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Abstract

The AZ identity is a generalization of the LYM-inequality. In this paper, we will give a generalization

of the AZ identity.
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1 Introduction

Let [n] = {1, 2, . . . , n}, Ωn be the family of all subsets of [n], and ∅ be the empty set. Let ∅ 6= F ⊆ Ωn.
If A * B for all A,B ∈ F with A 6= B, then F is called a Sperner family or antichain. For any antichain
F , the following inequality holds:

∑

X∈F

1
(

n
|X|

) ≤ 1. (1)

The inequality (1) is called the LYM-inequality (Lubell, Yamamoto, Meshalkin) (see [5, Chapter
13]). Many generalizations of the LYM-inequality have been obtained (see [4, 6, 7, 9]). In particular,
Ahlswede and Zhang [3] discovered an identity (see equation (2)) in which the LYM-inequality is a
consequence of it.

Let Gn be the family of all F such that ∅ 6= F ⊆ Ωn. For every F ∈ Gn, the set

Dn(F) = {Y ⊆ [n] : Y ⊆ F for some F ∈ F},

is called the downset, while the set

Un(F) = {Y ⊆ [n] : Y ⊇ F for some F ∈ F},

is called the upset. For each X ⊆ [n], we set

ZF (X) =

{

∅ if X /∈ Un(F),
⋂

F∈F ,F⊆X F otherwise.
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Theorem 1.1. [3] For any F ∈ Gn with ∅ /∈ F ,

∑

X∈Un(F)

|ZF (X)|

|X|
(

n
|X|

) = 1. (2)

Equation (2) is called the AZ-identity. Note that when F is an antichain, ZF (F ) = F for all
F ∈ F . So equation (2) becomes

∑

F∈F

1
(

n
|F |

) +
∑

X∈Un(F)\F

|ZF (X)|

|X|
(

n
|X|

) = 1,

and as the second term on the left is non-negative, we obtain inequality (1).

Later, Ahlswede and Cai discovered an identity for two set systems.

Theorem 1.2. [1] Let A = {A1, A2, . . . , Aq} and B = {B1, B2, . . . , Bq} be elements in Gn. Suppose

that Ai 6= ∅ for all i, and Aj ⊆ Bk if and only if j = k. Then

q
∑

i=1

1
(

n−|Bi|+|Ai|
|Ai|

)
+

∑

X∈Un(A)\Dn(B)

|ZA(X)|

|X|
(

n
|X|

) = 1. (3)

Ahlswede and Cai [2] also discovered AZ type of identities of several other posets. For the duality
of equations (2) and (3), we refer the readers to [8, 10].

Recently, Thu discovered the following generalizations of equations (2) and (3).

Theorem 1.3. [12] Let m be an integer, and F ∈ Gn with ∅ /∈ F . If |F |+m > 0 for all F ∈ F , then

∑

X∈Un(F)

|ZF (X)| +m

(|X|+m)
(

n+m
|X|+m

) = 1. (4)

Theorem 1.4. [12] Let m be an integer, and A = {A1, A2, . . . , Aq} and B = {B1, B2, . . . , Bq} be

elements in Gn. Suppose that Ai 6= ∅ for all i, and Aj ⊆ Bk if and only if j = k. If |A|+m > 0 for

all A ∈ A, then
q
∑

i=1

1
(

n+m−|Bi|+|Ai|
|Ai|+m

)
+

∑

X∈Un(A)\Dn(B)

|ZA(X)|+m

(|X| +m)
(

n+m
|X|+m

) = 1. (5)

In this paper, we will give generalizations of equations (4) and (5) (see Theorem 2.4 and Theorem
2.7).
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2 Main theorems

Let us denote the set of real numbers by R and the set of natural numbers by N. Let a,m ∈ R and
n ∈ N. Suppose that ak +m 6= 0 for k = l, l + 1, . . . , n. We set

ga,m(n, l) =
(n− l)!an−l

∏n
k=l(ak +m)

.

Lemma 2.1. Suppose l < n. If ak +m 6= 0 for k = l, l + 1, . . . , n, then

ga,m(n, l) + ga,m(n, l + 1) = ga,m(n− 1, l).

Proof. Note that

ga,m(n, l) + ga,m(n, l + 1) =
(n− l)!an−l

∏n
k=l(ak +m)

+
(n− l − 1)!an−l−1

∏n
k=l+1(ak +m)

=
(n− l)!an−l + (al +m)(n − l − 1)!an−l−1

∏n
k=l(ak +m)

=
n(n− l − 1)!an−l +m(n− l − 1)!an−l−1

∏n
k=l(ak +m)

=
(n− l − 1)!an−l−1

∏n−1
k=l (ak +m)

= ga,m(n− 1, l).

The following lemma can be verified easily.

Lemma 2.2. Suppose that ak +m 6= 0 for k = l, l + 1, . . . , n.

(a) If a = 1 and m is an integer, then

g1,m(n, l) =
1

(l +m)
(

n+m
l+m

) .

(b) If a = 1 and m = 0, then

g1,0(n, l) =
1

(l)
(

n
l

) .

We shall need the following lemma (see equation (3) of [11], or Lemma 2 of [8]).

Lemma 2.3. Let ∅ /∈ A ∈ Gn and ∅ /∈ B ∈ Gn. Set

A ∨ B = {A ∪B : A ∈ A, B ∈ B}.

Then for each ∅ 6= X ⊆ [n],

|ZA∪B(X)| = |ZA(X)|+ |ZB(X)| − |ZA∨B(X)| .
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Theorem 2.4. Let a,m ∈ R and n ∈ N. Let ∅ /∈ A ∈ Gn. Suppose that ak + m 6= 0 for all

minA∈A |A| ≤ k ≤ n. Then

∑

X∈Un(A)

(a|ZA(X)| +m) ga,m(n, |X|) = 1. (6)

Proof. Case 1. Suppose A = {A}. We may assume that A = {1, 2, . . . , r}.

Note that if r = n, then Un(A) = {A}, ZA(A) = A, and
∑

X∈Un(A) (a|ZA(X)|+m) ga,m(n, |X|) =

(an +m)ga,m(n, n) = 1. Suppose r < n. Note that Un(A) = Un−1(A) ∪ {X ∪ {n} : X ∈ Un−1(A)},

and ZA(X) = ZA(X ∪ {n}). Therefore by Lemma 2.1,

∑

X∈Un(A)

(a|ZA(X)|+m) ga,m(n, |X|)

=
∑

X∈Un−1(A)

(a|ZA(X)| +m) ga,m(n, |X|)

+
∑

X∈Un−1(A)

(a|ZA(X ∪ {n})|+m) ga,m(n, |X|+ 1)

=
∑

X∈Un−1(A)

(a|ZA(X)| +m) (ga,m(n, |X|) + ga,m(n, |X| + 1))

=
∑

X∈Un−1(A)

(a|ZA(X)| +m) ga,m(n− 1, |X|).

If r = n − 1, then Un−1(A) = {A}, ZA(A) = A, and
∑

X∈Un−1(A) (a|ZA(X)| +m) ga,m(n − 1, |X|) =

(a(n− 1)+m)ga,m(n− 1, n− 1) = 1. So the theorem holds. Suppose r < n− 1. Again by Lemma 2.1,

∑

X∈Un−1(A)

(a|ZA(X)| +m) ga,m(n− 1, |X|)

=
∑

X∈Un−2(A)

(a|ZA(X)| +m) ga,m(n− 2, |X|).

By continuing this way, we see that

∑

X∈Un(A)

(a|ZA(X)|+m) ga,m(n, |X|)

=
∑

X∈Ur(A)

(a|ZA(X)| +m) ga,m(r, |X|)

= (ar +m)ga,m(r, r)

= 1.

Case 2. Suppose A = {A1, . . . , Aq}, q ≥ 2. Assume that the theorem holds for all q′ with 1 ≤ q′ < q.

Let B = {A1, . . . , Aq−1} and C = {Aq}. Then B∨C = {A1∪Aq, . . . , Aq−1∪Aq}, Un(A) = Un(B)∪Un(C)

and Un(B ∨ C) = Un(B) ∩ Un(C). By Lemma 2.3,

|ZA(X)| = |ZB(X)| + |ZC(X)| − |ZB∨C(X)| .
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So if X ∈ Un(B) \ Un(C), then |ZA(X)| = |ZB(X)|, if X ∈ Un(C) \ Un(B), then |ZA(X)| = |ZC(X)|,

and if X ∈ Un(B) ∩ Un(C), then |ZA(X)| = |ZB(X)| + |ZC(X)| − |ZB∨C(X)|.

Therefore
∑

X∈Un(A)

(a|ZA(X)| +m) ga,m(n, |X|)

=
∑

X∈Un(B)\Un(C)

(a|ZB(X)| +m) ga,m(n, |X|)

+
∑

X∈Un(C)\Un(B)

(a|ZC(X)| +m) ga,m(n, |X|)

+
∑

X∈Un(B∨C)

(a (|ZB(X)|+ |ZC(X)| − |ZB∨C(X)|) +m) ga,m(n, |X|)

=
∑

X∈Un(B)

(a|ZB(X)| +m) ga,m(n, |X|)

+
∑

X∈Un(C)

(a|ZC(X)| +m) ga,m(n, |X|)

−
∑

X∈Un(B∨C)

(a |ZB∨C(X)| +m) ga,m(n, |X|),

and by induction,
∑

X∈Un(A)

(a|ZA(X)| +m) ga,m(n, |X|) = 1 + 1− 1 = 1.

Note that by Lemma 2.2, equations (2) and (4) are consequence of Theorem 2.4.

We shall need the following lemma (see Lemma 4 of [12]).

Lemma 2.5. Let A1,A2,B1,B2 ∈ Gn and ∅ /∈ A1 ∪ A2 ∪ B1 ∪ B2. Suppose that Un(A1) ∩Dn(B2) =

∅ = Un(A2) ∩ Dn(B1). Let A = A1 ∪ A2 and B = B1 ∪ B2. If F is a non-zero function defined on

Un(A), then

∑

X∈Un(A)\Dn(B)

a|ZA(X)| +m

F (X)
=

∑

X∈Un(A1)\Dn(B1)

a|ZA1
(X)|+m

F (X)

+
∑

X∈Un(A2)\Dn(B2)

a|ZA2
(X)|+m

F (X)

−
∑

X∈Un(A1∨A1)

a|ZA1∨A2
(X)|+m

F (X)
.

In fact Lemma 2.5 can be proved easily by noting that

Un(A) \Dn(B) = (Un(A1) \ (Dn(B1) ∪ Un(A2)))

∪ (Un(A2) \ (Dn(B2) ∪ Un(A1))) ∪ Un(A1 ∨ A2),

and by applying Lemma 2.3.
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Lemma 2.6. Let a,m ∈ R and n ∈ N. Let A,B be non-empty subsets of [n]. If A ⊆ B, and ak+m 6= 0

for all |A| ≤ k ≤ n, then

∑

A⊆X⊆B

ga,m(n, |X|) = ga,m(n− |B|+ |A|, |A|).

Proof. We may assume that A = {1, 2, . . . , r1} and B = {1, 2, . . . , r1, r1 + 1, . . . , r2}. We shall prove

by induction on p = r2 − r1.

Suppose p = 0, i.e., A = B. Then

∑

A⊆X⊆B

ga,m(n, |X|) = ga,m(n, |A|).

Suppose p > 1. Assume that the lemma holds for p′ < p.

Note that A ( B and r2 /∈ A. Set B′ = B \ {r2}. Then A ⊆ B′, and by Lemma 2.1,

∑

A⊆X⊆B

ga,m(n, |X|) =
∑

A⊆X⊆B′

ga,m(n, |X|) +
∑

A⊆X⊆B′

ga,m(n, |X ∪ {r2}|)

=
∑

A⊆X⊆B′

(ga,m(n, |X|) + ga,m(n, |X|+ 1))

=
∑

A⊆X⊆B′

ga,m(n− 1, |X|).

By induction
∑

A⊆X⊆B′ ga,m(n−1, |X|) = ga,m(n−1−|B′|+ |A|, |A|) = ga,m(n−|B|+ |A|, |A|). Hence
∑

A⊆X⊆B ga,m(n, |X|) = ga,m(n− |B|+ |A|, |A|).

Theorem 2.7. Let a,m ∈ R and n ∈ N. Let A = {A1, A2, . . . , Aq} and B = {B1, B2, . . . , Bq} be

elements in Gn. Suppose that Ai 6= ∅ for all i, and Aj ⊆ Bk if and only if j = k. If ak +m 6= 0 for

all minA∈A |A| ≤ k ≤ n, then

q
∑

i=1

(a|Ai|+m)ga,m(n− |Bi|+ |Ai|, |Ai|) +
∑

X∈Un(A)\Dn(B)

(a|ZA(X)|+m) ga,m(n, |X|) = 1. (7)

Proof. Case 1. Suppose q = 1. Then A = {A1}, B = {B1}, ∅ 6= A1 ⊆ B1, and a|A1| + m 6= 0.

Furthermore if X ∈ Un(A), then ZA(X) = A1. By Theorem 2.4,

∑

X∈Un(A)∩Dn(B)

(a|ZA(X)| +m) ga,m(n, |X|) +
∑

X∈Un(A)\Dn(B)

(a|ZA(X)|+m) ga,m(n, |X|) = 1.

Note that by Lemma 2.6

∑

X∈Un(A)∩Dn(B)

(a|ZA(X)| +m) ga,m(n, |X|) = (a|A1|+m)
∑

A⊆X⊆B

ga,m(n, |X|)

= (a|A1|+m)ga,m(n− |B1|+ |A1|, |A1|).

Hence the theorem holds.
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Case 2. Suppose q > 1. Assume that the theorem holds for all q′ with 1 ≤ q′ < q. Let

A1 = {A1, . . . , Aq−1}, A2 = {Aq},

B1 = {B1, . . . , Bq−1}, B2 = {Bq}.

Note that Un(A1) ∩Dn(B2) = ∅ = Un(A2) ∩Dn(B1). By Lemma 2.5 and induction,

∑

X∈Un(A)\Dn(B)

a|ZA(X)| +m

F (X)
=

(

1−

q−1
∑

i=1

(a|Ai|+m)ga,m(n− |Bi|+ |Ai|, |Ai|)

)

+ (1− (a|Aq|+m)ga,m(n− |Bq|+ |Aq|, |Aq|))

−
∑

X∈Un(A1∨A1)

(a|ZA1∨A2
(X)| +m) ga,m(n, |X|).

Note that by Theorem 2.4, the
∑

X∈Un(A1∨A1)
(a|ZA1∨A2

(X)| +m) ga,m(n, |X|) = 1. Hence the theo-

rem holds.

Note that by Lemma 2.2, equations (3) and (5) are consequence of Theorem 2.7.
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[9] P. L. Erdös, and L. A. Székely, Pseudo-LYM inequalities and AZ identities, Adv. in Appl. Math.
19 (1997), 431–443.

[10] A. J. W. Hilton, and D. S. G. Stirling The dual of an identity of Ahlswede and Zhang, Congr.
Numer. 130 (1998), 113–126.

[11] T. D. Thu, An induction proof of the Ahlswede-Zhang identity, J. Combin. Theory Ser. A 62

(1993), 168–169.

7



[12] T. D. Thu, An AZ-style identity and Bollobás deficiency, J. Combin. Theory Ser. A 114 (2007),
1504–1514.

8


	1 Introduction
	2 Main theorems

