
Analytic evaluation of diffuse flux at a refractive index 

discontinuity in forward-biased scattering media 

 
Adrian C Selden*‡ 

 
    *email: adrian_selden@yahoo.com      

 
 
 
 

ABSTRACT 
 

A simple analytic method of estimating the error involved in using an approximate 

boundary condition for diffuse radiation in two adjoining scattering media with differing 

refractive index is presented. The method is based on asymptotic planar fluxes and enables 

the error to be readily evaluated without recourse to Monte Carlo simulation. The analysis 

is extended to multi-layer media, for which the cumulative error can exceed 100% when an 

approximate boundary condition is used. 
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The boundary condition at an interface between two diffusive scattering media with 

differing refractive indices n1, n2 involves a discontinuity in the scalar flux φ proportional 

to the magnitude of the vector flux J at the boundary, which is conserved across the 

interface [1-4] 

n2φ1 – φ2 = C(n)J  (1) 

where n = n2/n1>1 and the proportionality constant C(n)∝(n−1)3/2 for n–1<<1 [1]. Hence 

n2φ1>φ2 when J>0. The error in applying the simpler boundary condition [5] 

   n2φ1 – φ2 = 0   (2) 

has been investigated numerically for biological tissue [3] and analytically for time-

dependent diffusion between adjacent half-spaces [6]. Most analyses employ a point 

source located a finite distance from the surface boundary (Green’s function solution), 

which therefore appears as a parameter in the result, and minimal or zero absorption and 

isotropic or moderately anisotropic scattering (as required by diffusion theory). Here we 

present a simpler approach based on the asymptotic diffuse flux to derive a general 

analytic result determined solely by the boundary conditions at an interface and the 

inherent optical properties of the scattering media, enabling rapid evaluation of the error. 

With the definitions 

φ = ½ ∫ I(µ)dµ  µ∈|-1, 1| (3a) 

J = ½ ∫ I(µ)µdµ µ∈|-1, 1| (3b) 

where I(µ) is the angular intensity distribution and µ the direction cosine, we find the 

mean cosine of the radiance <µ> = ∫I(µ)µdµ/∫I(µ)dµ = J/φ. Dividing eqn (1) by φ1, we 

find the fractional error in applying the approximate boundary condition eq (2)  

∆φ/φ1 = n2 – φ2/φ1 = C(n)<µ1> (4a) 

And similarly   ∆φ/φ2 = n2φ1/φ2  – 1 = C(n)<µ2> (4b) 

Thus the error in applying the approximate boundary condition eqn (2) is directly 

proportional to the mean cosine <µ> of the angular intensity distribution at the boundary. 

The discontinuity in scalar flux ϕ quantified by eqn (1) also implies a discontinuity in the 

mean cosine <µ> of the radiance distribution viz. <µ1> ≠ <µ2>. To find the magnitude of 



the error in a specific case requires numerical evaluation of the boundary fluxes [3]. 

However, a preliminary estimate can be made in terms of the mean cosine of the 

asymptotic angular radiance [7] 

<µ>as = (1 – ω0)/γ0  (5) 

for scattering albedo ω0 = κs/(κs+κa) = κs/κe, where κs is the scattering coefficient, κa the 

absorption coefficient, κe = κs+κa the extinction coefficient and γ0 the least eigenvalue of 

the scattering matrix [8], equivalent to the diffuse attenuation coefficient κd. In the P1 

approximation, κd and <µ>as are determined solely by κs, κa and scattering asymmetry g 

   κd = [3κa(κa + κs')]1/2 ≈ √(3κaκs') (6a) 

  <µ>as = [κa/3(κa + κs')]1/2
  ≈ √(κa/3κs') (6b) 

when κa<<κs', with κs' = κs(1–g) [9]. Thus κd⇒0, <µ>as⇒0 when κa⇒0 (zero absorption). 

More precise evaluation of the eigenvalue γ0 (and hence κd) required for forward-biased 

scattering in absorbing media, involves higher moments of the phase function [10, 11]. 

The dependence of the error ∆ϕ/ϕ on scattering asymmetry g is shown in Fig 1 for 

scattering albedoes in the range ϖ0∈|0.2-0.99| (for accurate values of γ0 [10, 11]). It can 

be seen that ∆ϕ/ϕ is only weakly dependent on scattering asymmetry for g<0 (backward-

biased scattering), even for strong absorption (ϖ0 = 0.2 i.e. κa = 4κs), while increasing 

rapidly for forward-biased scattering (g>0), approaching 10% for g≥0.99 when ϖ0=0.9. In 

the δ-P1 approximation, the scattering asymmetry is reduced: g'∈|0, 0.5| for g∈|0, 1|, but 

so is the scattering albedo: ϖ0' = κs'/(κs'+κa) via the reduced scattering coefficient κs' = 

κs(1-g). Thus for g = 0.9, rescaling increases the effective absorption tenfold, potentially 

offsetting the reduced error in ϕ. The error in the diffuse flux increases for interfaces with 

higher index ratios, ∆ϕ/ϕ exceeding 20% for g = 0.95 when n = 1.25 (ϖ0 = 0.99). 

To proceed further, we require solutions of the diffusion equation for two adjoining 

layers satisfying the boundary condition eqn (1). To simplify the analysis, we consider 

planar asymptotic solutions for φ1 and φ2 in the respective scattering media [12] 

φ1(z) = a1exp(κ1z) + b1exp(-κ1z) z<0 (7a) 

φ2(z) = a2exp(κ2z) + b2exp(-κ2z) z>0 (7b) 



with diffuse attenuation coefficients κ1, κ2, taking the z-axis perpendicular to the interface 

at z = 0. Applying the boundary condition eqn (1) and defining J = – D∇φ, where D is the 

diffusion coefficient, and setting J1(0) = J2(0) [1],  we find 

    φ1(0) = 2K/1+K   (8a) 

φ2(0) = 2D1κ1/D2κ2(1+K)  (8b) 

where    K =  [D1κ1/n2D2κ2][1+C(n)D2κ2] (8c) 

assuming a semi-infinite medium (half-space) for z>0: a2 = 0 for ϕ2(z)⇒0 as z⇒∞. 

Eqns (8a,b,c) enable comparison of the diffuse boundary fluxes φ1(0), φ2(0) with those 

satisfying the approximate boundary condition eq (2), which follow on setting C(n) = 0. 

Analytic evaluation of the fractional flux error in terms of the refractive index ratio 

n=n2/n1 and the diffusion parameters D1κ1, D2κ2 via the scattering asymmetry g and 

scattering albedo ω0 can then be made. Accurate values of D1κ1 and D2κ2 for forward-

biased anisotropic scattering in absorbing media (ω0<1) may be calculated from the phase 

function p(µ) and scattering albedo ω0 [10, 11]. Alternatively, the mean cosine <µ>as of 

the asymptotic radiance can be obtained from eq (5) and used in place of Dκ. Only the 

eigenvalue γ0 need be calculated in this case, analytically in the P1 or P3 approximations 

[13, 14], or numerically for higher accuracy.  

Fig. 2 shows the dependence of the fractional errors in the diffuse fluxes vs. scattering 

albedo ϖ0 for two adjoining media with disparate scattering parameters (g = 0, 0.95), 

calculated in the P1 and P3 approximations to the diffusion parameters for Henyey-

Greenstein scattering [15], with refractive index ratio n = 1.41/1.34 = 1.06 (tissue/aq). 

Initially, the error increases rapidly with absorption (ϖ0<1) for g = 0.95, with a broad 

maximum ∆ϕ/ϕ ∼ 6% for ϖ0 ∼ 0.6; in contrast, the error for isotropic scattering (g = 0) in 

the adjoining medium increases quasi-linearly to ~ 5% when ϖ0 = 0. The results show 

that the P1 approximation seriously underestimates the error in diffuse flux (by ∼40%), 

while P3 is ≤10% low compared with the accurate value (P99), and is preferred for 

analytic evaluation of ∆ϕ/ϕ. Overall the results show that the error increases sharply 

when there is non-negligible absorption in a scattering medium with strongly forward 

biased scattering.  



More generally, for diffusion of light in multiple layers of finite thickness, the diffuse 

flux φk(z) in the kth layer may be expressed as [12] 

φk(z) = akexp(κkz) + bkexp(–κkz)  (9) 

with a similar expression for ϕk+1(z) in the (k+1)th layer. The boundary conditions [3, 4] 

(nk+1/nk)2φk(zk) – φk+1(zk) = C(nk+1/nk)Jk(zk) (10a) 

Jk(zk) = Jk+1(zk) : Dk∇φk(zk) = Dk+1∇φk+1(zk) (10b) 

yield the simple recurrence relations (for n = nk+1/nk > 1) 

ak+1 = ½{[n2+1+C(n)Dκ]ak+[n2−1−C(n)Dκ]bkexp(−2κh)} (11a) 

bk+1 = ½{[n2−1+C(n)Dκ]akexp(2κh)+[n2+1−C(n)Dκ]bk} (11b)  

 when Dk+1κk+1 = Dkκk = Dκ and κk+1hk+1 = κkhk = κh, where hk, hk+1 are the widths of the 

kth and (k+1)th layers, enabling the coefficients ak+1, bk+1 to be related ak, bk. The results 

for the approximate boundary condition eqn (2) are obtained on setting C(n) = 0 in eqns 

(11a, b). Successive application of these relations yields the coefficients ak, bk for all the 

layers involved, with appropriate boundary conditions chosen for the first and last [12]. A 

parallel set of coefficients ak', bk', for C(n) = 0, enables direct comparison of the accurate 

and approximate scalar fluxes φk, φk' in each layer, and thus evaluation of the cumulative 

error for the multi-layer system. This is illustrated in Fig 3, with ∆ϕ/ϕ = 1.4% at a single 

interface (for ϖ0 = 0.995, g = 0.95, n = 1.1), the cumulative error increasing with the total 

number of layers, exceeding 30% for 5 layers when κs'/κa = 1. For multi-layer media with 

higher index ratios or larger numbers of layers, the cumulative error can easily exceed 

100%. 

In conclusion, application of an approximate boundary condition for the diffuse flux at 

an interface between scattering media of differing refractive index results in an error in 

the scalar flux ϕ proportional to the vector flux J, increasing with refractive index ratio n. 

The fractional error ∆ϕ/ϕ = C(n)<µ>, where C(n)∝(n–1)3/2 for n–1<<1 [1] and <µ> is the 

mean cosine of the boundary radiance. In media characterised by strongly forward biased 

scattering, such as biological tissue, the error increases rapidly with absorption (Fig. 1). 

Reducing the scattering asymmetry by rescaling via the δ-P1 approximation increases the 



effective absorption, and may offset the reduction in flux error. The error is cumulative in 

a multi-layer system and can be prohibitive in calculating the diffuse flux distribution. 

The use of asymptotic plane wave solutions greatly simplifies the analysis; solutions for a 

point source in a diffusing cylinder can be obtained via a Hankel transform [12]. 
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Fig. 1. Relative flux error ∆ϕ/ϕ vs scattering asymmetry g for a range of scattering 

albedoes ϖ0, the error increasing rapidly for g>0.9. The limiting case for zero scattering 

(ϖ0 = 0) is indicated by the horizontal dashed line; the vertical dotted line marks the 

maximum asymmetry in the δ–P1 approximation (g' = 0.5). Index ratio n = 1.06. 

  



 
Fig. 2. Relative error in diffuse flux density on either side of the interface between two 

homogeneous scattering media with disparate scattering parameters: g = 0.95 (upper 

curves), g = 0 (lower curves) for index ratio n = 1.06. The filled squares (■) are data 

points calculated with accurate values of the diffusion parameters D, κ [10, 11]. 



 
Fig. 3. Relative flux error vs. κs'/κa in layer 1 (upper points) and layer 5 (lower points) of 

a 5-layer medium on a half-space (g = 0.95, index ratios n = 1.1); open squares (□) P1 

(diffusion) values, filled squares (■) accurate values of diffusion parameters D, κ. 


