
dimensional two. On the other hand, Franks’ theorem (in the smooth category), and
the results in [FH] can be recast as statements about Hamiltonian diffeomorphisms
of S2. From this perspective they can viewed as the two-dimension models of a more
general class of results that are expected to hold for Hamiltonian diffeomorphisms
of large families of symplectic manifolds (see below).

A first step in the process of absorbing Franks’ theorem into symplectic topology
is to reprove it using only the tools from this field. This is the goal of the present
paper. Other symplectic approaches to a similar set of results concerning area
preserving disc maps have been developed by Bramham (see [BrHo]) and by Ghrist,
Van den Berg, Vandervorst and Wójcik in [GVVW].

Here, we use some well-known symplectic tools, as well as the results on resonance
relations for Hamiltonian diffeomorphisms from [GK], to prove the following.

Theorem 1.2. Every Hamiltonian diffeomorphism φ of (S2, ω) has either two or
infinitely many periodic points. If φ has exactly two periodic points, P and Q, then
both are nondegenerate. In particular both are elliptic fixed points of φ, and their
mean indices, ∆(P ), ∆(Q) ∈ R/4Z, are irrational and satisfy

∆(P ) + ∆(Q) = 0 mod 4.

We defer a discussion of the mean index to Sections 2.2 and 2.2.4.
Theorem 1.2 implies Theorem 1.1 in the smooth category. For the case of Hamil-

tonian diffeomorphisms with exactly two periodic points, the restrictions on these
points included in the statement of Theorem 1.2 are not new. As pointed out to
us by Bramham, nondegeneracy follows from the results on area preserving home-
omorphisms of annuli in [F1, F2], and the restrictions on the mean indices can be
derived from the Lefschetz fixed point theorem and the Poincaré-Birkhoff theorem.
However, we establish these restrictions by other means which we hope will lead
to analogous restrictions in some of the generalizations of Franks’ theorem that
are expected to hold in higher dimensional settings. Perhaps the best known (and
most approachable) of these conjectured generalizations is the assertion that every
Hamiltonian diffeomorphism of CPn must have either n+1 or infinitely many peri-
odic points (see, for example, page 263 of [HZ]). Applications of the ideas developed
here to such problems will be considered elsewhere.

Remark 1.3. Much is known about the set of Hamiltonian diffeomorphisms (in fact
homeomorphisms) of S2 with exactly two periodic points. In [LC2] it is shown that,
up to conjugacy, every such Hamiltonian diffeomorphism (in fact homeomorphism)
is the compactification of an irrational pseudo-rotation, an area preserving map of
the closed annulus such that every positively recurrent point has the same irrational
rotation number. On the other hand, such maps are known to exhibit a variety of
different behaviors; from simple irrational rotations, to the smooth examples from
[AK, FK] which have only three ergodic invariant measures.
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1.1. On the proof of Theorem 1.2. The crucial first step is to prove that if
a Hamiltonian diffeomorphism φ of S2 has finitely many periodic points, then at
least two of these points, say P and Q, must have irrational mean indices. This
is established as an essentially immediate implication of the theory of resonance
relations for Hamiltonian diffeomorphisms developed in [GK]. It is important to
note that these results from [GK] are themselves implied by the ideas inherent in
the recent proofs of the Conley Conjecture by Hingston in [Hi] and Ginzburg in
[Gi], and the applications and refinements of these ideas developed by Ginzburg
and Gürel in [GG1, GG2]. With P and Q in hand it is then easy to show that
in order to prove Theorem 1.2 it suffices to show that φ can not have another
periodic point, say R, with an integer mean index. Assuming the existence of such
an R, in two distinct cases, we blow up a suitable iteration of φ at two points, and
glue the resulting map to itself to obtain an area preserving diffeomorphism of the
torus (following Arnold). Using index relations and the Floer theory of symplectic
diffeomorphisms we then prove that the resulting maps can not exist.

1.2. Acknowledgments. The second author is grateful to Viktor Ginzburg for
many valuable comments and suggestions. He also wishes to thank Barney Bramham
for his generous and illuminating comments concerning an earlier version of this
work.

2. Background material, definitions and conventions

2.1. Symplectic isotopies and Hamiltonian diffeomorphisms. Let (M,ω) be
a closed symplectic manifold of dimension 2n and minimal Chern number N . Our
basic object of study will be a smooth isotopy ψt of symplectic diffeomorphisms of
(M,ω), where t takes values in [0, 1] and ψ0 is the identity map. In particular, we
will be interested in the periodic points of ψ1. Denoting the set of fixed points of
ψ1 by Fix(ψ1), the set of periodic points of ψ1 is defined as

Per(ψ1) =
⋃

k∈N

Fix((ψ1)
k).

The period of a point X ∈ Per(ψ1) is defined to be the smallest positive integer k
for which X ∈ Fix((ψ1)

k). We will also associate to each periodic point X of ψ1

with period k the unique element of π1(M) or H1(M ;Z) represented by the closed
loop t 7→ (ψt)

k(X).
To facilitate our study of periodic points, we will assume from now on that the

time-dependent vector field Xt generating our symplectic isotopy ψt extends to a
smooth time-periodic vector field of period one. This imposes no new restrictions
as any symplectic isotopy is homotopic, relative its endpoints, to one with this
property. (In particular, ψt is homotopic to ψζ(t) where ζ : [0, 1] → [0, 1] is smooth,
nondecreasing, onto and constant near 0 and 1.) This assumption allows us to
define ψt for all t ∈ R and to identify ψk with (ψ1)

k.
The subset of symplectic isotopies we are most interested in are those correspond-

ing to Hamiltonian flows. A Hamiltonian on (M,ω) is a function H : R/Z×M → R,
or equivalently a smooth one-periodic family of functions Ht(·) = H(t, ·). Each
Hamiltonian determines a one-periodic vector field XH on M via the equation
iXH

ω = −dHt. The time-t flow of XH , denoted by φtH , is defined for all t ∈ R.
For t ∈ [0, 1], φtH is a smooth isotopy of symplectic diffeomorphisms. The set of
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Hamiltonian diffeomorphisms of (M,ω) consists of all the time one maps φ = φ1H
of Hamiltonian flows.

2.2. The Conley-Zehnder and mean indices. Let A : [0, 1] → Sp(n) be a con-
tinuous path in the group Sp(n) of 2n× 2n symplectic matrices such that A(0) is
the identity matrix. One can associate to A its Conley-Zehnder index µ(A) ∈ Z as
defined in [CZ], and its mean index ∆(A) ∈ R as defined in [SZ]. As shown in [SZ],
these indices satisfy the inequality

|µ(A)−∆(A)| ≤ n, (2.1)

where the strict form of the inequality holds if A(1) has at least one eigenvalue
different from 1.

Consider a smooth isotopy ψt of symplectic diffeomorphisms as above. Let X
be a fixed point of ψ1 and let x : [0, 1] → M be the closed curve ψt(X). Given
a symplectic trivialization ξ of x∗TM , the linearized flow of ψt along x(t) yields
a smooth path Aξ : [0, 1] → Sp(n) starting at the identity matrix. The quantities
µ(Aξ) and ∆(Aξ) depend only on the homotopy class of the symplectic trivialization
ξ. We denote this class by [ξ] and define the Conley-Zehnder and mean index of X
with respect to this choice as

µ(X ;ψt, [ξ]) = µ(Aξ)

and

∆(X ;ψt, [ξ]) = ∆(Aξ).
1

In this context, inequality (2.1) becomes

|µ(X ;ψt, [ξ])−∆(X ;ψt, [ξ])| ≤ n, (2.2)

where the strict form of the inequality holds if the linearization of ψ1 atX , D(ψ1)X ,
has at least one eigenvalue different from 1.

2.2.1. Iteration formula. Each fixed point X of ψ1 is also a fixed point of the k-
th iteration (ψ1)

k = ψk. As shown in [SZ], the mean index grows linearly under
iteration, i.e.,

∆(X ;ψtk, [ξ
k]) = k∆(X ;ψt, [ξ]), (2.3)

where ξk is the trivialization of TM along ψtk(X) induced by ξ.

2.2.2. Continuity. We now recall a continuity property of the mean index estab-
lished in [SZ]. To do so we first note that if two fixed points X and X ′, of possibly
different maps ψ1 and ψ′

1, represent the same homotopy class c ∈ π1(M) then we
can specify a unique class of symplectic trivializations along both their trajecto-
ries by choosing a homotopy class of symplectic trivializations of z∗(TM) where
z : S1 → M is any smooth representative of c (in [BuHa] such a choice is referred
to as a c-structure.) In particular, a choice of [ξ] for X determines a unique class
of symplectic trivializations for X ′ which we still denote by [ξ]. When we compare
indices of fixed points in the same homology class we will always assume that the
classes of trivializations being used are coupled in this manner.

Now let ψ̃t be a symplectic isotopy C1-close ψt. Under this perturbation, each

fixed point X of ψ1 splits into a collection of fixed points of ψ̃1 which are close to

1The symplectic isotopy is included in this notation because we will need to consider fixed
points shared by different symplectic diffeomorphisms.
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X (and hence in the same homotopy class as X). If X̃ is one of these fixed points

of ψ̃1 then

|∆(X ;ψt, [ξ])−∆(X̃ ; ψ̃t, [ξ])|

is small.

2.2.3. A useful fact in dimension two. The following result is a simple consequence
of the definition of the indices. It can be derived, for example, from Theorem 7 in
Chapter 8 of [Lo].

Lemma 2.1. Let (M,ω) be a two-dimensional symplectic manifold and suppose that
ψt is an isotopy of symplectic diffeomorphisms of (M,ω) starting at the identity.
If X is a fixed point of ψ1 and ∆(X ;ψt, [ξ]) is not an integer, then µ(X ;ψt, [ξ]) is
the odd integer closest to ∆(X ;ψt, [ξ]).

2.2.4. Indices of contractible fixed points modulo 2N . When X is a contractible
fixed point of ψt, that is x(t) = ψt(X) is contractible, it is often useful to restrict
attention to trivializations of x∗TM determined by a choice of smooth spanning
disc u : D2 → M with u(e2πit) = x(t). For such choices of trivializations the
corresponding indices are well-defined modulo twice the minimal Chern number,
2N . In fact, the corresponding elements of R/2NZ depend only on the time one
map ψ1 and hence will be denoted by µ(X) and ∆(X). The quantities ∆(P ) and
∆(Q) appearing in the statement of Theorem 1.2 are meant to be understood in
this way.

2.3. Floer homology for symplectic diffeomorphisms of the torus. Finally,
we recall the properties of the Floer homology of symplectic diffeomorphisms re-
quired for the proof of Theorem 1.2. We will only need to consider the special
case when (M,ω) is a two-dimensional symplectic torus (T2,Ω) and the symplec-
tic diffeomorphism is isotopic to the identity. Consider then a smooth isotopy
ψt of symplectic diffeomorphisms of (T2,Ω) starting at the identity such that the
fixed points of ψ1 are all nondegenerate. The Floer homology of ψ1, HF(ψ1), is
then well-defined and has the properties described below. The reader is referred
to [DS, Se1, Se2, Se3, LO] for more details on the general construction of this
Floer homology, and to [C1, C2] for more thorough reviews of the Floer theory of
symplectic diffeomorphisms of surfaces.

Invariance under Hamiltonian isotopy: If φ is a Hamiltonian diffeomorphism
of (T2,Ω) then

HF(ψ1φ) = HF(ψ1).

Splitting: The Floer homology HF(ψ1) admits a decomposition of the form

HF(ψ1) =
⊕

c∈H1(T2;Z)

HF(ψ1; c).

Here, each summand HF(ψ1; c) is the homology of a chain complex (CF(ψ1; c), ∂J)
where the chain group CF(ψ1; c) is a torsion-free module over a suitable Novikov
ring, and the rank of this module is the number of fixed points of ψ1 which represent
the class c. The group HF(ψ1; 0) coincides with the Floer-Novikov Homology con-
structed by Lê and Ono in [LO], ([Se3]). Moreover, if ψt is a Hamiltonian isotopy
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then HF(ψ1) = HF(ψ1; 0) and is equal to the usual Hamiltonian Floer homology of
(T2,Ω), [Fl]. In particular, it is canonically isomorphic to H(T2;Z).

Grading: Each chain complex (CF(ψ1; c), ∂J) above has a relative Z-grading and
the boundary operator decreases degrees by one. For the case c = 0, the grading can
be set by using the usual Conley-Zehnder index of contractible fixed points (which
is well-defined since c1(T

2) = 0.) In particular, if ψt is a Hamiltonian isotopy we
have

HF∗(ψ1; 0) = H∗+1(T
2;Z). (2.4)

For a general class c ∈ H1(T
2;Z) the (relative) grading of (CF∗(ψ1; c), ∂J) is again

determined by the Conley-Zehnder index and the overall shift can be fixed by
choosing a homotopy class of symplectic trivializations of z∗(TT2) where z : S1 →
T2 is a smooth representative of c.

Extension to all smooth isotopies: The property of invariance under Hamilton-
ian isotopy allows one to also define the Floer homology for any smooth symplectic

isotopy ψ̃t of (T
2,Ω). One simply sets

HF∗(ψ̃1) = HF∗(ψ̃1 ◦ φ)

where φ is a Hamiltonian diffeomorphism for which the fixed points of ψ̃1 ◦ φ are

nondegenerate. For example, if ψ̃t = id for all t ∈ [0, 1] we can perturb by the
Hamiltonian flow of a C2-small Morse function to obtain

HF(id) = HF(id; 0) = H(T2;Z). (2.5)

Dichotomy: Finally we recall the following well known alternative for the Floer
homology whose proof we include for the sake of completeness.

Proposition 2.2. Either ψ1 is a Hamiltonian diffeomorphism in which case HF(ψ1) =
HF(ψ1; 0) and HF∗(ψ1; 0) = H∗+1(T

2;Z), or HF(ψ1) is trivial.

Proof. This can be derived easily using the Flux homomorphism. Let S̃ymp0(T
2,Ω)

denote the universal cover of Symp0(T
2,Ω), the identity component of the space

of symplectic diffeomorphisms of (T2,Ω). The points of S̃ymp0(T
2,Ω) are of the

form [ψt] where ψt is a symplectic isotopy starting at the identity and [ψt] is the
homotopy class of ψt relative its endpoints. The flux homomorphism

F : S̃ymp0(T
2,Ω) → H1(T2;R)

is then defined by

F([ψt]) =

∫ 1

0

[ϑt] dt,

where ϑt = −iXt
Ω and Xt is the vector field generating ψt. Besides the fact

that is indeed a homomorphism (where the target H1(T2;R) is identified with
Hom(π1(T

2),R)), the other crucial property of F it that its kernel consists of the

classes in S̃ymp0(T
2,Ω) which can be represented by Hamiltonian isotopies, [MS1].

Without loss of generality we may assume that Ω = dθ1∧dθ2 where θ1, θ2 ∈ R/Z
are global angular coordinates on T2. Let a1 and a2 be the standard generators of
π1(T

2) corresponding to these coordinates. The flux F([ψt]) is then specified by
the two numbers A1 = F([ψt])(a1) and A2 = F([ψt])(a2).
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Consider now the symplectic isotopy

St(θ1, θ2) = (θ1 + tA1, θ2 + tA2) .

The flux of [St] is equal to that of [ψt]. Since F is a homomorphism, we have

F([(ψt)
−1 ◦ St]) = 0 ∈ H1(T

2;R)).

The characterization of the kernel of F then implies that [(ψt)
−1 ◦ St] = [φtG] for

some Hamiltonian flow φtG. In particular, we have

S1 = ψ1 ◦ φ
1
G.

By the invariance of Floer homology under Hamiltonian isotopies, this yields

HF(ψ1) = HF(S1).

The Floer homology of S1 is now easy to compute. If A1 = A2 = 0 mod 1, then
S1 is the identity map, and by (2.4) and (2.5) we have

HF(S1) = HF(S1; 0),

and
HF∗(S1; 0) = H∗+1(T

2;Z).

Otherwise, S1 has no fixed points and hence HF(S1) is trivial. The result follows.
�

3. Proof of Theorem 1.2

Let φ be a Hamiltonian diffeomorphism of S2 with finitely many periodic points.
It suffices to prove Theorem 1.2 for any iteration of φ. Using the freedom to chose
this iteration we may assume that the periodic points of φ are all fixed points (have
period one). The iteration formula (2.3) implies that we may also assume that the
mean index of any fixed point of φ is either irrational or is equal to zero modulo 4.
In particular, we have

Per(φ) = Fix(φ) = {p1, . . . , pl, r1, . . . , rm},

where for j = 1, . . . , l the mean indices ∆(pj) are irrational, and for j = 1, . . . ,m
we have ∆(rj) = 0 mod 4.

3.1. Resonance and periodic points with irrational mean indices. The
starting point for the proof of Theorem 1.2 is to show that the number of fixed
points of φ with irrational mean indices is at least two. To prove this we require
the theory of resonance relations for Hamiltonian diffeomorphisms developed in
[GK]. We now present a condensed version of these results, keeping only those
features which are relevant to the task at hand.

As before, let (M,ω) be a closed symplectic manifold of dimension 2n with
minimal Chern number N . Suppose also that (M,ω) is both weakly monotone
(see, for example, [MS2]) and rational. A Hamiltonian diffeomorphism is said
to be perfect if it has finitely many contractible periodic points all of which are
fixed points. Let ϕ be a perfect Hamiltonian diffeomorphism of (M,ω) and let
∆1, . . . ,∆m be the collection of irrational mean indices of the contractible fixed
points of ϕ (as described in Section 2.2.4 these are defined modulo 2N). A resonance
relation for ϕ is a vector ~a = (a1, . . . , am) ∈ Zm such that

a1∆1 + . . .+ am∆m = 0 mod 2N.

The set of resonance relations of ϕ forms a free abelian group R = R(ϕ) ⊂ Zm.
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Theorem 3.1. ([GK]) Assume that n+ 1 ≤ N <∞.

(i) Then R 6= 0, i.e., the irrational mean indices ∆i satisfy at least one non-
trivial resonance relation.

(ii) If there is only one resonance relation, i.e., rkR = 1, then it has a generator
of the form r~a = (ra1, . . . , ram), where ai ≥ 0 for all i,

∑
ai ≤

N

N − n
,

and r is the smallest natural number such that the mean index of each fixed
point of φr is either irrational or is equal to zero modulo 2N .2

Returning to the proof of Theorem 1.2, we derive the following consequence for
our Hamiltonian diffeomorphism φ.

Corollary 3.2. At least two of the fixed points of φ, say P and Q, have irrational
mean indices, i.e., are strongly nondegenerate elliptic fixed points. Moreover, if P
and Q are the only fixed points of φ, then their irrational mean indices ∆(P ) and
∆(Q) satisfy

∆(P ) + ∆(Q) = 0 mod 4.

Proof. The sphere is weakly monotone and rational and its minimal Chern number
is two (N = 2 = n+ 1). Hence, Theorem 3.1 applies and part (i) implies the first
assertion of the corollary since there must be at least two fixed points of φ with
irrational mean indices in order for a single non-trivial resonance relation to exist.

Suppose that φ has exactly two fixed points, P and Q. By part (i) both P
and Q have irrational mean indices. These indices can not satisfy two independent
resonance relations, otherwise they would be the unique solutions (modulo 4) of a
linear system with integer coefficients and hence would be rational. So, in this case,
rkR = 1 and the conclusion of part (ii) of Theorem 3.1 holds where the natural
number r can be taken to be 1. This immediately implies the second assertion of
Corollary 3.2. �

3.2. An assumption and two paths to a contradiction. By Corollary 3.2 and
our previous choices we now have

Per(φ) = Fix(φ) = {P,Q, p3, . . . , pl, r1, . . . , rm}.

Lemma 3.3. If there is no fixed point of φ of type rj (with ∆(rj) = 0 mod 4)
then the points P and Q are the only fixed points of φ.

Proof. Arguing by contradiction assume that Fix(φ) = {P,Q, p3, . . . , pl} where l >
2 and the ∆(pj) are all irrational. The fixed points of φ are then all nondegenerate
and elliptic and so their topological indices are even. By the Lefschetz fixed point
theorem we would then have the Euler characteristic of S2 equal to l > 2. �

By Corollary 3.2 and Lemma 3.3 we will be done if we can show that it is
impossible for φ to have even one fixed point, r1, with ∆(r1) = 0 mod 4. Arguing

by contradiction, we assume that such a point exists. At this point the path
to a contradiction splits into two; the first corresponding to the case when at least
one of the rj is degenerate, and the second to the case when all the rj nondegenerate.

2In [GK], this second statement is stated for the collection all nonzero mean indices, in which
case one can take r = 1. The formulation here is described in Remark 2.1 of [GK].
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3.3. Path 1: one of the rj is degenerate. Assume that φ as above has a fixed
point, say R = r1, which is degenerate (and satisfies ∆(R) = 0 mod 4).

3.3.1. A useful generating Hamiltonian. We now choose a generating Hamiltonian
H : R/Z×S2 → R for φ such that P and R are both static fixed points of the flow of
H , that is φ = φ1H and both P and R are fixed points of φtH for all t ∈ R. We begin
with any Hamiltonian G generating φ. Let uR : D2 → S2 be a smooth spanning disc
for φtG(R). As described in Section 9 of [SZ] (see also Section 5.1 of [Gi]), one can
use this disc to construct a contractible loop of Hamiltonian diffeomorphims, γt1,
such that γt1 ◦ φ

t
G(R) = R for all t ∈ R, and γt1 is supported in an arbitrarily small

neighborhood of the image of uR (which might be all of S2). The curve γt1 ◦φ
t
G(P )

does not pass through R and is contractible in its complement. Hence, we can
choose a spanning disc uP for γt1 ◦φ

t
G(P ) whose image doesn’t contain R. Using it,

as above, we can then construct a contractible loop of Hamiltonian diffeomorphims,
γt2, which is trivial in a neighborhood of R, and satisfies γt2 ◦ γ

t
1 ◦ φ

t
G(P ) = P for

all t ∈ R. Let H be the unique generating Hamiltonian of the Hamiltonian path
γt2 ◦ γ

t
1 ◦ φ

t
G such that H(t, R) = 0 for all t ∈ R/Z. By reparameterizing the path

γt2 ◦ γ
t
1 ◦φ

t
G we may also assume that H vanishes when t is within some small fixed

distance, say 0 < δH ≪ 1, of 0 ∈ R/Z.

3.3.2. A generic perturbation of φk. For a k ∈ N, the Hamiltonian diffeomorphism
φk is generated by the Hamiltonian

Hk(t, p) = kH(kt, p).

More precisely, we have φtHk
= φktH for all t ∈ R. Note that P and R are still static

fixed points of the flow of Hk and, by (2.3) we have

∆(P ;φtHk
, [ξk]) = k∆(P ;φtH , [ξ]). (3.1)

and, similarly
∆(R;φtHk

, [ξk]) = k∆(R;φtH , [ξ]) (3.2)

for any choice of the class [ξ].

Lemma 3.4. For each k ∈ N there is a neighborhood Uk of R and a Hamiltonian

flow φ̃k,t which is arbitrarily C∞-close to φtHk
, is equal to φtHk

outside of Uk, and
whose fixed point set has the form

Fix(φ̃k,1) = {P,Q, p3 . . . , pl, R,R1, . . . , Rd, r2, . . . , rm},

where

(i) R is a fixed point of φ̃k,t for all t, an elliptic fixed point of φ̃k,1, and

∆(R; φ̃k,t, [ξ
k]) = k∆(R;φtH , [ξ]) + λ/π

where [ξ] is any class of symplectic trivializations, and λ > 0 is arbitrarily
close to 0.

(ii) the Rj are all contained in Uk. They are nondegenerate and ∆(Rj ; φ̃k,t, [ξ
k])

is arbitrarily close to k∆(R;φtH , [ξ]) for j = 1, . . . , d and any choice of [ξ].

(iii) none of the φ̃k,t trajectories of the remaining fixed points of φ̃k,1 enter Uk.

Proof. Besides some simple manipulations we will require only the following generic
transversality result for Hamiltonian diffeomorohisms: Let φ1F be a Hamiltonian
diffeomorphism of a symplectic manifold (M,ω) and U an open subset of M whose
boundary is smooth and contains no fixed point of φ1F . Then there is a Hamiltonian
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F̃ arbitrarily C∞-close to F which equals F in the complement of S1×U and whose
fixed points in U are all nondegenerate.

Now, choose a Darboux ball Uk around R such that none of the 1-periodic
trajectories of the Hamiltonian flow of Hk, other than that through R, enter Uk.
Let (x, y) be the Darboux coordinates in Uk. By our choice of H , it follows from
the definition of Hk that it vanishes for t ∈ [1− δH/k, 1]. Let G be a small function

supported in Uk which equals λ0

2π (x
2+y2) near R for a λ0 which is a(n) (arbitrarily)

small positive number. Let κ : R → [0, 1] be a smooth bump function such that
κ(t) = 1 for t ∈ [1 − 3δH/4k, 1 − δH/4k] and κ vanishes outside (1 − δH/k, 1).
Viewing κ as a 1-periodic function, we set G′(t, p) = κ(t)G(p) and let φ′t be the
Hamiltonian flow of G′ +Hk. Clearly R is still a static fixed point of φ′t and since
the flows of G′ and Hk are supported in disjoint time domains we have

∆(R;φtG′+Hk
, [ξk]) = ∆(R;φtHk

, [ξk]) + ∆(R;φtG′ , [ξk]) = k∆(R;φtH , [ξ]) + λ/π

where λ = λ0
∫ 1

0
κ(t) dt. This settles the assertion (i) of the lemma.

In appropriate coordinates, the linearization of φ′1 at R is rotation by λ radians.
Hence there are no fixed points of φ′1 in some Darboux ball V around R in Uk.
Using the fact above, we can then perturb G′ + Hk in S1 × (Uk r V ) to obtain

a Hamiltonian F̃ whose fixed points R1, . . . , Rd in Uk r V are all nondegenerate.

Setting φ̃k,t = φt
F̃

we are done. In particular, the continuity property of the mean

index described in Section 2.2.2 implies that each ∆(Rj ; φ̃k,t, [ξ
k]) is arbitrarily

close to ∆(R;φtHk
, [ξk]) and hence k∆(R;φtH , [ξ]). Thus condition (ii) is satified.

Our choice of Uk ensures that condition (iii) is also satisfied. �

3.3.3. Completing the restriction of φ̃k,1 to S2 r {P,R}. The symplectic manifold
(S2r{P,R}, ω) is symplectomorphic to the open cylinder (−1, 1)×R/2πZ equipped

with the symplectic form dz∧dθ. We now show that the map φ̃k,1 can be completed

to an area preserving diffeomorphism φk of the closed cylinder [−1, 1] × R/2πZ,

where φk acts on the boundary circles, ΓP = {1}×R/2πZ and ΓR = {−1}×R/2πZ,

as the rotation by π∆(P ; φ̃k,t, [ξ]) and λ, respectively, for any choice of the class
[ξ].

In general, if X is an elliptic fixed point of a symplectic diffeomorphism ψ1 of S2

which is isotopic to the identity, then the eigenvalues of D(ψ1)X are e±iπ∆(X,ψt,[ξ]),
which are independent of the choice of the class [ξ]. Hence, the eigenvalues of
D(φk,1)R are e±iπλ. If B(ǫ) is the open ball in R2 of radius ǫ > 0 centered at the
origin, then for sufficiently small ǫ there is a symplectic embedding AR : B(ǫ) →
(S2, ω) such that AR(0) = R and

D(AR
−1 ◦ φ̃k,1 ◦AR)0 =

(
cosλ − sinλ
sinλ cosλ

)
.

Now consider the map (r, θ) 7→ (ρ = r2/2, θ) which takes (B(ǫ) r 0, rdr ∧ dθ) to(
(0, ǫ2)× R/2πZ, dρ ∧ dθ

)
. It follows from the linearization above, that in (ρ, θ)

coordinates the map AR
−1 ◦ φ̃k,1 ◦AR extends to the boundary circle {0}×R/2πZ

as the map

(ρ, θ) 7→ (ρ, θ + λ).

Applying the same procedure near P we get the desired map φk.
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Since R and P are static fixed points of the flow φ̃k,t, we can complete each of

the maps φ̃k,t to an area preserving diffeomorphism φk,t of the same closed cylider.

(The restriction of φk,t to the boundary circle ΓP (ΓR) will only be a rotation

when P (R) is an elliptic fixed point of φ̃k,t, but this is inconsequential since the
boundary circles are always invariant.) In this way we obtain a smooth isotopy of
area preserving diffeomorphisms φk,t starting at the identity and ending at φk.

3.3.4. Transfer of dynamics to the torus. As in Arnold’s famous argument from
Appendix 9 of [Ar] in support of his conjectured lower bound for the number of

fixed of Hamiltonian diffeomorphisms, we now extend the map φk to the torus
formed by gluing two copies of the domain cylinder [−1, 1] × R/2πZ along their
common boundaries. In fact, as in [Ar], we first insert two narrow connecting
cylinders along the boundary circles to obtain a symplectic torus (T2,Ω) of total
symplectic area (8 + 4τ)π where each connecting cylinder is symplectomorphic to
[0, τ ]×R/2πZ. This allows us to extend the map φk to an area preserving map ψk
of (T2,Ω) which agrees with φk on the two large cylinders, and is defined on the
connecting cylinders so that the overall map is smooth. Since φk has no fixed points
on the boundary of its domain, we may also assume (again as in [Ar]) that no new
fixed points are introduced in the connecting cylinders. Hence, Fix(ψk) consists of

two copies of Fix(φk), which we denote by

Fix(φ
±

k ) = {Q±, p±3 . . . , p
±

l , R
±
1 , . . . , R

±

d , r
±
2 , . . . , r

±
m}.

3.3.5. The contradiction at the end of Path 1. The isotopy φk,t induces a smooth
isotopy ψk,t from the identity to ψk. Hence, the Floer homology of ψk is well
defined. Now, there are two fixed points of ψk, Q

±, corresponding to the fixed
point Q of φ. As described below, the following result concerning the role of Q+ in
HF(ψk) contradicts Proposition 2.2.

Proposition 3.5. If k is sufficiently large then Q+ represents a nontrivial class in
HF(ψk), and if Q+ is contractible then the degree of the class [Q+] is greater than
one in absolute value.

Proof. Fix a class [ξ] of symplectic trivializations of TS2 along φtH(Q). The result-
ing class [ξk] of symplectic trivializations of TS2 along φtHk

(Q) then determines an

equivalence class [ξk+] of symplectic trivializations of TT2 along ψk,t(Q
+). Let X be

any fixed point of ψk in the same homotopy class as Q+. Since the Floer boundary
operator decreases degrees by one, to prove the first assertion of Proposition 3.5 it
suffices to show that for k large enough we have either

µ(X ;ψk,t, [ξ
k
+]) = µ(Q+;ψk,t, [ξ

k
+])

or

|µ(X ;ψk,t, [ξ
k
+])− µ(Q+;ψk,t, [ξ

k
+])| > 1.

Case 1: X = Q−. By construction, we have

∆(Q+;ψk,t, [ξ
k
+]) = ∆(Q−;ψk,t, [ξ

k
+]) = ∆(Q;φtHk

, [ξk]).

The iteration formula (2.3) then implies that

∆(Q+;ψk,t, [ξ
k
+]) = ∆(Q−;ψk,t, [ξ

k
+]) = k∆(Q;φtH , [ξ]).
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Since ∆(Q) is irrational, the same is true of the real number k∆(Q;φtH , [ξ]) =
∆(Q±;ψk,t, [ξ

k
+]). By Lemma 2.1 the mean indices ∆(Q±;ψk,t, [ξ

k
+]) then determine

the corresponding Conley-Zehnder indices uniquely and we have

µ(Q+;ψk,t, [ξ
k
+]) = µ(Q−;ψk,t, [ξ

k
+]).

Case 2: X = r±j . By the construction of φ̃k,t and ψk,t we have

∆(r±j ;ψk,t, [ξ
k
+]) = ∆(rj ; φ̃k,t, [ξ

k]) = ∆(rj ;φ
t
Hk
, [ξk]).

Again, (2.3) yields

∆(r±j ;ψk,t, [ξ
k
+]) = k∆(rj ;φ

t
H , [ξ]).

By inequality (2.2) we then have

|µ(Q+;ψk,t, [ξ
k
+])− µ(r±j ;ψk,t, [ξ

k
+])| ≥ k|∆(Q;φtH , [ξ])−∆(rj ;φ

t
H , [ξ])| − 2.

Since ∆(rj) = 0 mod 4, the number ∆(rj ;φ
t
H , [ξ]) is an integer (multiple of four)

and thus not equal to the irrational number ∆(Q;φtH , [ξ]). Hence, for sufficiently
large k ∈ N, we have

|µ(Q+;ψk,t, [ξ
k
+])− µ(r±j ;ψk,t, [ξ

k
+])| > 1.

Case 3: X = p±j . If ∆(pj ;φ
t
H , [ξ]) = ∆(Q;φtH , [ξ]) we can argue as in Case 1 to

show that

µ(Q+;ψk,t, [ξ
k
+]) = µ(p±j ;ψk,t, [ξ

k
+]).

Otherwise, we can argue as in Case 2 to prove that for sufficiently large k ∈ N we
have

|µ(Q+;ψk,t, [ξ
k
+])− µ(p±j ;ψk,t, [ξ

k
+])| > 1.

Case 4: X = R±

j . Since ∆(R±

j ;ψk,t, [ξ
k
+]) = ∆(Rj ; φ̃k,t, [ξ]), it follows from Lemma

3.4 that ∆(R±

j ;ψk,t, [ξ
k
+]) is arbitrarily close to k∆(R;φtH , [ξ]). By assumption,

∆(R;φtH , [ξ]) is an integer (multiple of four) and hence not equal to the irrational
number ∆(Q;φtH , [ξQ]). Arguing again as in Case 2, we see that for sufficiently
large k

|µ(Q+;ψk,t, [ξ
k
+])− µ(R±

j ;ψk,t, [ξ
k
+])| > 1.

Finally, we settle the second assertion of Proposition 3.5. If Q+ is a contractible
fixed point of ψk than φtH(Q) is contractible in S2 r {P,R}. We choose [ξ] in this
case so that it is determined by a spanning disc for φtH(Q). Then the induced class
[ξk+] determines the canonical grading of HF∗(ψk). As established in Case 1, we
have

∆(Q+;ψk,t, [ξ
k
+]) = k∆(Q;φtH , [ξ]).

Since ∆(Q;φtH , [ξ]) is irrational and hence nonzero, we therefor have

|∆(Q+;ψk,t, [ξ
k
+])| > 2

for large enough k ∈ N. For such k, inequality (2.2) then yields

|µ(Q+;ψk,t, [ξ
k
+])| > 1.

�
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Propositions 2.2 and 3.5 can not both be true. The first assertion of Proposition
3.5 together with Proposition 2.2 implies that ψk must be a Hamiltonian diffeomor-
phism, in which case HFd(ψk; 0) must be trivial when |d| > 1. This contradicts the
second assertion of Proposition 3.5. Thus, φ can not have a degenerate fixed point.

3.4. Path 2: all the rj are nondegenerate. To begin we choose, as in Section
3.3.1, a generating Hamiltonian H for φ such that, this time, P and Q are static
fixed points of φtH . Following Section 3.3.3, for any k ∈ N we can then complete

the restriction of φk to S2 r {P,Q} to obtain a smooth area preserving map φk of
the closed cylinder [−1, 1]×R/2πZ which acts on the boundary circles, ΓP = {1}×
R/2πZ and ΓQ = {−1} × R/2πZ, as the (irrational) rotations by π∆(P ;φtHk

, [ξ])

and π∆(Q;φtHk
, [ξ]), respectively, for any choice of the classes [ξ]. Moreover, the

flow φtHk
again induces an isotopy φkt from the identity to φk.

Proceeding as in Section 3.3.4 we extend the map φk to the torus formed by
gluing together two copies of the domain cylinder [−1, 1]× R/2πZ to one another
with two narrow connecting cylinders in between. In this way we obtain an area

preserving map Ψk of the symplectic torus (T2,Ω) which agrees with φk on the two
large cylinders, and is defined on the connecting cylinders so that the overall map is
smooth and has no new fixed points. In particular, Fix(Ψk) consists of two copies

of Fix(φk), which we denote by

Fix±(φk) = {p±3 . . . , p
±

l , r
±

1 , . . . , r
±
m}.

The isotopy φkt induces a smooth isotopy Ψk,t from the identity to Ψk and so
we can again consider the Floer homology HF(Ψk). The following result again
contradicts Proposition 2.2.

Proposition 3.6. If k ∈ N is sufficiently large then no contractible fixed point of
Ψk has Conley-Zehnder index equal to one, and r+1 represents a nontrival class in
HF(Ψk).

Proof. Let Xk be a contractible fixed point of Ψk where X denotes the correspond-
ing fixed point of φ. Since π2(T

2) is trivial, all classes of symplectic trivializations
determined by a spanning discs for Ψk,t(X

k) yield the same values of the mean in-
dex and Conley-Zehnder index of Xk. So, in what follows we denote these simply as
∆(Xk; Ψk,t) and µ(X

k; Ψk,t). Since Xk is contractible, X must admit a spanning
disc with image in S2 r {P,Q}. Let ∆(X ;φtH) denote the mean index computed
with respect to the corresponding class of trivializations along φtH(X). By (2.3) we
have

∆(Xk; Ψk,t) = k∆(X ;φtH). (3.3)

Case 1: Xk = p±j . Since ∆(pj ;φ
t
H) is irrational, it follows from (3.3) that for large

enough k we have

|∆(p±j ; Ψk,t)| = k|∆(pj ;φ
t
H)| > 2.

By (2.2) it then follows that for sufficiently large k we have

|µ(p±j ; Ψk,t)| > 1.

Case 2: Xk = r±j . In this case ∆(rj ;φ
t
H) = 0 mod 4. If ∆(rj ;φ

t
H) 6= 0 then we

can argue as in the previous case to show that for sufficiently large k we have

|µ(r±j ); Ψk,t| > 1.
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Otherwise, it follows from (3.3) that

∆(r±j ; Ψk,t) = 0.

Since r±j is nondegenerate, the strong form of (2.2) applies and implies that

µ(r±j ; Ψk,t) = 0.

This settles the first assertion of Proposition 3.6.
To approach the second, we first fix a class [ξ] of symplectic trivializations of TS2

along φtH(r1). This determines an equivalence class [ξk+] of symplectic trivializations

of TT2 along Ψk,t(r
+
1 ). Let Xk be any fixed point of Ψk in the same homotopy

class as r+1 . To prove the second assertion of Proposition 3.6 it suffices to show that
for k sufficiently large we have either

µ(Xk; Ψk,t, [ξ
k
+]) = µ(r+1 ; Ψk,t, [ξ

k
+])

or

|µ(Xk; Ψk,t, [ξ
k
+])− µ(r+1 ; Ψk,t, [ξ

k
+])| > 1.3

Case 1: Xk = p±j . By our construction of Ψk and (2.3) we have

∆(r+1 ; Ψk,t, [ξ
k
+]) = k∆(r1;φ

t
H , [ξ])

and

∆(p±j ; Ψk,t, [ξ
k
+]) = k∆(pj ;φ

t
H , [ξ]).

Now ∆(r1;φ
t
H , [ξ]) = 0 mod 4 and ∆(pj ;φ

t
H , [ξ]) is irrational, so for k sufficiently

large we have

|∆(r+1 ; Ψk,t, [ξ
k
+])−∆(p±j ; Ψk,t, [ξ

k
+])| > 3

and hence, by (2.2)

|µ(r+1 ; Ψk,t, [ξ
k
+])− µ(p±j ; Ψk,t, [ξ

k
+])| > 1.

Case 2: Xk = r±j . In this case,

∆(r+1 ; Ψk,t, [ξ
k
+])−∆(r±j ; Ψk,t, [ξ

k
+]) = 0 mod 4.

If the mean indices are not equal we can argue as in the previous case. If they are
equal, then it follows from the strong form of (2.2) that

µ(r+1 ; Ψk,t, [ξ
k
+]) = µ(r±j ; Ψk,t, [ξ

k
+]).

�

This leads to the desired contradiction at the end of Path 2 as Proposition 3.6
contradicts Proposition 2.2. In particular, the first assertion of Proposition 3.6
implies that Ψk can not be Hamiltonian and the second assertion of Proposition
3.6 implies that the Floer homology HF(Ψk) is nontrivial. With this, the proof of
Theorem 1.2 is complete.

3A very simillar argument to the one which follows appears in [GG3].
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